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Pipelines are observed one of the economic modes of transport for transporting oil, gas, and water 
between various locations. Most of the countries in the world transport petroleum and other 
flammable products through underground pipelines. The underground and aboveground pipelines are 
facing various damages due to corrosion, dents, and ruptures due to the environment and operational 
fluid conditions. The danger of leaks and accidents increases as a result of these damages. Pipelines 
must be evaluated on a regular basis to make sure they are fit for transmission. By evaluating the 
effects of damages and the possibility of catastrophic failures using a variety of techniques, pipeline 
integrity is controlled. Applying the relative risk scoring (RRS) technique, pipeline failures are 
predicted. One of the probabilistic techniques used to forecast risk based on an impartial assessment is 
machine learning. With different parameters like corrosion, leakage, materials, atmosphere, surface, 
earth-movements, above-ground and underground facilities, etc., the RRS method provides an 
accuracy of 97.5% in identifying the risk and gives a precise classification of risk, whether the pipeline 
has a high, medium, or low risk without any delay on the prediction compared with Naive Bayes, 
decision tree, support vector machine, and graph convolutional network.

India’s economy is growing rapidly, necessitating increased hydrocarbon transport capacity. An item of machinery 
called a pipeline is made to move material constantly or irregularly from one place to another. Modern technolo-
gies prefer pipelines over other modes of transportation due to financial and safety reasons. Pressure is applied 
as highly flammable hydrocarbon material is transported across pipelines across the nation, frequently close to 
dense populations and places with a high environmental consciousness. Allocating a lot of money to preventive 
measures activities for mitigation and detection will help you analyse the risk presented by international pipe-
lines effectively. To protect individuals, the general public, the environment, and property, more safety must be 
provided. An effective algorithm is required to simplify the processes and lower the failure rate of gas pipelines1.

Pipelines pose risks such as jet fire, unconfined vapour cloud explosion, flash fire, delay ignition, pool fire, 
and toxicity. There are many integrity management tools, like cathodic protection, inline inspection, hydro 
testing, surveillance, direct assessment and evaluations, pipeline equipment health monitoring, and thickness 
assessment2,3. The pipeline threats are categorised as fixed, non-stationary, and stationary. The non-stationary 
threats are outer erosion, inner erosion, and strain erosion splitting. Pipeline defects can occur during the manu-
facturing process, as well as during welding or fabrication4. Some of the failures that occur as a result of gasket 
toxicity (joint failure, guide apparatus malfunction, and clinch force out failure) must also be considered when 
considering the threat to stable equipment.

Many other threats should be considered as time-independent threats while analysing the threats in equip-
ment and external factors. As with computer hackers, some third parties may damage pipeline equipment or 
perform incorrect operations, causing the pipeline to malfunction. Natural disasters5 like lightning, heavy rains, 
floods, weather-related events, and earth movements also affect the quality of pipelines. Due to the severity of 
the composite risk from all threats, pipeline sections may be prioritised for integrity assessment.

The overall risk value for a specific pipeline section is determined by the likelihood of failure and its conse-
quences, taking into account all relevant dangers. Risk ranking6 will be determined for pipeline segments found 
to be at high risk in order to arrange the integrity evaluation. Prior to the execution of any pipeline framework 
advancements, an exact cycle will be put in place to make sure that impending changes are evaluated for their 
potential risk effects on the pipeline. The RRS method concentrates on using the relative risk scoring method of 
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machine learning to perform the integrity and qualitative risk assessment of pipelines while taking into account 
all of these situations and factors.

The focal objectives of this research are:

1.	 There are other studies that are dependent on specific aspects, such as leakage, corrosion, etc., but none of 
them offer a specific solution for all of the problems that are widespread.

2.	 The Research focus to assess the risk of pipelines by calculating the Relative Risk Score (RRS) method.
3.	 The RRS approach takes many parameters into account that could impact a pipeline. The methodology that 

is being suggested here aims to lessen the harm happens due to harmful gases, chemicals, and petroleum 
products inflict on people and other living things.

4.	 To demonstrate the superior effectiveness of the novel approach the RRS method contrast it with Naive Bayes, 
Decision tree, SVM, and GCN.

The arrangement of this research paper is as per the following: The existing methodologies and literature 
background for pipeline assessment are presented in Segment 2. The terminologies related to the pipeline assess-
ment are explained in Segment 3. The proposed RRS algorithm using machine learning is elaborated in Segment 
4. The experimental setup and the discussion of results are presented in segment 5, and the research is concluded 
in segment 6.

