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Modified generalized 
Weibull distribution: theory 
and applications
Mustafa S. Shama 1,2, Amirah Saeed Alharthi 3, Fatimah A. Almulhim 4, Ahmed M. Gemeay 5, 
Mohammed Amine Meraou 6, Manahil SidAhmed Mustafa 7, Eslam Hussam 8* & 
Hassan M. Aljohani 3

This article presents and investigates a modified version of the Weibull distribution that incorporates 
four parameters and can effectively represent a hazard rate function with a shape resembling 
a bathtub. Its significance in the fields of lifetime and reliability stems from its ability to model 
both increasing and decreasing failure rates. The proposed distribution encompasses several well-
known models such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh, 
and modified Weibull distributions. The paper derives key mathematical statistics of the proposed 
distribution, including the quantile function, moments, moment-generating function, and order 
statistics density. Various mathematical properties of the proposed model are established, and 
the unknown parameters of the distribution are estimated using different estimation techniques. 
Furthermore, the effectiveness of these estimators is assessed through numerical simulation studies. 
Finally, the paper applies the new model and compares it with various existing distributions by 
analyzing two real-life time data sets.

Statistical models are crucial in comprehending and predicting real-world phenomena. In numerous applica-
tions, it becomes necessary to utilize enhanced versions of well-established distributions. These new distributions 
offer greater flexibility when it comes to simulating real-world data with high skewness and kurtosis. Among the 
advantages of the new distribution is its suitability for various fields, including medical, financial, and engineering 
applications. Selecting the most appropriate statistical model for data analysis is both critical and challenging. For 
further exploration on the topic of distributions, I recommend referring to the following references: Almongy 
et al.1, Shafiq et al.2, and Meriem et al.3. These sources provide additional insights and information.

The Weibull distribution is extensively employed in the analysis of lifetime data and has demonstrated notable 
efficacy in capturing failure rates that display monotonic patterns. Its density shapes, which manifest as either 
right or left-skewed, render it well-suited for survival and reliability analysis. Nevertheless, the Weibull model is 
inadequate for accurately representing non-monotonic failure rates, such as those characterized by hazard func-
tions exhibiting bathtub-shaped or upside-down bathtub-shaped patterns. To address this limitation, researchers 
have developed enhanced versions of the Weibull distribution that can accurately accommodate different hazard 
function shapes to represent complex failure models accurately. Xie and  Lai4 introduced the additive Weibull 
distribution, incorporating a bathtub-shaped hazard function. Bebbington et al.5 proposed the flexible Weibull 
distribution, which modifies the hazard function to exhibit an increasing pattern followed by a bathtub shape. Lai 
et al.6 presented a new Weibull distribution model with three parameters and a bathtub-shaped hazard function.

Notwithstanding the progress made in the field, numerous prevailing models exhibit limited flexibility and 
may not yield optimal fits when applied to real-world data in engineering and related domains. To address this 
issue, researchers have employed diverse techniques to develop alternative distributions that enhance the flex-
ibility of existing models. One approach involves generating a new distribution by combining two cumulative 
hazard rate (CHR) functions through a mixture model. It can be written as below:

OPEN

1Department of Basic Sciences, CFY, King Saud University, Riyadh 12373, Saudi Arabia. 2Department of Mathematics 
and Statistics, Osim Higher Institute of Administrative Science, Osim 12961, Egypt. 3Department of Mathematics 
and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. 4Department of 
Mathematical Sciences, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 
Riyadh 11671, Saudi Arabia. 5Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, 
Egypt. 6Laboratory of Statistics and Stochastic Processes, University of Djillali Liabes, BP 89, 22000 Sidi Bel Abbès, 
Algeria. 7Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia. 8Department of 
Mathematics, Faculty of Science, Helwan University, Cairo, Egypt. *email: eslmhussam1986@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38942-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12828  | https://doi.org/10.1038/s41598-023-38942-9

www.nature.com/scientificreports/

with H(x) denoted the cumulative hazard rate function satisfies the following conditions 

1. lim
x→0

H(x) = 0,
2. lim

x→∞
H(x) = ∞,

3. H(x) is a differentiable non-negative and non-decreasing.

By using Eq. (1), the generated cumulative density function (cdf) and probability density function (pdf) are, 
respectively, given by

Some generalized distributions generated according to (2) and (3) are listed in Table 1.

Bagdonavicius and  Nikulin10 proposed an extension of the Weibull distribution, namely power generalized 
Weibull (PGW) distribution, and its cdf and pdf can be described as

and

and the relationship between cdf and pdf is given by

respectively, where α and θ are two shape parameters and � is a scale parameter. PGW distribution contains 
constant, monotone (increasing or decreasing), bathtub-shaped, and unimodal hazard shapes. For more details 
about this extension, see, for example, Bagdonavicius and  Nikulin11, Voinov et al.12, and Kumar and  Dey13.

In this research article, we introduce a novel statistical model called the modified power generalized Weibull 
(MPGW) distribution. Four parameters characterize the MPGW distribution and exhibit several significant 
properties. This distribution’s probability density function (pdf) can assume different forms, including constant, 
monotonic (increasing or decreasing), and unimodal. Moreover, the hazard rate function (hrf) associated with the 
MPGW distribution can take on various shapes, such as constant, monotonic, bathtub, and upside-down bathtub.

We investigate several mathematical properties of the MPGW distribution and explore its applicability in 
different contexts. To estimate the model parameters, we employ various estimation techniques, including maxi-
mum likelihood estimation (MLE), the maximum product of spacing (MPS), least square estimators (LSE), 
and Cramer-von Mises estimators (CVE). These estimation methods enable us to determine the most suitable 
parameter values for the MPGW distribution based on the available data.

The proposed distribution was used in many fields of science such as engineering and bio-sciences as it can 
model many kinds of data because of the distribution’s great flexibility. For more details about similar papers 
 see12,14 The rest of this paper is structured as follows. Section “The formulation of the MPGW distribution” 
described the new MPGW model and provided different distributional properties. Further, numerous statistical 
properties for the proposed distribution were introduced in Section “Statistical properties”. In Section “Estima-
tion methods”, we established different estimation procedures for the unknown parameters of the suggested 
distribution. Monte Carlo simulation studies are performed in Section “Numerical simulation” to compare the 
proposed estimators. Finally, in Section “Real data analysis”, two real data sets defined by the survival field are 
analyzed for validation purposes, and we conclude the article in Section “Conclusion”.

