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Spatial predictions 
and uncertainties of forest carbon 
fluxes for carbon accounting
Arnan Araza 1,2*, Sytze de Bruin 1, Lars Hein 2 & Martin Herold 1,3

Countries have pledged to different national and international environmental agreements, most 
prominently the climate change mitigation targets of the Paris Agreement. Accounting for carbon 
stocks and flows (fluxes) is essential for countries that have recently adopted the United Nations 
System of Environmental-Economic Accounting - ecosystem accounting framework (UNSEEA) as a 
global statistical standard. In this paper, we analyze how spatial carbon fluxes can be used in support 
of the UNSEEA carbon accounts in five case countries with available in-situ data. Using global multi-
date biomass map products and other remotely sensed data, we mapped the 2010–2018 carbon fluxes 
in Brazil, the Netherlands, the Philippines, Sweden and the USA using National Forest Inventory 
(NFI) and local biomass maps from airborne LiDAR as reference data. We identified areas that are 
unsupported by the reference data within environmental feature space (6–47% of vegetated country 
area); cross-validated an ensemble machine learning (RMSE=9–39 Mg C ha−1 and R2=0.16–0.71) 
used to map carbon fluxes with prediction intervals; and assessed spatially correlated residuals 
(<5 km) before aggregating carbon fluxes from 1-ha pixels to UNSEEA forest classes. The resulting 
carbon accounting tables revealed the net carbon sequestration in natural broadleaved forests. 
Both in plantations and in other woody vegetation ecosystems, emissions exceeded sequestration. 
Overall, our estimates align with FAO-Forest Resource Assessment and national studies with the 
largest deviations in Brazil and USA. These two countries used highly clustered reference data, where 
clustering caused uncertainty given the need to extrapolate to under-sampled areas. We finally 
provide recommendations to mitigate the effect of under-sampling and to better account for the 
uncertainties once carbon stocks and flows need to be aggregated in relatively smaller countries. 
These actions are timely given the global initiatives that aim to upscale UNSEEA carbon accounting.

Under the increasing threat of climate change, countries have reaffirmed the Paris Agreement commitments at the 
2021 COP26 and the 2022 COP27 toward reducing CO2 emissions and increasing CO2 removals through forest 
protection and tree  planting1. The “biocarbon” or the combined above-ground, below-ground and soil carbon of 
forests have contributed 23-30% of the total anthropogenic Greenhouse Gas (GHG) emissions  worldwide1,2. To 
track country commitments, regular accounting of biocarbon (herein called carbon) serves as a primary source 
of information. Countries report their GHG inventories according to the United Nations Framework Conven-
tion on Climate Change (UNFCCC). Countries are also encouraged to develop carbon accounts under the UN 
System of Environmental-Economic Accounting - ecosystem accounting framework (UNSEEA), which is now 
an international statistical  standard3. The UNFCCC and UNSEEA carbon accounting follow complementary 
measurement methods of forest carbon stocks and flows. Their quantification of flows involves both carbon 
emissions (stock reduction) and sequestration (stock addition). The two systems differ in the way UNSEEA 
accounts for all stocks and flows of  carbon3, whereas UNFCCC focuses on reporting human-influenced emis-
sions. Particularly, UNSEEA includes stock reductions caused by emissions due to land use and land cover 
(LULC) changes or natural disturbances, while carbon stock additions are mostly from tree increments due to 
growth. Furthermore, UNSEEA is a spatially explicit system that analyze ecosystems, where national or sub-
national maps of ecosystem type, condition and ecosystem services are compiled. The UNSEEA carbon stocks 
and flows are commonly aggregated and reported by ecosystem type under the UN Land Cover Classification 
System in accounting periods of usually 1  year3.
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Forest carbon accounting benefits from remotely sensed  data3,4. Remote sensing data are integrated with 
country in-situ data such as national forest inventories (NFI) for mapping above-ground biomass maps and hence 
carbon  stocks5,6. Alternatively, carbon stocks can be obtained using LULC maps and associated biomass  averages2. 
The carbon flows of the carbon accounting period can also be estimated using remote sensing data. Countries 
rely on LULC changes and associated biomass and carbon changes to derive the gross stock  reductions7. For 
gross stock additions, countries commonly use proxy indicators like Net Primary Productivity  maps8. The gross 
additions are subtracted from the gross reductions to derive the closing stocks and the net ecosystem carbon 
balance in UNSEEA terms which is also net carbon fluxes. There are around 24 countries that have used these 
approaches for UNSEEA  reporting9.

The net carbon fluxes within an accounting period (flows) can be mapped if countries have repeated in-situ 
 data10. These are data from repeated NFIs and even from airborne LiDAR surveys wherein the period between 
the first survey and the re-measurement is the accounting period. This gives carbon estimates in two periods and 
hence a net carbon flux of the in-situ data. For such countries, flows of net carbon fluxes (herein called carbon 
fluxes) can be obtained either by direct mapping where carbon flux is the output of a mapping model or by indi-
rect mapping where separate maps of opening and closing stocks are produced and subtracted. Most past studies 
favoured direct mapping to avoid propagation of mapping errors from two  models11. Direct mapping often uses 
machine learning predictive models that relate in-situ biomass change to auxiliary remote sensing variables. 