Literature review
Risk assessment of chemical pipelines.  The use of machine learning techniques in pipeline risk assess-
ment has been a topic of increasing interest in recent years. Sohaib et al.5 proposed a method for detecting leaks 
in circular water storage tanks in the chemical sector using acoustic emissions. Support vector machines are used 
to locate the exact location of the crack or leakage. Mazumder et al.7 used machine learning algorithms to ana-
lyze the risk of failure of a steel pipeline. The research developed an alternative to statistically intensive analytical 
methods to estimate the steel pipeline failure threat. However, the research could not be fully realized due to the 
lack of adequate data for use in actual situations.

Yang et al.8 demonstrated urban gas data-driven pipeline accidents and consequences assessment using 
machine learning. The accidents in UPN may cause environmental disasters. Urban pipeline maintenance is 
related to the major facets of data. The work uses conventional assessment for risk models like the Kent index 
method and analytic evaluation indicators. The graph convolutional network (GCN) technique is used to assess 
the risk associated with pipelines. Liu and Bao9 reviewed automated conditions for the assessment of pipelines 
with machine learning. Pipelines, which transport intense substances, play a significant role in societal safety 
and commercial prosperity. Pipeline condition assessments are required to identify the risk.

Wu et al.10 presented FTAP: A feature-transferring autonomous machine learning pipeline. Successful 
machine learning11 frequently involves significant involvement with algorithms and expert knowledge in the 
field. The ML methods heavily rely on domain-specific information. FTAP improves efficiency and performance. 
It has also achieved success in distance domain transfer learning. He et al.12 used Geographical Information 
System at the threat location to develop a genetic and back propagation prototype to forecast the occurrence of a 
geographical calamity and avert pipeline damage. The GA-BP model is used to estimate weights of the indication 
factor by utilising the benefits of analysing data and predictive analytics, which avoid the subjective authority 
of earlier calculation methods.

Malinowska et al.13 showed off a model that uses Mamdani fuzzy inference for the study. In this method, 
the hazards in the pipeline due to the estimated horizontal strains, the solidity of the material, the time span of 
an unfavourable effect, and the importance of the targets are evaluated on the basis of one level. The prototype 
is used to assess the risk of an arranged gas pipe with systematic variables. This can also be used to stimulate 
further scientific variations of the examined item. Bu et al.14 investigated how soil-atmosphere coupling affects 
gas pipeline15 leakage. The joining process of methane leakage was calculated using arithmetic stimulation, and 
the effects of many factors on methane convergence in FDZ and SDZ were investigated. This analysis provides 
guidelines for the planning of gas pipes, improving the installation of detectors, and gas leakage16 maintenance.

Liu et al.17 demonstrated a dynamic danger estimation prototype depending on system dynamics (SD). Most 
of the pipeline risk assessments provide a static outline of the process. This model is to manage both the issue of 
given activity and changes there within a period. The solution provided the dynamic developments of principles 
of buried pipelines threat are compatible with real circumstances. This prototype adequately distinguishes the 
temporal and spatial principles of threat evolution.

Adumene et al.18 presented a method that combines the semi-empirical corrosion prototype with material 
used and parametric uncertainties. The pipe failure rises with a rise in factor of difference at the minimum limit 
of futile, while reduces in the maximum limit of futile. This method provides an organized structure for choosing 
material and threat-based integrity management plans for sea pipelines.

Froeling et al.19 demonstrated the danger of dangerous hydrogen jet fire transported through gas pipelines20,21. 
This analysis focuses on threats associated with a dangerous hydrogen fire, such as an invisible spray with a gas 
pipeline22. Using analytical software, it performs a detailed fire imitation and condition of the artwork. When 
compared to a gas pipeline, the ignition effects influence the threat for reducing pipe diameters and causing 
hydrogen transference to capitulate an increased hazard. Taleb-Berroune et al.23 suggested a prototype for the 
risk assessment for the deterioration of pipelines utilising adaptive bow-tie (ABT) analysis. The ABT model 
used for this analysis is engrossed in microbiologically impacted pipeline deterioration, as well as a corrosion 
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economic risk profile. This prototype serves as a procedure to recognize, evaluate, and maintain the corrosion 
of the pipeline.

Wang et al.24 initiated a susceptibility assessment technique for the danger assessment of the gas pipe system. 
It integrates the features of threat assessment and susceptible analysis methods. Risk susceptibility classifies its 
critical components into three categories: the operating status of the pipeline, transmission performance, and 
network features. A utility proposition is employed to identify the depth of the outturn. This method balances 
the lower part of the threat, trustability, and susceptibility curves to adequately recognise the unfavourable joints 
and pipelines damaging gas supply in a pipeline network.