Main contribution and novelty. This research paper presents a noteworthy advancement in the field of 
probability distributions by introducing a novel four-parameter generalization of the Weibull distribution. The 

(1)H(x) = H1(x)+H2(x),

(2)G(x) = 1− e−H1(x)−H2(x),

(3)g(x) = (h1(x)+ h2(x))e
−H1(x)−H2(x).

(4)F(x) = 1− exp
(
1−

(
1+ �xθ

)α)
, x,α, �, θ>0,

(5)f (x) = α�θ
(
1+ �xθ

)α−1
exp

(
1−

(
1+ �xθ

)α)
,

(6)f (x) = α�θ
(
1+ �xθ

)α−1
(1− F(x)),

Table 1.  Some generalized distributions of a mixture of the two chr functions.

S.N

Name of the distribution

H1(x) H2(x) H(x)

1 Weibull Weibull Additive  Weibull4

2 Weibull Modified  Weibull6 New modified  Weibull7

3 Exponential Weibull Modified  Weibull8

4 Exponential Exponential Modified  exponential9



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12828  | https://doi.org/10.1038/s41598-023-38942-9

www.nature.com/scientificreports/

proposed generalization offers the ability to model a hazard rate function that exhibits a bathtub-shaped pat-
tern. The bathtub-shaped hazard rate function is of great interest in various domains, as it accurately captures 
the characteristics of failure rates observed in certain real-world scenarios. To evaluate the efficacy of the newly 
proposed model, we conducted an empirical investigation using two distinct real-life time data sets. These data 
sets were carefully selected to encompass diverse applications and ensure the generalizability of the findings. 
We could assess the model’s effectiveness in practical applications by employing the proposed four-parameter 
generalized Weibull distribution and comparing its performance with several existing distributions. Through a 
comprehensive analysis of the results, valuable insights were obtained regarding the capabilities and advantages 
of the novel four-parameter generalized Weibull distribution when applied to real-world data sets. The compari-
son of the proposed model with existing distributions provided a rigorous evaluation framework, enabling a 
thorough understanding of its performance in different scenarios. This study contributes to the existing body of 
knowledge by demonstrating the applicability and usefulness of the new distribution in capturing the complexi-
ties of time-to-failure data.

The formulation of the MPGW distribution
The MPGW distribution is generated by using H1(x) of the PGW distribution and H2(x) of the exponential 
distribution in Eqs. (2) and (3). Its cdf and pdf can be defined as the following

and the relationship between cdf and pdf can be written as

where θ > 0 , �,α,β ≥ 0 such that �+ β > 0 and α + β > 0.
The hazard rate function (hrf) of the MPGW model can be expressed as

Table 2 summarized several well-known lifetime distributions from the newly suggested distribution, which is 
quite flexible.

Statistical properties
In this part of the study, we provided some mathematical properties of the MPGW distribution, especially 
moments, skewness, kurtosis, and asymmetry.

Behavior of the pdf of the MPGW distribution. The pdf limits of the MPGW distribution are

From the pdf of the MPGW distribution, the first derivative of the pdf is

(7)G(x) = 1− e1−
(
1+�xθ

)α−βx, x>0,

(8)g(x) =
(
β + αθ�xθ−1

(
1+ �xθ

)α−1
)
e1−

(
1+�xθ

)α−βx,

(9)g(x) =
(
β + αθ�xθ−1

(
1+ �xθ

)α−1
)
(1− G(x)),

(10)h(x) = β + αθ�xθ−1
(
1+ �xθ

)α−1
.

lim
x→0+

f (x) =
{∞ θ<1

β + α� θ=1, f (∞) = 0
β θ>1

.

Table 2.  Some special models of the MPGW distribution.

Parameters

Distribution� α β θ

– – 0 – Power generalized Weibull (PGW)11

– 1 – – Modified Weibull (MW)8

– – – 1 Modified Nadarajah–Haghighi (MNH) (new)

– – 0 1 Nadarajah–Haghighi (NH)15

– 1 – 2 linear failure rate (LFR)16

– 1 0 – Weibull (W)

– 1 0 2 Rayleigh (R)

0 – – –

Exponential (E)– 0 – –

– 1 0 1
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where ψ(x) = (h(x))2 − h′(x) . It is clear that f ′(x) and ψ(x) have the same sign, and ψ(x) has not an explicit 
solution. Therefore, we can discuss the following special cases which depend on θ and α:

Case 1: For θ ≤ 1 and αθ ≤ 1 , ψ(x) is negative which means f (x) is decreasing in x
Case 2: For θ = 1 , ψ(x) reduces to

which has no solution for α ≤ 1 and the pdf becomes decreasing for all x.
Case 3: For α = 1 , ψ(x) reduces to

which has no solution for θ ≤ 1 and the pdf becomes decreasing for all x.
Case 4: Forβ = 0 and θ = 1 , ψ(x) reduces to

which has a solution for α>1 , therefore the mode (M) becomes

Case 5: For α = 1and β = 0 , ψ(x) reduces to

which has a solution for θ>1 , therefore the mode becomes

Case 6: Forα = 1 , β = 0 and θ = 2 , ψ(x) reduces to

in this case, the mode becomes

For different parameter values, Fig. 1 depicts the pdf plots of MPGW distribution. The graphs show that the 
pdf of MPGW is decreasing and uni-modal which gives our proposed model the superiority for analyzing 
lifetime data.

Behavior of the hazard rate function of the MPGW distribution. The hrf limits of the MPGW 
distribution are

f ′(x) = −ψ(x)

h(x)
f (x),

ψ(x) =
(
β + αθ�xθ−1

(
1+ �xθ

)α−1
)2

+ αθ�xθ−2
(
1+ �xθ

)α−2(
1− θ − �(αθ − 1)xθ

)
,

(α − 1)α�2(1+ x�)α−2 −
(
β + α�(1+ x�)α−1

)2
,

θ�(θ − 1)xθ−2 −
(
β + θ�xθ−1

)2
,

α�2(1+ �x)−2+α
(
α
(
1− (1+ �x)α

)
− 1

)
,

M = (1− 1/α)1/α − 1

�
.