Carbon accounting based on remote sensing products is affected by large uncertainty in the input data 
 used12,13. The main input of carbon accounts is the carbon flux map, which tends to underestimate carbon losses 
owing to remote sensing signal saturation in dense  forests14. Additionally, remote sensing signals from gradual 
carbon changes such as forest degradation and regrowth are most vulnerable to signal  noise15. Forest manage-
ment activities that result in tree removals such as thinning and salvage cutting can also be difficult to detect. 
Moreover, carbon flux maps that are derived using in-situ data can be inaccurate depending on how biomass 
is estimated and how plots are sampled. For instance, a clustered sample may result in preferential sampling of 
the spatial variability both in geographic and feature space - the latter refers to a set of environmental regions 
defined by the remote sensing data in relation to carbon flux. A clustered sample leads to overly optimistic 
accuracy estimates assessed by cross-validation16. Several studies analyzed the representativeness of samples in 
environmental feature  space17. Such analysis can support decisions on whether to integrate additional samples 
to minimize the sampling  uncertainty18 or constrain the mapping in areas where predictions are supported by 
the sample resulting in an incomplete  map19.

The UNSEEA carbon accounting requires map inputs with a high spatial resolution to account for all kinds 
of fluxes (flows) even those from small land cover  changes7,20. Furthermore, high-resolution maps are required 
for evaluating policies and implementations that concern carbon retention in ecosystems. The need for high-
resolution maps may favour the use of recent global maps such as the World Resource Institute (WRI) 2000–2019 
carbon fluxes at 30  m21 and the 100 m multi-date biomass maps (2010, 2017 and 2018) from European Space 
Agency Climate Change Initiative (CCI)22. While it is practical to use either one or create an ensemble of their 
carbon fluxes, they showed low to moderate agreement against in-situ data in terms of biomass  change14. Map-
based carbon fluxes are derived using either of two different methods. Subtracting the 2018 and 2010 CCI maps 
results in a stock difference, while the WRI follows a gain-loss method that incorporates spatial carbon emissions 
and removals based on activity data. Aside from global biomass maps, other remote sensing data like height, tree 
cover and vegetation indices may also be related to biomass change i.e. as covariates.

The main objective of this paper is to analyze how spatial carbon fluxes can be used in support of the UNSEEA 
carbon accounting of the above-ground carbon pool in five case countries with available in-situ data. Particu-
larly, we use global biomass and other environmental data as covariates, together with in-situ data from NFI 
and local above-ground biomass maps from airborne LiDAR as reference for an ensemble machine learning 
framework. First, we directly map 2010 to 2018 net above-ground biomass change (living biomass) and hence 
derive carbon flux maps. The carbon flux map units (pixels) need to be aggregated for every forest type recom-
mended by UNSEEA. Here we report the uncertainties associated with the spatial aggregation step (e.g. of stocks 
and flow residuals) as this component is outside the framework of machine learning  models23. This uncertainty 
framework is also suited for net carbon fluxes instead of separately accounting for two uncertainty sources (gross 
stock additions and reductions) that are likely co-dependent. Lastly, we include non-forest woody vegetation in 
the carbon accounting. Our specific objectives are: 

1. Assess to what extent spatial predictions of carbon fluxes are supported by the country data.
2. Conduct ensemble machine learning to map carbon fluxes at national scale using global biomass and other 

remotely sensed data as covariates.
3. Use the resulting carbon flux map to compile UNSEEA carbon accounts with reported uncertainties, identi-

fied limitations and recommendations toward upscaling to other countries.

Methods
Overview. The methodology overview is shown in Fig. 1, where the main steps include: (1) mapping the 
carbon flux using a cross-validated ensemble machine learning with remote sensing data as covariates and in-
situ data (NFI or LiDAR) as reference and (2) compilation of the carbon accounts including the aggregation of 
the carbon flux map to each UNSEEA class. The carbon accounts represent an opening stock in 2010 derived 
from the CCI map 2010 and a closing stock in 2018 as the difference between the opening stock and the carbon 
fluxes. The overall methodology also includes intermediate steps such as estimating reference data uncertain-
ties, investigating multi-collinearity among covariates, hyperparameter tuning of spatial models and variogram 
analysis. An independent step is the feature space analysis to identify areas that are not supported by the coun-
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try data relative to the set of covariates used for carbon flux mapping. All steps were implemented using the R 
programming language. The feature space analysis and spatial predictions were implemented using Slurm high-
performance computing, an open-source workload manager.

Study area and reference data. The national ecosystem carbon accounting is demonstrated using five 
country cases: Brazil (BRA), the Netherlands (NLD), the Philippines (PHL), Sweden (SWE) and the United 
States of America (USA). The selection of countries was mainly based on reference data availability (re-measure-
ments) and representation of major climatic zones. See Fig. 1 for maps of the study and the reference data sam-
pling locations. The Netherlands and Sweden data are NFIs, accessed from the European NFI database with plot 
sizes of 0.03–0.04  ha24. The Philippines data is also from an NFI (0.5 ha) and was accessed directly from the Phil-
ippine environmental office. The NFI data were acquired by probability sampling: Sweden and Philippines NFIs 
use systematic samples while the Netherlands NFI applies stratified random sampling. The next set of reference 
data are high-quality local above-ground biomass maps from airborne LiDAR campaigns in  Brazil25 and the 
 USA26,, both pre-processed following the Labriere et al. 2018  methodology27. The USA LiDAR data also follows 
a systematic sample but not all sites have repeated LiDAR  surveys26 while the Brazil LiDAR datasets are mostly 

Figure 1.  Flowchart of the steps undertaken to derive the carbon accounting tables as the final output.
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sampled in secondary forests. Each LiDAR pixel (1 ha) was considered plot data equivalent to a systematic sam-
ple over footprint areas (Fig. S1). All reference datasets underwent quality filtering as elaborated in our recent 
 study14. We retained only plots without forest area changes after the latest measurement and up to the 2018 map 
epoch. We also excluded data from LiDAR footprint edges that have partial overlap with map pixels. The number 
of observations are as follows: BRA=28,607, NLD=1562, PHL=587, SWE=12,887 and USA=110,939. The LiDAR 
reference data have associated uncertainty layers while the NFI plot measurement uncertainties were estimated 
using the error propagation method as described in our previous  work28. We particularly estimated the largest 
plot uncertainty contributor originating from tree measurement errors and the use of allometric models in esti-
mating biomass. Finally, we converted the biomass change of all reference data to carbon flux (Mg C ha−1 ) using 
a 0.49 multiplier. See Table S1 and Fig. S1 for the technical details of the reference datasets.