Zulkifli and Salleh25 analysed the effect of movement and pipe construction actions at various pressures and 
pipe widths on the pipeline in the UTHM biodiesel plant. The Computational Fluid Dynamics (CFD) technique 
helped them to examine the velocity and pressure dispersion, while the Interaction of Fluid Structure (FSI) 
method enabled them to examine the stress distribution on the pipes according to their thicknesses. The study 
found that the breadth of the pipe affects the flow rate and pressure in the region of the pipe, and pressure dif-
fusion is reduced as quality improves. Additionally, when pressure increases, the storm created within the pipe 
also increases.

Risk assessment of buried pipelines.  Li et al.26 proposed a method to analyse and maintain gas pipelines 
externally based on Bayesian networks. Buried gas pipelines27 are often exposed to natural calamities, lead-
ing to corrosion. To identify the cause of pipeline deterioration, the study used a defective tree prototype and 
implanted the maintenance plan in the Bayesian network. This approach provides an adequate maintenance plan 
for pipelines and reduces losses caused by external corrosion.

Jabbari et al.28 used a down-covered logical hierarchy procedure to assess the risk of poisonous gas discharge 
and outburst in gas pipelines29. An analysis of danger was carried out using MATLAB software, and the mass of 
each item in basic risk (BRI) was outlined in a reference frame. The study found that five-state norms determine 
the level of threat. This method is applicable to the security chief when making decisions associated with the 
hazardous evaluation of a gas pipeline.

Yin et al.30 presented an upgraded quantifiable danger assessment for gas pipelines, considering high-impor-
tance areas. Given that most gas discharge incidents in China occur in crowded areas, the study established two 
models: a failure probability31 model and a risk consequence model. This approach can adequately recognize 
significant areas and produce reliable outcomes.

Chen et al.32 proposed a danger analysis method for buried pipes based on an upgraded cloud variable weight 
thesis. The study offered a new way of using the cloud variable weight hypothesis to examine the hazard amount 
and consequential danger factor of a pipeline by setting up a threat evaluation index system for the pipeline. This 
method assists the supervisor in determining the threat level and sore point in the pipeline.

Wang et al.33 developed a technique for evaluating the existence of deteriorated pipeline balances and assessing 
the threat of pipeline defaulter conditions in the face of an unexpected current attack. The study used a Monte 
Carlo simulation approach to determine the impedance caused by electrochemical reactions and the unreliability 
of prototype variables. The balance course of the corrosive ecological variables remains remarkably constant, 
except for the dynamic stray current immersed by the pipeline.

Mederios et al.34 presented a technique to deal with multi-dimensional risks occurring in gas pipelines based 
on unexpected utility. The study accomplished multi-dimensional risk evaluation of gas pipelines in decision-
making and used a non-expected utility method in the MRDU prototype. The deflection of usefulness was 
surveyed, and this included the benefit from an RDU (rank dependent utility)-based danger proposal. The 
study conducted similar outcome analysis and sensitivity testing, and this method provides great support to the 
decision-makers with regard to natural gas pipeline sections.

Ullah et al.35 assessed the rockburst patterns s of the Jinping-II hydropower project in China to enhance 
employee security in mining and geotechnical works. In the present work, the following methods were used to 
predict short-term rock burst threat: t-distributed stochastic neighbour embedding (t-SNE), K-means clustering, 
and extreme gradient boosting (XGBoost). The implied model’s results provide an excellent standard to guide 
future short-term rock burst levels forecasting with excellent precision.

Kamran et al.36 proposed a model to reducing rockburst-related mortality. In this study, firstly,isometric map-
ping (ISOMAP) algorithm is used.then, ISOMAP was categorized using the fuzzy c-means algorithm (FCM) and 
at last, in order to predict different levels of the short-term rockburst dataset, KNearest Neighbour (KNN) was 
used. In the experiment’s dataset, the suggested model properly categorised 96% of the rockburst occurrences.

Kamran et al.37 utilized the algorithms like Catboost and light gradient boosting machine (LightGBM) 
techniques with the objective to reduce the number of casualties and property damage associated with deep 
underground engineering tasks. Here, Catboost and light gradient boosting machine (LightGBM) techniques to 
examine several intriguing elements of mine fire statistics. The results show that LightGBM algorithms, having 
an accuracy of 92% and 89%, respectively, outperformed Catboost in terms of performance.

Kumaran et al.38 introduces a novel approach to foresee the stability of underground coal pillars utilising 
integrated unsupervised and supervised learning to roughly simulate the complicated behaviour of coal pillars. 
Kumaran et al.39 proposed a novel approach to forecast mine fire levels using a variety of machine learning 
approaches.