θ�xθ−2
(
θ
(
1− xθ�

)
− 1

)
,

M = ((θ − 1)/θ�)1/θ .

2�
(
1− 2x2�

)
,

M = 1/
√
2�.

lim
x→0+

h(x) =
{∞ θ<1

β + α� θ=1,

β θ>1
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Figure 1.  Plot for PDF of the MPGW model for different values of the parameters.
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  and

 
The study of the shape of the hrf needs an analysis of the first derivative h′(x) and it can be described as

where η(x) = θ − 1+ �(αθ − 1)xθ . Clearly, h′(x) and η(x) have the same sign and η(x) has critical value at the 
point

From η(x) , it can be noted that the hrf has different shapes written as:

Case1: αθ>1 . 

1. If θ ≥ 1 , then h′(x) > 0 and h(x) are monotonically increasing.
2. If θ<1 , then the hrf is decreasing for x<x∗ and increasing forx>x∗ . Hence, the hrf has a bathtub shape.

Case2: αθ<1 . 

1. If θ ≤ 1 , then h′(x)<0 and h(x) are monotonically decreasing.
2. If θ>1 , this means 0 <α<1and 1 <θ<1/α , then the hrf is increasing for x<x∗and the hrf is decreasing 

for x>x∗ . Hence, the hrf has an upside-down bathtub shape.

Case3: αθ = 1 . 

1. h′(x)=0 and h(x) are constant when θ.
2. h′(x) > 0 and h(x) are monotonically increasing where θ>1.
3. h′(x)<0 and h(x) are monotonically decreasing where θ<1.

Figure 2 displays the plot of hrf of MPGW model for multiple parameter values. The plots of hrf of MPGW 
are more efficient in modeling lifetime data.

Moments. 

Theorem 1 For any r ∈ N , the rth raw moment of the MPGW model can be written as

lim
x→∞

h(x) =
{
β αθ<1

∞ αθ>1
,

lim
x→∞

h(x) =
{

β αθ=1, θ< 1

β + � αθ=1, θ= 1

∞ αθ=1, θ> 1

.

(11)h′(x) = αθ�xθ−2
(
1+ xθ�

)α−2
η(x),

x∗ =
(

1− θ

(αθ − 1)�

)1/θ

µ
′
r =






�∞
i=0

(−1)iβ ie
i! [βI(r, i)+ αθ�K(r, i)] for �,α,β>0

αθ�eK(r, 0) forβ=0, �,α>0
Ŵ(r+1)

βr for� or α=0, β>0

.
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Figure 2.  Plot for PDF of the MPGW distribution for different values of the parameters.
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Proof By the pdf (8) and the definition of the rth raw moment, we have

In the general case, we suppose that � , α and β>0 . Using the following expansion of e−βxgiven by

then Eq. (12) is rewritten as

Let I(r, i) =
∫∞
0 xr+ie−

(
1+�xθ

)α
dx and u =

(
1+ �xθ

)α , we have

By using the expansion of 
(
1− u−1/α

)(r+i+1)/θ−1 where 
∣∣u−1/α

∣∣<1 , above integral is described as

Hence, after some algebra, we get

let k(r, i) =
∫∞
0 xr+i+θ−1

(
1+ �xθ

)α−1
e−

(
1+�xθ

)α
dx and u =

(
1+ �xθ

)α , we have

Hence, after some algebra, we obtain

finally, substituting (14) and (15) into (13), we have

which completes the proof.   �

According to the results given in theorem 3, the mean and the variance of the proposed model, respectively, are 
µ = µ

′
1 and σ 2 = µ

′
2 − µ2 . As well as the measures of skewness, kurtosis, and  asymmetry of the MPGW are 

given, respectively, by

and

Table 3 shows some necessary MPGW measures for various parameter combinations computed using the R 
program.

From the values of Table 3 it can be deduced that 

(12)µ
′
r =

∫ ∞

0
xr
(
β + αθ�xθ−1

(
1+ �xθ

)α−1
)
e1−

(
1+�xθ

)α−βxdx.

e−βx =
∞∑

i=0

(−1)iβ ixi

i! ,

(13)µ
′
r =

∞∑

i=0

(−1)iβ ie

i!

∫ ∞

0
xr+i

(
β + αθ�xθ−1

(
1+ �xθ

)α−1
)
e−

(
1+�xθ

)α
dx.

I(r, i) = 1

αθ�(r+i+1)/θ

∫ ∞

1
u(r+i+1)/αθ−1

(
1− u−1/α

)(r+i+1)/θ−1
e−udu.

I(r, i) = 1

αθ�(r+i+1)/θ

∫ ∞

1
u(i+1)/α−1

∞∑

j=0

(
(r + i + 1)/θ − 1

j

)
(−1)(r+i+1)/θ−j−1e−udu.

(14)I(r, i) = 1

αθ�(r+i+1)/θ

∞∑

j=0

(
(r + i + 1)/θ − 1

j

)
(−1)(r+i+1)/θ−j−1Ŵ((i + 1)/α, 1),

K(r, i) = 1

αθ�(r+i)/θ−1

∫ ∞

1
u(r+i)/αθ

(
1− u−1/α

)(r+i)/θ
e−udu.

(15)K(r, i) = 1

αθ�(r+i)/θ+1

∞∑

l=0

(
(r + i)/θ

l

)
(−1)(r+i)/θ−lŴ(l/α + 1, 1),

µ
′
r =

∞∑

i=0

(−1)iβ ie

i! [βI(r, i)+ αθ�K(r, i)],

β1 =

(
µ

′
3 − 3µ

′
2µ+ 2µ3

)2

(
µ

′
2 − µ2

)3 ,

β2 =
µ

′
4 − 4µ

′
3µ+ 6µ

′
2µ

2 − 3µ4

(
µ

′
2 − µ2

)2 ,

β3 =
µ

′
3 − 3µ

′
2µ+ 2µ3

(
µ

′
2 − µ2

)3/2 .
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1. If α increases and for fixed β , � and θ , the values of Mean and Variance of the suggested MPGW model tend 
to decrease, while the values of β1 , β2 and β3 are increasing. The same result for � with fixed α , β and θ.