Spatial covariates. The list of spatially exhaustive covariates used and their description are shown in 
Table 1. The first set of covariates includes global biomass maps derived from the ESA and WRI sources herein 
called CCI maps and WRI Flux, respectively. The CCI map was produced using radar remote sensing where 
biomass was retrieved from backscatter values using a semi-mechanistic model that does not rely upon plot cali-
bration  data30. The WRI map was an output of the modified carbon flux model of WRI that used CCI 2010 as the 
baseline  biomass14. The local variability of biomass changes from these high-resolution inputs was also consid-
ered. We computed their textural variables using Gray-Level Co-Occurrence Matrix  (GLCM31), particularly the 
mean, variance, homogeneity and contrast of biomass changes in a 300 x 300 m window. We also used a coarse 
time series biomass  (JPL32) and a periodic biomass dataset  (CONUS33, USA only). All biomass maps are pro-
duced without the use of our reference data. The next covariate was forest height dynamics which was obtained 
from height data by integrating Landsat data with Global Ecosystem Dynamics Investigation (GEDI)  data34. We 
also used tree cover dynamics from multi-date tree cover datasets derived from optical satellite  data35,36. Datasets 
that represent forest  management37,38 and land cover  changes35 were also included. For European countries, we 
included gap-filled quarterly composites of Normalized Vegetation Difference Index  (NDVI39), being readily 
available and cloud-free i.e. never been reproduced for large and tropical countries. The remaining covariates 
were static variables such as forest type, elevation, slope and biomes. In total, we started with 28 covariates for 
European countries, 25 for the USA and 24 for Brazil and the Philippines - all from open-access data. We finally 
constrained all covariates within the recommended classes by UNSEEA as described in Table 2 and Fig. S2.

All covariates were cross-correlated to assess multicollinearity among them as a precaution to avoid model 
overfitting and misinterpretation of the covariates model importance (see Fig. S3). We randomly sampled 5000 

Figure 2.  Country cases and the sampling of reference data within the forest and other woody vegetation 
described in Table 2 and Fig. S2. Note that countries are depicted at different scales. Note also that the USA and 
Brazil are LiDAR footprints where observations are BRA=28,607 and USA=110,939; see Fig. S1. We used QGIS 
3.4.329 to layout this map.
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pixels for each country for the cross-correlation. We found only a few covariate pairs that exhibit a strong 
correlation (> 0.8 r), particularly pairs that include global biomass maps and an associated textural property 
(texMean and texVar). We excluded the latter since they also highly correlate with other map textural properties. 
An exception to this step is the 2010 and 2018 land cover layers to retain a dynamic input similar to the biomass 
2010 and 2018 variables.

Table 1.  Spatial data of above-ground biomass (AGB) and other remotely sensed data used as covariates and 
their technical details. Note that the “Epochs used” column also denotes whether a covariate is dynamic or 
static.

Spatial data Category
Covariates name and 
definition Units Country used Pixel size Epochs used RS and in-situ data

CCI22 CCI

agb10_cci = CCI AGB 2010 Mg ha −1 All 100 m 2010–2018 ALOS2-PALSAR2, Sentinel 
1

agb18_cci = CCI AGB 2018 Mg ha −1

diff_cci = CCI biomass 
change Mg ha −1

texContrast_cci = Textural 
contrast of diff_cci Relative

texHomo_cci = Textural 
homogeneity of diff_cci Relative

texMean_cci = Textural 
mean of diff_cci Relative

texVar_cci = Textural vari-
ance of diff_cci Relative

WRI21 Flux

diff_flux = WRI Flux 
biomass change Mg ha −1 All 100 m 2010–2019

CCI 2010, Global Forest 
Change (GFC) and IPCC 
activity data

texContrast_flux = Textural 
contrast of diff_flux Relative

texHomo_flux = Textural 
homogeneity of diff_flux Relative

texMean_flux = Textural 
mean of diff_flux Relative

texVar_flux = Textural vari-
ance of diff_flux Relative

JPL32 AGB diff_jpl= JPL biomass 
change Mg ha −1 All 10 km 2010–2019 MODIS, ICESat, ALOS-

PALSAR

CONUS33 CONUS diff_conus = CONUS 
biomass change Mg ha −1 All 100 m 2010–2017 ALOS2-PALSAR2, MODIS

Forest height  loss34 Environmental (envi) height_envi = forest height 
loss Meters All 30 m 2010–2020 Landsat, GEDI

Forest  dynamics34 Environmental forType_envi = forest 
dynamics Categorical All 30 m 2010–2020 Landsat, GEDI

VCF  dynamics36 Environmental tc_envi = tree cover change % cover change SWE, NLD 30 m 2010–2015 Landsat 5, 7