After examining various literature, pipelines are exposed to various physical and chemical environmental 
issues. These result in the explosion of chemicals, which lead to the spread of various diseases to humans, fire 
accidents, and natural calamities like land pollution, landslides, earthquakes, etc. The literature that is examined 
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only with minimal parameters that affect the pipeline and does not contain important parameters to which the 
pipeline is exposed. In a specific assessment, the need for integrity and qualitative risk assessment of pipelines 
with various parameters such as corrosion, leakage, coating, materials, atmosphere, surface, earth movements, 
population, above-ground and underground facilities, and so on is identified. The existing methodologies focused 
only on the risk of pipelines and assessing that particular risk. This may lead to catastrophic disasters where 
the pipeline is being implanted. So, an efficient relative risk score (RRS) method is proposed by assessing the 
pipeline using the RRS method with various parameters that affect the pipelines, which is greatly helpful and 
safe to transmit materials through the pipelines.

Related terminologies
Pipeline integrity management (PIM).  Pipelines are the best-grounded and cheapest mode for trans-
porting oil, fluids, and natural gas. Pipeline networks2 are large and complicated; they consume time and are 
often intensive for inquiring about a lot of pipelines. PIM is executed to reduce the possibility of remissness 
caused by the debasement and to maintain the programmability and security of pipelines. Despite the warnings 
to avoid transporting natural gas, fluids, and oil, these pipes are subjected to deteriorating conditions. The PIM 
are used to define the systematic approach, identify the possible risk by way of danger, and apply the preventive 
methods.

The research focuses on the basic objectives of pipeline integrity management (PIM) to improve confidence 
among the public in pipeline safety and operator management. It improves the operational processes to main-
tain the integrity of the pipeline. The primary goal of PIM is to ensure pipeline reliability, prevent incidents, 
and maintain the operation license. These integration activities generate the data with 3 V’s (a huge amount of 
volume, velocity, and variety) based on the pipeline’s length and the sensors and tools that are used to access 
the condition of pipelines. The pipeline should ensure not only the mechanical condition but also the operator’s 
reliable operation, delivery duty, image, and estimation.

Risk assessment.  Danger estimation and management is the term used to describe the general method for 
identifying the danger and the risk factors that have the potential to cause damage. Analyzing and evaluating the 
problem that is associated with the hazard. The tools used for risk assessment are the risk matrix, decision tree, 
failure modes and effects analysis. Since the oil, fluids, and natural gas pipes are burnable, they will be danger-
ous and toxic. The outflow in the pipeline can cause catastrophic effects like fire explosions and environmental 
pollution. Risk assessments used to reduce risk include baseline, issue-based, and continuous risk assessments.

Pipeline assessment entails closely inspecting pipeline inner and outer sections to determine corrosion rates, 
flow modeling, and profile calculation. The two components of pipeline risks are leaks and ruptures. The risk in 
the pipeline40 can be monitored by using supervisory control and data acquisition systems, which collects data 
about the pipeline operations and transmit the data to engineers or technicians if some problem occurs. The 
security cameras and sensors, fibre-optic cables, and temperature sensors placed on or near the pipelines can 
also check for leakages and corrosion to prevent them from becoming dangerous.

Machine learning in PIM.  Machine learning41 concentrates on integrity, maintenance, inspection, analys-
ing the crack, and preventing corrosion in pipelines. In pipeline integrity management, the two categories of ML 
classification and regression are used. Classification is used for detecting leakage, identifying the defect type, and 
predicting the level of risk in pipelines. Regression is used for calculating the size of the defect and predicting 
the rate of debasement in pipelines. For pipeline integrity management, clustering identical pipeline42 segments 
based on identical operating conditions, materials used for establishment, and debasement mechanisms are 
taken into account for the assessment of risk.

Classifier techniques used in prediction.  The Classification algorithm is a Supervised Learning tech-
nique utilized in order to categorize new observations, on the premise of training data. In classification, a sys-
tem makes use of the dataset or observations that are provided to learn how to categorize fresh observations 
into various classes or groups. In this research, three classifier models such as support vector machine (SVM), 
Decision Tree and Naïve Bayes are used to identify the chance of pipeline failures, based on a variety of input 
characteristics.

Support vector machine (SVM).  Collecting and pre-processing the data is the initial stage in the use of SVM for 
pipeline risk assessment. Data collection on pipeline parameters, environmental variables, and information on 
previous pipeline failures are necessary.

where y_i is the class for the i-th data point, x_i is the input vector for the i-th data point, b is the bias term.