2. For fixed values of α , � and θ and for β augment, all values of Mean, Variance, β1 , β2 and β3 of the MPGW 
model are decrease..

3. The MPGW distribution is a flexible model for explaining more data sets.

Estimation methods
Here, we considered four estimation techniques for constructing the estimation of the unknown parameters for 
MPGW model. The determination of the estimate parameters using different procedures has been made avail-
able to various authors such  as17–19.

Maximum likelihood estimation and its asymptotics. Let {x1, . . . , xn} be a a random sample coming 
from MPGW(α,β , �, θ) . Then, the corresponding log-likelihood function is described by

with � = (α,β , �, θ) . Consequently, with respect to α,β , � , and θ and by taking the derivatives of (16), we can 
be determined the estimates α̂MLE , β̂MLE , �̂MLE and θ̂MLE and these estimates are given respectively by

(16)

LL(�) =
n∑

i=1

ln f (xi) = n ln β + n ln(αθβ)+ (θ − 1)

n∑

i=1

ln xi + (α − 1)

n∑

i=1

ln(1+ �xθi )

+ n−
n∑

i=1

(1+ �xθi )
α − β

n∑

i=1

xi .

(17)
∂LL

∂α
= n

α
+

n∑

i=1

ln(1+ �xθi )− ln

( n∑

i=1

(1+ �xθi )

)
exp

[
α ln

( n∑

i=1

(1+ �xθi )

)]
,

(18)
∂LL

∂β
= 2n

β
−

n∑

i=1

xi ,

Table 3.  Some statistical measures for MPGW using varied parameter values.

Initial values Mean Variance β1 β1 β3

α = 0.5

� = 0.5

θ = 0.4
β = 0.6 1.317838 2.292988 4.886313 10.27683 2.210501

β = 1.4 0.6005073 0.4433549 4.615957 9.889532 2.148478

θ = 1.2
β = 0.6 1.212822 1.466835 4.373271 9.787101 2.091237

β = 1.4 0.617936 0.3741446 4.017766 9.10745 2.004437

� = 1.5

θ = 0.4 β = 0.6 0.9286623 1.67044 6.959431 13.26558 2.638073

β = 1.4 0.4568996 0.3493235 6.031006 11.92106 2.455811

θ = 1.2
β = 0.6 0.868915 0.8067142 5.272788 11.4164 2.296255

β = 1.4 0.5099617 0.2601584 4.419819 9.872812 2.102337

*α = 1.0

� = 0.5

θ = 0.4
β = 0.6 0.9929894 1.672137 6.319516 12.41974 2.513865

β = 1.4 0.4912752 0.3591074 5.520644 11.22754 2.349605

θ = 1.2
β = 0.6 0.884102 0.655516 2.983307 7.295088 1.727225

β = 1.4 0.5313037 0.2557791 3.37493 7.938339 1.837098

� = 1.5

θ = 0.4
β = 0.6 0.4069533 0.5349628 14.19162 24.82229 3.767177

β = 1.4 0.2506932 0.1608244 10.33383 18.61577 3.214627

θ = 1.2
β = 0.6 0.496919 0.1910405 2.647061 6.756577 1.626979

β = 1.4 0.3656575 0.1113983 2.953406 7.246701 1.718548

α = 1.5

� = 0.5

θ = 0.4
β = 0.6 0.7150675 1.068093 8.18407 15.3267 2.860781

β = 1.4 0.3912617 0.2697455 6.666465 12.97332 2.58195

θ = 1.2
β = 0.6 0.6835784 0.3333469 1.94893 5.440328 1.396041

β = 1.4 0.4602635 0.1742717 2.615656 6.533268 1.617299

� = 1.5

θ = 0.4
β = 0.6 0.160819 0.1027797 21.3466 37.79339 4.620238

β = 1.4 0.1242004 0.05074849 15.55551 27.49139 3.944048

θ = 1.2
β = 0.6 0.3446051 0.07488582 1.537765 4.803849 1.240066

β = 1.4 0.2801202 0.05536821 1.907145 5.374306 1.380994
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and

These estimates can be solved numerically using various approach methods, including Newton Raphson, bisec-
tion, or fixed point methods.

Least square estimation. Let x1, . . . , xn be a random sample from MPGW(α,β , �, θ) and x1:n < · · · < xn:n 
represent the order statistics of the random sample from the MPGW model. The least-square estimator (LSE) 
which introduced  by20) of α,β , �, θ , noted by α̂LSE , β̂LSE , �̂LSE and θ̂LSE ) can be described by minimizing

Maximum product of spacings. For x1 ≤ · · · ≤ xn representing the ordered statistics random sample 
from MPGW distribution, the maximum product of the spacings estimation (MPS) estimators of the proposed 
model resulted by maximizing the following equation

Cramer-von Mises minimum distance estimators. The Cramer-von Mises-type minimum distance 
estimators (CVEs) α̂CVE , β̂CVE , �̂CVE and θ̂CVE of α,β , �, θ are described respectively by minimizing

Numerical simulation
Here in this part of the work, we performed some results from simulation experiments so that you may assess 
how well the various estimating techniques provided in Section “Estimation methods” using different sample 
sizes, n = {100, 300, 500, 700, 1000} and different sets of initial parameters. After repeating the process K = 1000 , 
we generate different random samples from the suggested model. The following algorithm can be easily used to 
generate samples from the MPGW distribution 

1. Step 1: Generate u from U(0,1).
2. Step 2: Generate x as x is the solution of equation 1− e1−

(
1+�xθ

)α−βx = u.