NDVI quarterly 
 composites39 Environmental

ndviQ1_envi = 1st quarter 
NDVI change composites -1 to 1 SWE, NLD 30 m 2010–2019 Landsat archive

ndviQ2_envi = 2nd quarter 
NDVI change composites − 1 to 1

ndviQ3_envi = 3rd quarter 
NDVI change composites − 1 to 1

ndviQ4_envi = 4th quarter 
NDVI change composites − 1 to 1

Land cover  change35 Land Cover (LC)

lcov10 = CCI Land Cover 
2010 Categorical All 300 m 2010–2019 MERIS

lcov18 = CCI Land Cover 
2018 Categorical

lcovDiff = Land cover 
change Categorical

Forest  Management38 Forest management 
(mgmt)

mgmt_mgmt = 2015 forest 
management Categorical All 100 m 2015 PROBA-V

Forest Landscape Integrity 
 Index37 Forest management flii_mgmt = Relative forest 

integrity index 0–100 All 300 m 2019 GFC data; Curtis et al., data

Elevation40 Topography (topo) elev_topo = Elevation Meters All 30 m 2000 SRTM

Slope40 Topo slope_topo = Slope Degrees All 30 m 2000 SRTM

Biome41 Climate bio_climate = Major 
climatic zones Categorical All 10 km 2017 Protected area network
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Feature space representation of reference data. This step is needed to assess how the reference data 
represent the spatial variability of feature space, which is becoming a prerequisite for spatial prediction models. 
This analysis identifies potentially under-sampled areas or those areas that exhibit high dissimilarity based on 
distances from the reference data in the multidimensional feature  space19. The latter is spanned by the covari-
ates listed in Table 1 that are used in a spatially cross-validated model to calculate dissimilarity. The non-cov-
ered areas are prone to extrapolation of the machine learning models where less credible spatial predictions 
are expected. Awareness of the extent of these non-covered areas is crucial not only for our carbon accounting 
demonstration but also as decision-support towards improving the current accounts i.e. the need for additional 
samples and forest masking. Here we identified under-sampled areas countrywide and for each UNSEEA carbon 
accounting class in Table 2 and Fig. S2.

Prediction models of carbon fluxes. An ensemble model of three machine learning models was devel-
oped under a model generalization  framework42. The main idea of the framework is that a generic model (meta 
learner) fitted from predictions of individual models (base learners) has superior predictive performance than 
individual predictions. Models of random forest (RFM), extreme gradient boosting and support vector machine 
served as base learners where each model resulted in their own predictions of carbon flux. These predictions 
were then used as covariates to a meta learner (RFM). Any RFM implementation starts by bootstrapping the ref-
erence data and these resamples are used to create regression trees. Through bagging the data and sub-sampling 
the candidate covariates at each split, the trees are aimed to be mutually uncorrelated. The random forest algo-
rithm averages predictions over all trees to produce a final prediction. To estimate the uncertainty of the carbon 
flux predicted by the RFM meta learner, we used quantile regression forest where decision trees are trained on 
different quantile levels of the carbon flux and derive an entire distribution of carbon flux  predictions43. We 
particularly used the 5th and 95th quantiles as prediction intervals and observed their spatial patterns and mag-
nitude among countries. We employed case weights using inverse variance weighting to give preference to less 
uncertain reference data in the random forest bootstrapping procedure. The descriptions of other individual ML 
models are provided in the supplementary materials.

All base learners underwent model tuning whereas models that use unique combinations of hyperparameters 
were iterated using grid search approach. The combinations are obtained from a user-defined range of values for 
each hyperparameter and their unique combinations define the number of iterations. We pre-defined this range of 
values for RFM and support vector learners, while we mostly followed Li et al.44 for the extreme gradient boosting 
learner given that such learner is generally challenging to tune. The optimal hyperparameters combination was 
determined for the iteration that depicts the lowest objective function i.e. Root Mean Square Error (RMSE). See 
Table S2 for the final hyperparameters for each country case.

Model evaluation. A five-fold random cross-validation was applied using all reference data to evaluate 
model performance. Independent folds were used by the base learners and the meta learner to avoid overfitting 
the latter. Denoting carbon flux as z at location si , three metrics were used to evaluate the models: RMSE, which 
is the squared difference between population means of reference data z(si) and predictions ẑ(si) ; Mean Error 
(ME) or the mean difference between z(si) and ẑ(si) ; and coefficient of determination ( R2 ) as the goodness of 
fit measure.

(1)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

z(si)− ẑ(si)
)2
,

(2)ME =
1

n

n
∑

i=1

z(si)− ẑ(si),

(3)R2
=1−
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i=1

(
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)2
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Table 2.  Details of the datasets used for the UNSEEA recommended carbon accounting classes. The forest 
plantation class was derived by integrating a plantation forest  dataset38.

Country LC dataset UNSEEA classes Pixel size (m)

Brazil CCI-LC35 Broadleaved forest, coniferous forest, mixed forest, mangroves, other woody vegetation, forest plantations 300

Netherlands CORINE45 Broadleaved forest, coniferous forest, mixed forest, other woody vegetation, forest plantations 100

Philippines CCI-LC35 Broadleaved forest, coniferous forest, mixed forest, mangroves, Other woody vegetation, Forest planta-
tions 300

Sweden CORINE45 Broadleaved forest, coniferous forest, mixed forest, other woody vegetation, forest plantations 100

USA CCI-LC35 Broadleaved forest, coniferous forest, mixed forest, other woody vegetation, forest plantations 300
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Influence of covariates on models. The importance values based on covariate data permutation were 
quantified for each base learner. The RMSE before and after the permutation is computed and the increase in 
RMSE indicates the covariate importance. This comparison was done for each fold of the cross-validation and 
then averaged among the folds. The final importance values we used were weighted averages based on the impor-
tance score of base learners to the meta learner. The resulting importance scores were first presented individually 
for each covariate per country. Second, the importance values were ranked and averaged with respect to their 
data categories (Table 1). The second set of results is helpful to highlight the influence of global biomass data in 
mapping carbon fluxes. All covariates importance values range from 0 to 100%.