(1)y_i((w ∗ x_i)+ b) = 1 for all i
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Decision tree.  It functions by creating a tree-like model of choices and potential outcomes. Each node in a 
decision tree indicates a choice made in response to a particular characteristic or attribute of the data. Up until 
a stopping requirement is satisfied, the data are recursively divided into subsets based on the values of the char-
acteristics. This terminating criterion can be a predetermined tree depth or the minimal quantity of samples 
needed in a leaf node. The leaf nodes represent the class labels. By estimating the possibility of a pipeline failure 
or leak based on different characteristics like the age of the pipeline, the material it is constructed of, the operat-
ing pressure, and the location, decision trees can be utilized for pipeline assessment.

The above Eq. 2 calculates how much information a feature provides us about a class

The above Eqs. 2, 3 and 4 calculate entropy and gini index. C also represents the number of events (groups). 
The entropy and Gini index is a measure of impurity or purity used while creating a decision tree.

Naïve Bayes.  This is also using the different characteristics of pipeline to assess. It is possible to identify high-
risk pipelines and set priorities for maintenance and inspection work by utilising a Naive Bayes algorithm for 
pipeline assessment. The Naive Bayes algorithm is excellent for huge datasets since it is easy to use and compu-
tationally effective. The Naive Bayes algorithm for pipeline evaluation involves utilising the Bayes theorem to 
determine the likelihood of a pipeline failure or leak given its characteristics.

Proposed RRS methodology
a.	 System model of risk assessment of pipelines using machine learning

The research focuses on qualitative risk assessment and the integrity of pipelines using relative risk scoring 
methods in machine learning. Relative risk scoring is an index model in which important conditions and activi-
ties of the pipeline are assigned numerical values (scores) that contribute to risk. Depending on the needs of the 
assessment, multiple layers of the layered hierarchy in which the relative risk scoring algorithm is designed may 
be necessary. Failure or consequence factors are investigated. The relative contribution to the risk, consequence, 
or total risk will determine the best course of action for risk minimization.

The relative risk score (ℜ) is calculated by sum of the Index Sum (µ) divided by the Leak Impact Factor.

Index sum (µ) is the sum of Third-party index (Ɲ), Corrosion Index (ʩ), Design Index (ϑ) and the Incorrect 
Operation (Ѵ).

I.	 Third party index

The Third-Party Index (Ɲ) is the summation of the seven factors.

where X1 is the minimum depth cover. In this case, X1 is obtained by dividing the no. of inches covered by three 
[X1 = A1/3], where A1 is the number of inches covered. X2 is the activity level, X3 is the facilities in aboveground, 
X4 is the line locating, X5 is the public education, X6 is the Right of the way Condition, X7 is the patrol and n is 
the number of factors in third party index.

	 II.	 Corrosion Index

Corrosion Index (ʩ) is the summation of Atmospheric Corrosion (À), Internal Corrosion (ƛ), and Subsur-
face Corrosion (₰). Where À is the Atmospheric corrosion, ƛ is the internal corrosion and ₰ is the subsurface 
corrosion. Atmospheric corrosion (À) is calculated with the summation of three factors.

where Y1 is the atmospheric exposure, Y2 is the atmospheric type and Y3 is the atmospheric coating.

(2)InformationGain = Entropy(S)− [
(

Weighted Avg
)

∗
(

Entropy
(

each feature
))

]

(3)
Entropy(S) = −P

(

positive classes
)

log2P
(

positive classes
)

− P
(

negative classes
)

log2P
(

negative classes
)

(4)gini index = 1−
∑C

j=1
Pj

2

Relative Risk Score (ℜ) = Index Sum (µ) / leak Impact Factor (§) (5)

(6)

(7)À =
∑3

n=1
Yn
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Internal corrosion (ƛ) is calculated with the summation of corrosion in the product (ɥ) and internal produc-
tion ( γ).

 Subsurface corrosion (₰) is the summation of subsurface environment (ψ), Cathodic protection (ɰ) and coat-
ing (Ձ).

Subsurface environment (ψ) is the summation of corrosion in soil (ϒ) and mechanical corrosion (П).

Cathodic protection (ɰ) is the summation of effectiveness (ժ) and interference potential (թ).

Coating (Ձ) is the summation of fitness (Ʊ) and condition (ȡ).

From Eqs. (9), (10) and (11),

From Eqs. (6), (7) and (12), 

 where ʩ is the corrosion index.

	 III.	 Design Index

Design index (ϑ) is the summation of safe factor (D1), fatigue (D2), surge potential (D3), verification of integ-
rity (D4), land movements (D5).

where ϑ is the Design index, n is the number of factors, D1 is the safe factor, D2 is the fatigue, D3 is the surge 
potential, D4 is the verification of integrity, D5 is the land movements.