Further, we compute the average values of biases (AB), mean square errors (MSEs), and mean relative errors 
(MREs) by the following equations

where ���=(α,β , �, θ ). All calculations were performed by using the R software version 4.1.2.
Tables 4, 5 and 6 summarized the results of the simulation studies for the proposed model using the four 

estimation procedures. From the results, it can be concluded that as the sample size increases, all estimation 
methods of the proposed distribution approach to their initial guess of values. Furthermore, in all cases, the 
values of MSEs, and MREs tend to decrease. This ensures the consistency and asymptotically impartiality of all 
estimators. Additionally, by taking the MSE as an optimally criteria, we deduce that MLEs outperform alternative 
methods of estimate for the MPGWD.

Real data analysis
Through performing goodness-of-fit tests, we utilize two data sets to contrast the MPGW model with PGW 
distribution and the other four alternative existing models to see the effectiveness of the new model. The com-
pared distributions: 

1. Additive modified Weibull (AMW)  distribution4 with pdf defined as follows 

(19)
∂LL

∂�
= (α − 1)

n∑

i=1

xθi
1+ �xθi

− α

n∑

i=1

xθi (1+ �xθi )
α−1,

(20)
∂LL

∂θ
= n

θ
+

n∑

i=1

ln xi + �(α − 1)

n∑

i=1

ln xie
θ ln xi

1+ �xθi
− α�

n∑

i=1

ln xie
θ ln xi (1+ �xθi )

α−1.

n∑

i=1

[
F(xi:n|�)− i

n+ 1

]2
.

(21)MP(�) =
[
n+1∏

i=1

Li(�)

]1/(n+1)

, Li(�) = F(xi:n|�)− F(xi−1:n|�).

(22)CR(�) = 1

12n
+

n∑

i=1

[
F(xi:n|�)− 2i − 1

2n

]2
.

|BIAS| = 1

K

K∑

i=1

|�̂��−���|, MSEs = 1

K

K∑

i=1

(�̂��−���)2, MREs = 1

K

K∑

i=1

|�̂��−���|/���,
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2. Modified extension Weibull (MEW)  distribution21 with pdf defined as follows 

g(x; �, θ ,α,β) =
(
αθxθ−1 + �βx�−1

)
exp

(
−αxθ − βx�

)
; x ≥ 0, α,β ≥ 0, θ>0, 0<�<1.

Table 4.  The ABs, MSEs and associated MREs of the ( α,β , �, θ)=(0.5, 0.4, 0.8, 0.9) considering different 
sample sizes.

n Method

α̂ β̂  �̂ θ̂

AB MSE  MRE AB MSE  MRE AB MSE  MRE AB  MSE  MRE

100

MLE 0.1508 0.0504 0.3016 0.3704 0.1997 0.9260 0.9702 2.6293 1.2128 0.1063 0.0492 0.1181

LSE 0.0311 0.0963 0.0623 0.1275 0.2652 0.3187 0.9316 3.3506 1.1645 0.2485 0.8041 0.2761

MPS 0.1352 0.0634 0.2704 0.8778 0.2184 0.8778 0.6210 2.9341 0.6210 0.6040 0.4631 0.6040

CVE 0.0704 0.0868 0.1409 0.0650 0.2387 0.1625 0.4673 3.0700 0.5841 0.4040 0.7894 0.4489

300

MLE 0.0630 0.0287 0.3133 0.1714 0.1714 0.3750 0.0209 0.0669 0.0261 0.1266 0.0263 0.1406

LSE 0.0140 0.0892 0.0280 0.0398 0.2178 0.0996 0.1526 0.5521 0.1908 0.0318 0.0957 0.0353

MPS 0.5934 0.0591 0.5934 0.7894 0.1967 0.7894 0.1482 0.3674 0.1482 0.1649 0.0531 0.1649

CVE 0.0639 0.0625 0.1279 0.0469 0.2037 0.1172 0.2940 0.5053 0.3676 0.0405 0.0763 0.0450

500

MLE 0.0355 0.0049 0.0710 0.3998 0.1599 0.9995 0.0624 0.0395 0.0780 0.0022 0.0014 0.0024

LSE 0.0393 0.0715 0.0787 0.0353 0.1887 0.0884 0.0933 0.4449 0.1167 0.0391 0.0726 0.0434

MPS 0.4841 0.0352 0.4814 0.6547 0.1678 0.6547 0.1165 0.2182 0.1165 0.0982 0.0293 0.0982

CVE 0.0387 0.0512 0.0775 0.0375 0.1718 0.0939 0.1353 0.3843 0.1691 0.0432 0.0621 0.0480

700

MLE 0.0043 0.0019 0.0086 0.3969 0.1579 0.9923 0.0004 0.0281 0.0005 0.0053 0.0012 0.0058

LSE 0.0513 0.0618 0.1027 0.0131 0.1763 0.0327 0.1494 0.3719 0.1868 0.0485 0.0408 0.0539

MPS 0.3674 0.0162 0.3674 0.5867 0.1632 0.5867 0.0751 0.1791 0.0751 0.0822 0.0931 0.0822

CVE 0.0647 0.0427 0.1295 0.0240 0.1657 0.0601 0.2248 0.1394 0.2810 0.0099 0.0345 0.0110

1000

MLE 0.0075 0.0008 0.0150 0.0193 0.1434 0.0483 0.1596 0.0141 0.1995 0.0040 0.0008 0.0044

LSE 0.1035 0.0532 0.1035 0.0988 0.1687 0.0988 0.4756 0.3556 0.1872 0.0562 0.0349 0.0925

MPS 0.2861 0.0110 0.2861 0.4298 0.1508 0.4298 0.0492 0.1271 0.0492 0.0718 0.0159 0.0478

CVE 0.0474 0.0429 0.0948 0.0106 0.1530 0.0265 0.1498 0.3043 0.0875 0.0562 0.0341 0.0624

Table 5.  The ABs, MSEs and associated MREs of the ( α,β , �, θ)=(1, 1, 1, 1) considering different sample sizes.