Carbon accounting tables and their uncertainties. We first derived the carbon flux standard devia-
tion SDflux from the prediction interval, particularly the 95th quantile (Q) and 5th Q limits for a 90% prediction 
interval:

Then, the 100 m carbon flux maps needed aggregation for every UNSEEA class in Table 2. Aside from the carbon 
flux, the associated uncertainties also need to be aggregated while taking into account the covariance of map 
errors. Moreover, the variance of map errors may vary over space i.e. owing to heteroscedasticity. Hence, we 
modelled the spatial correlation of the carbon flux map standardized residuals at reference data locations using 
variograms. We also did the same procedure for the opening stocks interchanging SDflux with the SD layer of 
CCI 2010 SDopen . The full details of this step including the standardization of carbon flux residuals are shown 
in the supplementary materials.

We derived the covariances of the map error component σi,j of pixel pairs i and j (1...n), Eq. 5. The covariances 
were aggregated for each UNSEEA class to derive the variance and hence the SD of each class SDfc (Eq. 5). This 
applies to both SDopen and SDflux . The resulting aggregated variance of the opening stock and fluxes were added 
to obtain the closing stock variance assuming error independence among the two random variables. We finally 
took the square root of the aggregated variances of the opening stocks, fluxes and closing stocks, and reported 
them in the carbon accounts.

The minimum requirement to define the UNSEEA carbon accounting classes is land cover inputs that distin-
guish broadleaved, coniferous, mixed and mangrove forests (Level 2 classes). Areas with dominant and partial 
woody grassland, shrublands and scrubs were included and aggregated into one UNSEEA class “Other woody 
vegetation”, see Table S3 for the reclassification details. Multiple continental to global land cover data exist and 
we preferred the dataset with higher resolution and accuracy. A forest plantation  dataset38 was integrated into the 
land cover maps to distinguish between natural forests and plantations since the latter is required by UNSEEA. 
The land cover inputs were resampled to 100 m using nearest neighbor interpolation. Then, the land cover and 
carbon stocks and flows inputs were projected into an equal area projection to avoid geographic area distortion 
especially in places far from the equator. Table 2 shows further details about the carbon accounting data inputs.

We then derived the total country net carbon fluxes and inter-compared them with similar estimates from 
other sources using forest area in 2010. We also reported the net emissions and net removals separately as supple-
mentary results in Table S4. The terms we used were “net” emissions and removals since we used the net carbon 
flux as input. The net emissions and net sequestration were calculated as the sum of all negative and positive 
carbon flux pixels for each UNSEEA class, respectively. The extended table also included the net emissions driven 
by land-use changes (forest conversions) and emissions within forests (forest degradation) based on the periodic 
land cover dataset in Table 2. Net emissions in areas classified as forest both in the 2010 and 2018 land cover 
data were attributed to forest degradation, while net emissions in areas that are forest in 2010 but non-forest in 
2018 were attributed to forest conversion.

Results
Under-sampled areas. Maps of under-sampled areas according to feature space coverage are shown in 
Fig. 3. Notice the large extent of these areas are for Brazil and the USA. The majority of southeastern Brazil and 
western USA are not supported by the current sample. Per country, the relative spatial extent of non-covered 
areas is: NLD=6%, PHL=7%, SWE=14% BRA=4 2%, and USA=47% of the total vegetated areas of these coun-
tries. The breakdown of the non-covered areas for each UNSEEA carbon accounting class is shown in Fig. S4. 
The classes with the highest proportion of under-sampled areas (>50% of total class area) are mostly found in 
Brazil and USA, particularly coniferous, mixed, other woody vegetation and mangroves (Brazil only) forests, see 
Fig. S4. Among all countries, the class with the largest proportion of areas unsupported by the sample is other 
woody vegetation. This reflects the fact that the NFI and LiDAR reference data are mainly forest samples.

Cross-validation of spatial models. The model evaluation results using five-fold cross-validation for 
each country are shown in Table 3. Overall, the cross-validation range are: RMSE=9–39 Mg C ha−1 , ME=− 0.3–
0.2 Mg C ha−1 and R2=0.16-0.71. The cross-validation results differ between countries. The Netherlands and the 
Philippines have different results than the other countries notable in the standard deviations of the three accu-

(4)SDflux =
95thQ − 5thQ

2
× 1.64,

(5)SDfc =

√

√

√

√

n
∑

i=1

n
∑

j=1
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racy metrics. Brazil and USA show almost similar results for every validation fold and even show the best fit with 
reference data. These countries used LiDAR maps as reference, but recall also that such samples are clustered 
(LiDAR footprints) and may produce conservative cross-validation results.

Covariates importance. The weighted importance values of the ensemble learner are shown in Fig.  4. 
The colored matrix shows the importance of individual covariates where models of most countries are highly 
influenced by the WRI Flux, CCI maps and canopy height changes. Textural variables show moderate influence 
on the models and quarterly NDVI to the models of European countries. The static covariates and even dynamic 
LC data show the least influence on most models. An exception to this is the high influence of elevation on the 
models of tropical countries Brazil and the Philippines. Using the mean importance of each covariate, the cat-
egorical importance values further highlight the influence of global above-ground biomass maps (bar graphs of 
Fig. 5). This influence accounts for 51–70% of the importance scores of covariates.