	 IV.	 In-correct Operation Index

The In-correct Operation Index (Ѵ) is the sum of design (ɠ), construction (ɓ), operation (τ), and mainte-
nance (ω). 

 where ɠ denotes the design, n denotes the number factors,  M1 is the Hazard identification, M2 is the MAOP 
potential, M3 is the safety system, M4 is the material selection and M5 is the checks. 

 where ɓ denotes the construction, n denotes the number factors,  N1 is the inspection value, N2  is the Materials 
rating, N3 is the joining value, N4 is the backfills, N5 is the handling and  N6 is the coating of pipelines.

where τ denotes the operation, n denotes the number factors,  O1 is the procedure, O2 is communication test, 
O3 is drug testing value, O4 is the safety program, O5 is the survey/maps/record, O6 is the training and  O7 is the 
mechanical error preventer.

where ω denotes the Maintenance, n denotes the number factors, P1 is the documentation, P2 is the schedule 
and P3 is the procedure.

From above Eqs. (15), (16), (17) and (18), 

ƛ= ɥ+ ɣ  
(8)

(9)� = ϒ +�

պ = ժ+ թ (10)

Ձ= Ʊ+ ȡ (11)

₰= + պ + Ձ (12)

ʩ= À+ ƛ+₰ (13)

(14)ϑ =

5
∑

(n=1)

Dn

ɠ=∑
(15)

ɓ=∑
(16)

(17)τ =
∑7

n=1
On

(18)ω =
∑3

n=1
Pn
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From Eqs. (6), (13), (14) and (19). 

I.	 Product hazard

Product hazard is calculated by the summation of acute hazard and chronic hazard. 

 where δ denotes the acute hazard, η is the reactivity, ƕ is the flammability and ؏ is the toxicity.

From the above (21) and (22), 

 where Ց denotes the Product hazard, δ is the acute hazard, ζ is the chronic hazard.

	 II.	 Leak volume

Leak volume (Final spill score) = (effective score of spill size) × (adjustment factor larger openings). 

 where £ denotes the Leak volume, ξ is the score of the spill size and ⱥis the Adjustment factor larger openings.

	 III.	 Dispersion

Dispersion is calculated by Operating pressure divided by 100. 

 where Ә denotes the dispersion and ꝭ  denotes Operating pressure.

	 IV.	 Receptors

Receptor (ɮ) is the summation of population density (ρ), environment considerations (ꬿ) and high value 
areas (ℏ).

 where ɮ denotes Receptors, ρ is the population density, ꬿ  is the Environmental considerations and ℏ is the 
High value areas.

From Eqs. (23), (24), (25) and (26), 

 where Ց denotes the Product hazard, £ is the Leak volume, Ә is the Dispersion and ɮ is the Receptors.

b.	 Architecture and work flow of risk assessment of pipelines using machine learning

Figure 1 presents the complete flow of the system. The system first analyses various parameters that are 
needed to calculate the risk score of pipelines. Using that the Third-party index, corrosion index, Design index 
are calculated. Finally, with the index sum and the leakage impact factor the risk level is decided. Table 1 displays 
the Symbols and semantics used for experimental purpose.

(19)

(20)

ẟ = ղ+ ƕ +؏ (21)

(22)ζ(chronic hazard).

Ց = ẟ + ζ (23)

£ = ξ * ⱥ (24)

Ə = ꝭ/100 (25)

ɮ= ρ +ꬿ + ℏ (26)

§= Ց * £ * Ə * ɮ (27)
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Algorithm 1: Identifying the Index Sum
Input:

The input factors required to calculate corrosion index, third-party index, design index,

in-correct operation and n.

Let 

n= number of records to be assessed

Output:

Index sum is obtained.

Begin procedure 

 for i=1 to n

//to calculate the third-party index

Summation of the minimum depth cover, the activity level, the facilities in 

aboveground, the line locating, the public education, the Right-of-way Condition, 

the patrol and n is the number of factors in third-party index.

//Also, X1(minimum depth cover) is calculated using the Number of inches covered 

divided by 3

Ɲ=∑

X1=A1/3,

Here, A1 is the Number of inches covered.

//to identify the corrosion index

Summation of Internal Corrosion, Atmospheric Corrosion and Subsurface 

Corrosion.

ʩ= À+ ƛ+₰

//to identify the design index

Summation of safe factor, fatigue, surge potential, verification of integrity, land 

movements.