n Method

α̂ β̂  �̂ θ̂

AB  MSE  MRE AB MSE  MRE AB  MSE  MRE AB  MSE  MRE

100

MLE 0.4017 1.6641 0.4017 0.0998 0.0099 0.0998 0.0901 0.1019 0.0901 0.3142 1.2024 0.3142

LSE 0.4397 3.6129 0.4397 0.2786 0.6793 0.2786 0.8019 7.4673 0.8019 0.1464 1.8019 0.1464

MPS 0.6402 1.7358 0.6402 0.8778 0.4465 0.8778 0.6210 1.1844 0.6210 0.6040 1.2716 0.6040

CVE 0.2054 2.0067 0.2054 0.3372 0.5912 0.3372 0.8548 6.8765 0.8548 0.1178 1.3331 0.1178

300

MLE 0.1871 0.6220 0.1871 0.0983 0.0097 0.0983 0.0016 0.0954 0.0016 0.2182 0.5500 0.2182

LSE 0.1811 1.3889 0.1811 0.0998 0.5182 0.0998 0.7562 4.1285 0.7562 0.2965 1.1058 0.2965

MPS 0.5934 0.7467 0.5934 0.7894 0.1988 0.7894 0.1482 0.1533 0.1482 0.1649 0.7462 0.1649

CVE 0.0785 0.8707 0.0785 0.1539 0.2349 0.1539 0.5050 2.1604 0.5050 0.1081 0.8214 0.1081

500

MLE 0.0036 0.4411 0.0036 0.0980 0.0095 0.0980 0.0010 0.0891 0.0010 0.1394 0.1689 0.1394

LSE 0.0533 0.7601 0.0533 0.0994 0.3293 0.0998 0.6432 2.2361 0.6432 0.2006 0.5527 0.2006

MPS 0.4841 0.5247 0.4814 0.6547 0.1047 0.6547 0.1165 0.1672 0.1165 0.0982 0.3459 0.0982

CVE 0.0437 0.7233 0.0437 0.1314 0.1442 0.1314 0.1604 1.8454 0.1604 0.0426 0.3504 0.0426

700

MLE 0.0032 0.2869 0.0076 0.0793 0.0076 0.0793 0.0007 0.0712 0.0007 0.0614 0.0566 0.0614

LSE 0.1084 0.4487 0.1084 0.0991 0.2941 0.0991 0.5873 1.2705 0.5873 0.1098 0.1535 0.1098

MPS 0.3674 0.3152 0.3674 0.5867 0.0854 0.5867 0.0751 0.1791 0.0751 0.0822 0.0931 0.0822

CVE 0.0352 0.3990 0.0352 0.0982 0.1059 0.0982 0.0890 1.2390 0.0890 0.0408 0.1335 0.0408

1000

MLE 0.0023 0.2258 0.0023 0.0727 0.0071 0.0727 0.0002 0.0645 0.0002 0.0429 0.0478 0.0429

LSE 0.1035 0.3632 0.1035 0.0988 0.2487 0.0988 0.4756 0.9256 0.4756 0.0925 0.1249 0.0925

MPS 0.2861 0.2849 0.2861 0.4298 0.0.538 0.4298 0.0492 0.1821 0.0492 0.0718 0.1359 0.0478

CVE 0.0050 0.3410 0.0050 0.0509 0.0981 0.0509 0.0875 0.0902 0.0875 0.0650 0.0664 0.0650
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3. Extended Weibull (EW)  distribution22 with pdf defined as follows 

4. Flexible Weibull (FW)  distribution5 with pdf defined as follows 

5. Kumaraswamy Weibull (KW)  distribution23 with pdf defined as follows 

6. Beta Weibull (BW)  distribution24 with pdf defined as follows 

The first data set represents the recorded remission times given in months from bladder cancer patients, reported 
by Lee and  Wang25. The ordered array of the data is

0.08 1.35 2.46 3.25 3.88 4.98 5.62 7.26 8.26 10.34 12.63 17.12 25.82

0.2 1.4 2.54 3.31 4.18 5.06 5.71 7.28 8.37 10.66 13.11 17.14 26.31

0.4 1.46 2.62 3.36 4.23 5.09 5.85 7.32 8.53 10.75 13.29 17.36 32.15

0.5 1.76 2.64 3.36 4.26 5.17 6.25 7.39 8.65 11.25 13.8 18.1 34.26

0.51 2.02 2.69 3.48 4.33 5.32 6.54 7.59 8.66 11.64 14.24 19.13 36.66

0.81 2.02 2.69 3.52 4.34 5.32 6.76 7.62 9.02 11.79 14.76 20.28 43.01

0.9 2.07 2.75 3.57 4.4 5.34 6.93 7.63 9.22 11.98 14.77 21.73 46.12

1.05 2.09 2.83 3.64 4.5 5.41 6.94 7.66 9.47 12.02 14.83 22.69 79.05

1.19 2.23 2.87 3.7 4.51 5.41 6.97 7.87 9.74 12.03 15.96 23.63

1.26 2.26 3.02 3.82 4.87 5.49 7.09 7.93 10.06 12.07 16.62 25.74

g(x; �, θ ,β) = �β(θx)β−1 exp

[
(θx)β + �

θ

(
1− e(θx)

β
)]

, x>0, �, θ ,β>0.

g(x; �,α,β) = α(�+ βx)xβ−2 exp
(
−�/x − αxβe−�/x

)
, x>0, α, �,β>0.

g(x;α,β) =
(
α + β/x2

)
exp

(
αx − β/x − eαx−β/x

)
; x,α,β>0.

g(x; �, θ ,α,β) = αβθ�e−(�x)θ (�x)θ−1
(
1− e−(�x)θ

)α−1(
1−

(
1− e−(�x)θ

)α)β−1
; x,α,β , θ , � > 0.

g(x; �, θ ,α,β) = θ(x/α)θ−1

αB(α,β)
(1− e−(x/α)θ )α−1e−β(x/α)θ ; x,α,β , θ ,α > 0.