Map predictions. The predicted carbon flux maps and their prediction intervals are shown in Fig. 6. Spa-
tial patterns of the past-decade carbon dynamics can be observed. Areas with evident carbon losses exist in all 
countries except the Netherlands. Evident also are losses that appear as regional hotspots particularly southern 
Philippines, central Brazil and southwest USA. The hotspots are less pronounced for Netherlands and Sweden. 
Forest carbon sequestrations are also observed in all countries. Most are small carbon sequestrations of around 

Figure 3.  Maps showing how the current reference data represents environmental feature space. We used 
ggplot2 in R46 to layout this map.

Table 3.  Accuracy metrics of the cross-validated spatial models of carbon fluxes and the standard deviation 
over the five-fold cross-validation.

Country RMSE Mg C ha−1 ME Mg C ha−1
R
2

Brazil 9.3 ± 0.4 0.1 ± 0.1 0.71 ± 0.02

Netherlands 23.9 ± 4.6 0.1 ± 2.1 0.21 ± 0.10

Philippines 39.4 ± 7.7 − 0.3 ± 5.5 0.16 ±0.21

Sweden 18.6 ± 0.5 0.2 ± 0.4 0.34 ± 0.01

USA 11.8 ± 0.5 − 0.1 ± 0.5 0.63 ± 0.02

Figure 4.  Permutation-based importance values (0–100%) of each covariate to country spatial models. Refer to 
Table 1 for the covariate names.
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5–25 Mg C ha−1 , most evident in the Amazon basin in Brazil. Such small carbon sequestration in 8 years is nor-
mal for an old-growth intact forest (Amazon) while the other cases can be attributed to natural disturbances that 
hinder tree growth like droughts. The loss and sequestration spatial patterns are also pronounced in the predic-
tion intervals. The highest uncertainties of the predictions are observed in the USA map.

Spatial aggregation and carbon accounts. The spatial correlation of carbon flux residuals depicted 
by the variograms is shown in Fig. S6. Spatially correlated residuals are evident in relatively short distances of 
100–5500 m. The variability depicted by variogram sills ranges from 0.32–0.63. For the 2010 carbon stocks, a 
similar short-distance correlation of residuals is observed but in a slightly wider range and higher sill than the 
carbon flux. These results are the basis to ignore spatially correlated residuals when aggregating map errors for 
each UNSEEA class.

The resulting carbon accounting table is shown in Table 4, while the table where emissions are further disag-
gregated is shown in Table S4. Net fluxes of carbon emissions in 8 years are most evident and highest in number 
in Brazil and USA, particularly other woody vegetation of at least 95.23±11.07 Tg and plantations of at least 
239.2±7.46 Tg. All other countries mostly depict net carbon sequestrations in 8 years notably USA broadleaved 
= 188.01±6.3 Tg, Sweden coniferous = 5.59±0.84 Tg and Philippines broadleaved = 3.87±2.57 Tg. The natural 
forests that consist of broadleaved, coniferous, mixed and mangroves are showing more net carbon sequestrations 
than plantations except in Brazil where all classes are found as carbon emitters mainly due to land use conversion 
in these forests in the period 2010 to 2018. The observation in Brazil is also consistent with the reports from FRA 
(see Table S5). Except for Brazil, natural broadleaved forest shows net carbon sequestration. Table S4 shows that 
most emissions are driven by land-use changes in all countries (areas classified as forest in 2010 and non-forest 
in 2018), while the net emissions within forest areas (areas classified as forests in 2010 and 2018 land cover data) 
are minimal. The uncertainty estimates of carbon fluxes over 8 years are generally higher than the stocks, while 
the closing stocks are more uncertain than the opening stocks.

Discussion
Implications of reference data sample to carbon accounting. The reference data for the carbon 
flux spatial predictions did not cover the entire environmental space, wherein 6–47% of the combined forests 
and other woody vegetation areas appeared to be under-sampled. In such a case, one recommendation is to 
consider limiting the predictions without the under-sampled  areas19. However, incomplete carbon accounting 
in the context of UNSEEA is  inadvisable3. Hence, the results in the accounting table of countries with LiDAR 
samples particularly mixed forest and other woody vegetation (Fig. S4) should be treated with caution. Moving 
forward, we elaborate on a series of recommendations in cases where the country data sample would hamper the 
application of the mapped carbon flux for UNSEEA carbon accounting: 

1. Additional samples: If additional field samples are not feasible, synthetic samples can be integrated into the 
current  sample47. As proof of concept to this recommendation, we show the implications of adding synthetic 
samples within the under-sampled areas in Fig. S7. The current under-sampled areas are significantly reduced 
after adding pseudo loss samples based on forest loss  data48. Gradual changes in forests such as from degra-
dation and regrowth need to be sampled as well. Samples provided by forest dynamics monitoring tools can 
be  explored49. Adding synthetic samples also means that a highly gapped clustered sample (Brazil) can turn 
into moderately gapped clustered data. In any case, a more suitable cross-validation should be used instead 
of the conventional k-fold cross-validation. For instance, cross-validation weighted by sampling intensity is 
suitable when using moderately clustered  samples16.

Figure 5.  Proportion of the importance values (0–1) for each covariate group shown in Table 1. The left 
graph shows the category of covariates that distinguish each biomass global product along with other dynamic 
environmental inputs (height, tree cover and NDVI), land cover, management, climate and topography. The 
right graph further generalizes the covariates into categories that distinguish global above-ground biomass maps 
from other dynamic covariates, along with the static covariates.
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2. Substitute the mapped carbon flux with the carbon flux from global products: For UNSEEA classes that are 
not supported by country data such as mixed forests and non-forest woody areas in this study, the mapped 
carbon flux can be substituted by global products (e.g. CCI and WRI). Either one or an average of the 
global products can be the alternative input data. This holds the rationale of a remote sensing-based carbon 
accounting. As a pre-requisite, an assessment of the global product can be initiated even at country scales 
using FAO-Forest Resource Assessment (FRA) as  reference14,32. A good agreement of the country carbon 
fluxes between the global product and the FRA would justify the use of the former for carbon accounting.