ϑ =∑

//to identify the incorrect operation index

Summation of design, construction, operation, and maintenance.

Ѵ= ɠ +ɓ +τ +ω

//to calculate the Index sum

Sum of Third-party index, corrosion index, design index, in-correct operation 

index.

µ = Ɲ + ʩ + ϑ+ Ѵ

End for 

End procedure 
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Algorithm 2: Identifying Leak Impact Factor
Input 

The inputs are the factors to calculate product hazard, leak volume, dispersion and 

receptors, n.

Let 

n = number of records to be assessed

Output 

Leak impact factor is obtained 

Begin procedure 

 for i=1 to n

//to identify acute hazard

Summation of reactivity, flammability and toxicity.

ẟ = ղ+ ƕ +؏

//to identify product hazard

  Summation of acute hazard and chronic hazard  

Ց = ẟ + ζ

//to identify leak volume

  Product of effective spill size score and adjustment factor larger openings.

  £ = ξ * ⱥ

//to identify dispersion

                        Division of Operating pressure and 100.

Ə = ꝭ/100

//to identify receptors

                       Summation of population density, environment considerations and high value areas.

ɮ= ρ +ꬿ + ℏ

//to calculate Leak impact factor 

  Product of leak volume, product hazard, dispersion and receptors.

§= Ց * £ * Ə * ɮ

 End for 

End procedure 
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Experimentation and analysis
Experimental setup.  This research concentrates on the quality and assesses the possible dangers of the 
pipeline. The assessment of the pipeline requires various factors, like environmental conditions, land move-
ments, and other factors. The RRS methodology focuses on every factor that affects the pipeline and assesses the 
risk. Here, the relative risk score method is calculated by dividing the index sum by the leak impact factor. The 
dataset analysed for this research is published in Kaggle platform43 to collaborate with colab. Table 2 contains the 
risk level for the range of values of the relative risk score.

The above-mentioned Table 2 is the range from which the risk level of pipeline is calculated.

Figure 1.   Flow chart for RRS method.
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Results and discussion.  The RRS is obtained by dividing the index sum by the leak impact factor. The 
index sum is calculated as the sum of the corrosion index, third-party index, design index, and in-correct opera-
tion index. The leak impact factor is calculated by the product of leak volume, product hazard, dispersion, and 
receptors. The risk level is marked based on the relative risk score range as depicted in Table 2. Table 3 depicts 
the statistical characteristics of the research data. Table 4 shows a sample of the calculated index sum, leak impact 
factor, relative risk score, and risk level.

Figure 2 depicts the range in which the values of the index sum lie. Here, the x-axis represents the values from 
the dataset, and the y-axis represents the ranges. The index sum values consist of corrosion index, third-party 
index, design index, and in-correct operation. All these four factors have several subfactors, in which the values 
are added and the final value is given as the index sum.

Figure 3 depicts the range in which the values of the leak impact factor lie. Here, the x-axis represents the 
values from the dataset, and the y-axis represents the ranges. The leak impact factor values consist of product 
hazards, leak volume, dispersion, and receptors. Each of these four factors has several subfactors, the values are 
multiplied and the final value given as the leak impact factor.

Figure 4 depicts the observations on a single attribute, which is univariate, and visualizes it through a histo-
gram, i.e., only one observation. Here, the relative risk score is observed. The relative risk score is calculated by 
dividing the index sum by the leak impact factor.

Figure 5 also depicts the observations on a single attribute which is univariate and visualizes it through a 
histogram. Here, the risk of the pipeline is observed. From the relative risk score method, the risk of the pipeline 
is calculated as high, low, or medium based on the input values.

Figure 6 shows the relative risk score’s box plot. The main objective of the box plot is to find the minimum 
value, maximum value, and outliers. Outlier detection is the process of identifying an unknown observation in 
a given dataset.

Figure 7 depicts the comparison of various methodologies, i.e., support vector machines, decision trees, and 
naive bayes algorithms, with the RRS methodology. These algorithms are compared based on the execution time. 
In this way the RRS method shows the better execution time (24 ms) while comparing the other algorithms. 
This comparison proves that the submitted methodology is better than the existing methodologies in terms of 
performance.

In Table 5 the performance metrics like accuracy, precision, recall and F1 score of RRS methodology are 
discussed.