Table 6.  The ABs, MSEs and associated MREs of the ( α,β , �, θ)=(0.75, 0.6, 0.7, 0.4) considering different 
sample sizes.

n Method

 α̂ β̂  �̂ θ̂

AB MSE MRE AB MSE  MRE AB MSE MRE AB  MSE  MRE

100

MLE 0.1945 0.0874 0.4712 0.4621 0.2607 1.2442 1.3112 2.9281 1.3561 0.1494 0.0791 0.1711

LSE 0.0771 0.1323 0.1431 0.1846 0.3202 0.3709 1.2517 4.2842 1.6532 0.3361 1.0373 0.3206

MPS 0.1722 0.1009 0.3081 0.4649 0.2861 0.8293 0.9243 3.0373 0.8943 0.1892 0.1161 0.2231

CVE 0.2036 0.1276 0.3482 0.4812 0.3018 0.8643 0.9726 3.0859 0.9248 0.2134 0.1515 0.2559

300

MLE 0.1734 0.0719 0.4119 0.4226 0.2312 0.9473 1.1257 1.5816 0.9647 0.1364 0.0526 0.1519

LSE 0.0527 0.1137 0.1249 0.1573 0.2816 0.3485 0.9789 2.6248 1.3681 0.3025 0.7211 0.2529

MPS 0.1473 0.0891 0.2714 0.4437 0.2550 0.7934 0.8946 1.6274 0.8167 0.1593 0.0813 0.1882

CVE 0.1687 0.1045 0.3022 0.4367 0.2705 0.8152 0.9254 1.6516 0.8726 0.1859 0.1149 0.2161

500

MLE 0.1262 0.0557 0.3892 0.4019 0.2017 0.8961 1.0943 1.3385 0.8437 0.1049 0.0452 0.1227

LSE 0.0513 0.0994 0.1018 0.1287 0.2664 0.3128 0.9561 2.2486 1.2673 0.2742 0.3716 0.2038

MPS 0.1223 0.0694 0.2475 0.4170 0.2217 0.7528 0.8416 1.3612 0.7762 0.1236 0.0649 0.1568

CVE 0.1337 0.0872 0.2719 0.3984 0.2470 0.7793 0.8648 1.3976 0.7842 0.1458 0.0937 0.1789

700

MLE 0.1384 0.0451 0.4012 0.4175 0.1634 0.9157 1.1105 0.8216 0.8624 0.1135 0.0338 0.1352

LSE 0.0614 0.0819 0.1082 0.1367 0.2173 0.3254 0.9587 2.0917 1.2746 0.2783 0.2291 0.2074

MPS 0.1362 0.0667 0.2749 0.4197 0.1782 0.7568 0.8469 0.8602 0.7801 0.1281 0.0416 0.1590

CVE 0.1406 0.0773 0.2849 0.4027 0.1911 0.7853 0.8681 0.8894 0.8871 0.1462 0.0621 0.1816

1000

MLE 0.1120 0.0216 0.3617 0.3647 0.1482 0.8234 0.9328 0.6437 0.7365 0.0754 0.0094 0.0816

LSE 0.0367 0.0731 0.0719 0.3652 0.1743 0.7634 0.8794 1.4672 0.9461 0.9321 0.1365 0.1682

MPS 0.1024 0.0437 0.0863 0.3557 0.1627 0.2482 0.7892 0.6723 0.6938 0.0985 0.0169 0.1246

CVE 0.1057 0.0620 0.2264 0.3576 0.1726 0.6894 0.8133 0.6982 0.7167 0.1293 0.0359 0.1205
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The second data set considered the values of the survival times given in days of guinea pigs infected with 
virulent tubercle bacilli, summarized by  Bjerkedal14. The ordered array of the data is

0.1 0.74 1 1.08 1.16 1.3 1.53 1.71 1.97 2.3 2.54 3.47

0.33 0.77 1.02 1.08 1.2 1.34 1.59 1.72 2.02 2.31 2.54 3.61

0.44 0.92 1.05 1.09 1.21 1.36 1.6 1.76 2.13 2.4 2.78 4.02

0.56 0.93 1.07 1.12 1.22 1.39 1.63 1.83 2.15 2.45 2.93 4.32

0.59 0.96 1.07 1.13 1.22 1.44 1.63 1.95 2.16 2.51 3.27 4.58

0.72 1 1.08 1.15 1.24 1.46 1.68 1.96 2.22 2.53 3.42 5.55

Table 7 recorded different statistic measures for the two proposed data sets.
To assess the validity of the proposed model, we conducted several statistical tests and computed various 

criterion measures. Firstly, we computed the log-likelihood function (-L), then, we employed criterion measures 
such as the Akaike Information Criterion ( A1 ) and the Bayesian Information Criterion ( B1 ) to evaluate the 
performance of the model further. The model that yields the minimum values of these criteria is considered to 
be the most appropriate for the given data set. To complement the criterion measures, we also employed vari-
ous test statistics, including the Cramér-von Mises (Cr), Anderson–Darling (An), and Kolmogorov–Smirnov 
(KS) tests. These tests assess the model’s overall fit by comparing the observed data with the model’s predicted 
values. The associated p-values obtained from these tests measure the statistical significance of the differences 
between the observed and predicted values. By considering these criterion measures and test statistics, we can 
comprehensively evaluate the validity of the proposed model. The model that exhibits the best fit, as indicated 
by the minimum values of the criterion measures and non-significant p-values from the test statistics, can be 
considered the most suitable for the given data set.

Tables 8 and 9, contain the values of criterion measure statistics for the fitted models by applying the two 
considered data sets. Based on these measures and along with the p-values of the proposed test statistics for 
each distribution, the MPGW model is the best candidate distribution for modeling the two data sets. The plots 
of the probability–probability (P–P) and quartile–quartile (Q–Q) of the suggested distributions using the two 
proposed data are shown in Figs. 3, 4, 5 and 6. This figure confirms this conclusion.

Figure 7 shows the curves of the pdfs for different fitting distributions using the first data set. Figure 8 shows 
the Curves of the pdfs for different fitting distributions using the second data set. Tables 10 and 11 contain The 
goodness of fit test for various fitting distributions by applying the first and second data sets, respectively.

Table 7.  Basic statistics for the two data.

Considered data set Min. Qu1 Qu2 Mean. Qu. Std. β1 β2 Max.

First data set 0.08 3.35 6.40 9.37 11.84 10.51 3.25 15.20 79.05

Second data set 0.10 1.08 1.40 1.77 2.24 1.03 1.31 1.85 5.55

Table 8.  The MLEs and corresponding L, A1 and B1 values for different fitting models using first data.