3. Caveats for UNSEEA classes: Certain UNSEEA classes with carbon accounts that are highly uncertain such 
as mixed forests and other woody vegetation in our case, should have caveats for adoption and applications. 
This should be the case for both the physical carbon accounts (this study) and any subsequent monetary 
accounts. The caveats should be clear in the metadata and included in the data description of online data 
platforms (see Outlooks section).

4. Estimation of the uncertainty from sampling variability: Quantification of the uncertainty from sampling 
variability alongside mapping the under-sampled areas is our last recommendation. This sampling uncer-
tainty can be estimated by bootstrapping methods that derive pairwise covariances of predicted carbon 

Figure 6.  Predicted 2010–2018 carbon flux maps for all countries and their prediction intervals. Map units are 
Mg C ha−1 . Note that colors can be different between the prediction and prediction intervals. We used ggplot2 in 
R46 to layout this map.
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 fluxes50. This step, however, may be applicable only for probability-based samples. Moreover, the procedure is 
computationally demanding and was demonstrated only at local scales from one  study11. Aside from easing 
computational demands for country scales, worth testing is the quantification of sampling uncertainty with 
and without the pseudo samples.

Accuracy and uncertainty of the spatial models. The predictive performance of our spatial models 
yielded: RMSE=9–39 Mg C ha−1 , ME=− 0.3–0.2 Mg C ha−1 and R2=0.16–0.71. These results are relatively higher 
when compared to our previous assessment of the biomass changes from global data ( R2=0.09-0.21)14. Neverthe-
less, mapping the changes in biomass and carbon using remote sensing is challenging. Pixel-level changes except 
for abrupt losses from deforestation can be very uncertain. For instance, the map producers of CCI maps cau-
tioned about the use of their 100 m biomass change product due to uncertainties attributed to gradual changes 
in  forests22. Similarly, Santoro et al.  202251 found at least 40% relative uncertainty of biomass change in Sweden at 
20 m pixel size. This map evaluation similarly used NFI as reference but their mapping used the indirect method 
of deriving biomass change by differencing two maps. Indirect methods are known to add up model errors from 
two epochs. Moreover, environmental dynamic inputs useful for direct carbon flux mapping were unavailable 
until 2021. Recent efforts already estimated carbon fluxes with high precision using direct methods. Esteban 
et al.11 for instance produced wall-to-wall growing stock volume (convertible to biomass) from combined NFI 
and airborne LiDAR as auxiliary data. McRoberts et al.  202250 used a similar approach to estimate uncertainties 
from both residual and sampling variability intended for large-scale biomass mapping. More studies like this 
are anticipated considering the increasing number of permanent LiDAR sites as support for upcoming satellite 
 missions52. This will strengthen our carbon accounting demonstration, where inputs are leaning towards time 
series data from airborne  LiDAR53 and  NFIs54. Such available datasets will allow annual carbon and carbon flux 
mapping. Annual maps can reveal trends in the carbon fluxes attributed to gradual changes. Additional base 

Table 4.  Carbon accounting tables for 2010–2018 of the five case countries. Negative values denote net 
emissions, net sequestration otherwise. Also shown are the 2010 areas of each UNSEEA class.

UNSEEA class Area (’000 km2) Opening 2010 (Tg C) Net fluxes (Tg C)  Closing 2018 (Tg C)