The above Fig. 8 depicts the graph for identifying the risk due to corrosion. The x-axis represents the corrosion 
in different algorithms, and the y-axis represents the accuracy in percentage. The percentage of pipeline corro-
sion is compared here using various algorithms such as Naive Bayes, support vector machine (SVM), and graph 
convolutional network (GCN). The SVM shows 92%, the Naive Bayes algorithm shows 92.7%, the GCN algorithm 
shows 93%, and the RRS method shows the greatest accuracy percentage of 97.5%. When comparing these three 
algorithms, the Relative Risk Scoring method shows a high percentage of accuracy in predicting corrosion. Based 
on this analysis, the graph proves that the RRS method is the best method for calculating corrosion accuracy.

Table 1.   Symbols and semantics used for experimental purpose.

S. No. Symbols Semantics

1 R Relative risk score

2 µ Index sum

3 § Leak impact factor

4  Third-party index

5  Corrosion index

6 ϑ Design index

7  In-correct operations

8  Product hazard

9  Leak volume

10  Dispersion

11 ꬿ  Receptors

Table 2.   Risk range and level.

Relative risk score range Risk level

0–15 High

16–50 Medium

51–100 Low
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The Fig. 9 depicts a graph for identifying the risk due to leakage. The x-axis represents the leakage in differ-
ent algorithms, and the y-axis represents the accuracy in percentage. Support vector machine (SVM), the Naive 
Bayes algorithm, and the graph convolutional. The SVM shows 95%, Naive Bayes algorithm shows 94%, GCN 
algorithm shows 93%, and RRS method shows the greatest accuracy percentage of 97.5%. When these three 
algorithms are compared, the Relative Risk Scoring method has the highest percentage accuracy in detecting 
leakage. Based on this analysis, the graph shows that the RRS method is the most effective method for calculating 
leakage accuracy. From above Figs. 8 and 9, it is proven that SVM and GCN are individually better in the aspect 
of predicting leakage and corrosion but, RRS is better than them in both aspects.

The methodology was carefully designed and tested to ensure that it is reliable. The RRS methodology has 
achieved only 93% of recall which can be improved with further addition of experiments. The proposed method-
ology has several advantages, the risk of the pipeline is predicted using various parameters including corrosion, 

Table 4.   Index sum, leak impact factor, relative risk score and risk level.

S. No. Index_sum Leak_impact_factor Relative_Risk_Score Risk level

0 196.000000 18.29472 10.713474 High

1 208.200000 46.53936 4.473633 High

2 239.666667 27.95100 8.574529 High

3 233.133333 25.27200 9.224966 High

4 175.833333 24.45528 7.189995 High

5 229.600000 34.20209 6.713040 High

6 203.333333 4.84380 41.978061 Medium

7 222.133333 13.85100 16.037350 Medium

8 167.800000 17.04000 9.847418 High

9 209.000000 47.40120 4.409171 High

10 252.333333 7.65600 32.958899 Medium

Figure 2.   Index sum of pipelines.
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leakage and other damages so that the risk of the pipeline is not over calculated. Thus, the leakage, corrosion 
and other damages are not predicted separately. Hence, this method is more accurate to calculate the risk of the 
pipeline than other methodologies.

Conclusion
In conclusion, pipelines serve as the backbone of the global transportation network for products such as oil, 
water, and gas. However, the safe and efficient operation of pipelines requires comprehensive risk assessment. Our 
study presents the RRS method, a novel approach to risk assessment that considers a wide range of parameters, 

Figure 3.   Leak impact factor of pipelines.

Figure 4.   Relative Risk Score.
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including those often overlooked in existing methodologies. The RRS algorithm provides more accurate results 
for calculating leakage, corrosion, and classification, with accuracies of 96.5%, 94.7%, and 94.3%, respectively. 
Compared to the Decision Tree algorithm, the RRS method executes much faster, reducing the time and cost 
associated with risk assessment. Overall, the RRS method represents a significant advancement in pipeline risk 
assessment. Its ability to provide more accurate results, faster execution time, and comprehensive consideration 
of all parameters makes it a more reliable and efficient approach. The RRS method has the potential to improve 
the safety and efficiency of pipeline operation in the future, providing a safer, more cost-effective, and more 
sustainable approach to transporting products across the globe. Thus, we conclude that the RRS method is a 
reliable and efficient approach for risk assessment of pipelines.

Figure 5.   Risk of the pipeline.

Figure 6.   Relative risk score.
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Figure 7.   Performance comparison of RRS method with existing algorithms.

Table 5.   Performance metrics of the RRS method.

Accuracy Precision Recall F1-score

97.5% 0.95 0.93 0.94

Figure 8.   Identification of Risk due to corrosion.
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Data availability
The datasets generated and/or analysed during the current study are available in the Kaggle43 repository, [https://​
www.​kaggle.​com/​datas​ets/​vanit​ham20​bsr059/​oilch​emical-​pipel​ine-​datas​et].
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