Distributions

Parameters(SE)

L A1 B1�̂ θ̂ α̂ β̂

MPGW
0.0233 3.5251 0.1153 0.0520 −409.3373 826.6746 838.0827

(0.0575668) (2.70518) (0.123153) (0.0236309)

PGW
0.1416 1.5568 0.4222 – −410.3021 826.6042 835.1603

(0.0394446) (0.240679) (0.1092)

AMW
0.9729 1.0478 0.0939 1.10E-8 −414.0869 836.1738 847.5819

(0.10497) (0.067576) (0.019081) (0.0000498)

MEW
4.04E3 4.53E7 – 0.1119 −419.7096 845.4192 853.9753

(3338.68) (6.3942E7) (0.004758)

EW
0.1271 – 0.1026 1.0197 −413.5593 833.1187 841.6748

(0.153653) (0.006095) (0.002585)

FW
– – 0.0325 2.1548 −460.2659 924.5318 930.2358

(0.002555) (0.248939)

KW
0.2159 0.4589 4.1178 2.9414 −410.5691 829.1382 840.5463

(0.249025) (0.515299) (5.83644) (8.14823)

BW
3.1098 0.6661 2.7348 0.9083 −410.6786 829.3571 840.7653

(0.51804) (0.242903) (6.46409) (0.825413)
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Conclusion
This research paper introduces a novel distribution that involves compounding two cumulative hazard rate func-
tions. We have derived a specific sub-model from the proposed distribution and established various mathematical 
properties related to it. We have applied four different estimation techniques to estimate the unknown parameters 
of our suggested model. Additionally, we have conducted simulation experiments to evaluate the effectiveness of 
these proposed estimation methods. Furthermore, we have analyzed two real engineering data sets to assess how 

Table 9.  The MLEs and corresponding L, A1 and B1 values for different fitting models using second data.

Distributions

Parameters(SE)

L A1 B1�̂ θ̂ α̂ β̂

MPGW
1.77E11 296.2071 0.0029 0.1266 −89.23162 186.4632 195.5699

(46316.7) (46.116) (0.0032747) (0.0452335)

PGW
0.8170 2.8420 0.3880 – −93.53814 193.0763 199.9063

(0.412897) (0.621165) (0.135424)

AMW
0.3710 1.8254 0.2832 1.10E-8 −95.78981 199.5796 208.6863

(0.270093) (0.158711) (0.0540902) (0.0000231)

MEW
154.8199 0.0005 – 1.8255 −95.78984 197.5797 204.4097

(217.692) (0.00098) (0.469472)

EW
0.1643 – 0.3373 1.7175 −95.56381 197.1276 203.9576

(0.280029) (0.117196) (0.237983)

FW
– – 0.3824 1.4381 −102.4335 208.8670 213.4203

(0.036711) (0.178066)

KW
0.7665 0.9913 3.1103 1.7319 −94.0656 196.1312 205.2379

(0.702075) (1.04436) (3.86848) (5.52747)

BW
0.8673 1.2907 2.3572 0.5414 −94.0368 196.0735 205.1802

(0.616053) (0.454981) (1.37574) (0.871254)

Table 10.  The goodness of fit test for various fitting distributions by applying the first data set.

Models Cr An KS p-Cr p-An p-KS

MPGW 0.0145 0.0971 0.0313 0.9997 0.9999 0.9996

GW 0.0311 0.2134 0.0390 0.9727 0.9863 0.9900

AMW 0.1537 0.9577 0.0700 0.3789 0.3801 0.5570

MEW 0.3285 1.9867 0.0958 0.1125 0.0935 0.1910

EW 0.1400 0.8754 0.0698 0.4219 0.4295 0.5617

FW 1.5915 8.1568 0.2084 9.94E-05 9.81E-05 2.97E-05

KW 0.0378 0.2544 0.0447 0.9445 0.9680 0.9603

BW 0.0403 0.2704 0.0450 0.9320 0.9586 0.9582

Table 11.  The goodness of fit test for various fitting distributions by applying the second data set.

Models Cr An KS p-Cr p-An p-KS

MPGW 0.0301 0.1915 0.0531 0.9767 0.9926 0.9873

GW 0.0693 0.4361 0.0807 0.7575 0.8118 0.7370

AMW 0.1680 1.0072 0.1048 0.3397 0.3533 0.4079

MEW 0.1680 1.0071 0.1048 0.3397 0.3533 0.4082

EW 0.1484 0.9073 0.1058 0.3953 0.4094 0.3964

FW 0.2216 1.4288 0.1464 0.2295 0.1944 0.0912

KW 0.0858 0.5354 0.0890 0.6605 0.7104 0.6189

BW 0.0859 0.5346 0.0886 0.6599 0.7112 0.6241
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well the MPGW model fits the data when compared to other well-known models. Our findings indicate that the 
MPGW model demonstrates a good fit to the data sets, highlighting its potential utility in practical applications.

Looking ahead, there are several potential avenues for future research. Firstly, we can extend our work to study 
the bivariate case and explore different properties of the proposed distribution within that context. Additionally, 
we can investigate the application of different censored methods, such as progressive type I, II, and hybrid cen-
sored methods, for estimating the unknown parameters of the proposed model. Moreover, we may explore the 
estimation of model parameters using Bayesian approaches and consider various loss functions, such as square 
error, Linex, and general entropy, to further enhance our understanding of the proposed model. The current 
study can be extended using neutrosophic statistics as future research;  see26–28.
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Figure 3.  P-P plots of MPGW, GW, AMW, MEW, EW, FW, KW, and BW for the first data set.
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Figure 4.  QQ plots of MPGW, GW, AMW, MEW, EW, FW, KW, and BW for the first data set.
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Figure 5.  P-P plots of MPGW, GW, AMW, MEW, EW, FW, KW, and BW for the second data set.
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Figure 6.  QQ plots of MPGW, GW, AMW, MEW, EW, FW, KW, and BW for the second data set.

Figure 7.  Curves of the pdfs for different fitting distributions using the first data set.
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Data availability
All references exist in the paper for data used in the paper; see Lee and  Wang25 for the first real data set and 
 Bjerkedal14 for the second one.
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