BRA

 Broadleaved 3485634 49541.1 ± 30.175 – 43.18 ± 4.961 49497.92 ± 29.765

 Coniferous 153277 1059.03 ± 3.905 – 22.76 ± 1.083 1036.27 ± 3.752

 Mixed 735145 1988.52 ± 5.121 – 156.02 ± 2.390 1832.50 ± 4.529

 Mangroves 166677 794.79 ± 3.496 – 0.48 ± 1.010 794.31 ± 3.347

 Other woody vegetation 1140095 4015.19 ± 8.232 – 403.50 ± 3.069 3611.69 ± 7.638

 Plantations 1320002 3380.46 ± 6.601 – 421.18 ± 3.112 2959.28 ± 5.822

NLD

 Broadleaved 3008 0.33 ± 0.064 0.002 ± 0.030 0.33 ± 0.057

 Coniferous 4962 0.25 ± 0.082 0.001 ± 0.015 0.25 ± 0.081

 Mixed 5487 2.2 ± 0.164 0.02 ± 0.033 2.22 ± 0.161

 Other woody vegetation 54494 1.93 ± 0.253 0.02 ± 0.214 1.95 ± 0.135

 Plantations 15199 5.41 ± 0.254 0.02 ± 0.063 5.43 ± 0.247

PHL

 Broadleaved 57334 427.45 ± 4.060 3.87 ± 2.476 431.32 ± 3.218

 Coniferous 3008 14.42 ± 0.669 0.14 ± 0.457 14.56 ± 0.488

 Mixed 4962 12.19 ± 0.659 – 0.28 ± 0.511 11.91 ± 0.416

 Mangroves 5487 7.71 ± 0.640 – 1.10 ± 0.583 6.61 ± 0.263

 Other woody vegetation 54494 297.88 ± 3.191 1.83 ± 1.770 299.71 ± 2.654

 Plantations 15199 45.6 ± 1.280 – 0.86 ± 0.858 44.74 ± 0.949

SWE

 Broadleaved 4588 13.26 ± 0.254 0.32 ± 0.114 13.58 ± 0.227

 Coniferous 109355 501.12 ± 2.169 5.59 ± 0.844 506.71 ± 1.999

 Mixed 8396 34.52 ± 0.574 1.41 ± 0.241 35.93 ± 0.521

 Other woody vegetation 88573 254.33 ± 2.021 – 1.27 ± 1.541 253.06 ± 1.306

 Plantations 61354 293.69 ± 1.987 – 0.68 ± 0.651 293.01 ± 1.877

USA

 Broadleaved 529916 2849.44 ± 9.183 188.01 ± 6.277 3037.45 ± 6.703

 Coniferous 959568 6069.88 ± 15.075 – 23.96 ± 7.608 6045.92 ± 13.015

 Mixed 665106 1482.73 ± 7.573 – 34.70 ± 5.873 1448.03 ± 4.781

 Other woody vegetation 2351583 1023.21 ± 11.507 – 95.23 ± 11.074 927.98 ± 3.125

 Plantations 1084568 2919.96 ± 9.789 – 239.26 ± 7.460 2680.70 ± 6.338
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learners may also help improve the current ensemble model. This is important given that the predictions of base 
learners can be very different depending on how country data is sampled, as demonstrated in Fig. S5. Lastly, 
the prediction uncertainty can be assessed for example by means of the prediction interval e.g. accuracy  plots55.

At pixel-level, LiDAR matches the spatial resolution (1 ha) of the remote sensing inputs (mostly 1 ha) used 
to predict carbon flux and this is in contrast to using NFIs where plots are 0.03–0.04 ha. The spatial mismatch 
when using NFIs may also be worsened by geo-location errors of plots especially in the tropics.

Uncertainty sources of the carbon accounts. The carbon accounting required aggregation from pixel 
to UNSEEA class of carbon stocks (from CCI Biomass 2010) and fluxes. From the variograms in Fig. S6, we 
found a short-range correlation (<5 km) at country scales, which is consistent with previous studies particu-
larly in  Brazil56 and  USA57. This basis allowed us to ignore spatial correlation during the aggregation step. This 
decision is case-to-case basis and needs reconsideration especially when the target country is relatively small 
i.e. where spatially correlated errors of around 5-50 km are already non-negligible. The variogram analysis also 
revealed the magnitude of autocorrelated scaled residuals (0–1) were all below 1. This suggests that we overes-
timate the map prediction error. This caution was also evident in 3 out of 4 global biomass maps in a previous 
 study28. Here we focused on quantifying the uncertainty from residual variability, but missed to quantify the 
uncertainty from sampling variability (see 4th recommendation above). Another uncertainty source is the land 
cover input. Here we used the Level 2 UNSEEA classes but once countries require Levels 3 UNSEEA classes 
where, for instance, broadleaved is sub-classified into broadleaved closed canopy and broadleaved open canopy 
(Table S3), the uncertainty from land cover inputs needs consideration. Mapping more forest classes leads to a 
higher misclassification tendency among sub-classes. To account for this, land cover probabilities and geosta-
tistical approaches are needed for potential area corrections among land cover  units58. This correction also con-
cerns the carbon accounting table where emissions and removals are reported separately and emission sources 
are disaggregated (Table S4). Should countries require such a table, the spatial dependency between emissions 
and removals needs to be accounted for as well. We finally emphasize that any reference data have a degree of 
uncertainty. We account for this uncertainty when we applied a weighted bootstrapping in the ensemble model 
that preferred samples with low measurement error uncertainty. An exactly similar approach was implemented 
by Araza et al.28 and Takoutsing and  Heuvelink55. The latter example found no striking difference between a 
random forest model with and without the weighted bootstrapping.

Influence of the covariates. The most influential covariates in the carbon flux predictions were global 
biomass products, which accounted for 51–70% of the overall importance scores of covariates. The carbon fluxes 
from CCI and WRI contributed the most to this score. This result seems to be expected and self-explanatory. 
What is more surprising is that we learned that other dynamic environmental datasets were also important 
covariates. Particularly, height dynamics was important for the spatial models of the Netherlands (62%) and 
USA (39%) as well as the 1st and 2nd NDVI quarterly composites for the European countries with at most 23% 
importance score. Height and vegetation indices are commonly used variables for biomass mapping because of 
their correlation to  biomass5. To our knowledge, this is the first attempt to use their dynamic variables to model 
biomass change (the dynamic height dataset is relatively new). Moreover, elevation also had high importance 
score for Brazil (40%) and the Philippines (37%). This suggests that biomass change can be topography-driven in 
the tropics. The Brazil results need to be reanalyzed once more representative reference data becomes available, 
including for under-sampled biomes (such as Cerrado), remote locations with primary forests and mountainous 
areas with high elevation and slope. We found that the current sample in Brazil only concerns three out of the six 
topographic strata. Mountainous forested areas can also be prone to deforestation caused by landslides especially 
in typhoon  season6. Recent studies revealed that biomass change in the tropics is  seasonal59. Aside from includ-
ing seasonal covariates, we recommend exploring other descriptive analysis of covariates to biomass change such 
as the use of partial dependence plots. These would show and visualize the marginal effects of the covariates on 
biomass change e.g. high biomass loss and low elevation.

Country carbon fluxes. Overall, the carbon accounting tables depicted net carbon sequestration in natu-
ral forests except for Brazil, while net carbon emission was mostly observed in other woody vegetation and 
plantations (except for the Netherlands). Most net emissions were driven by land-use changes, while minimal 
emissions were depicted within forests i.e. forest degradation. The latter seems underestimated mainly because 
we used 100–300 m land cover inputs. An option is to replace them with 10 m global land cover data as long as 
the forest classes are consistent with UNSEEA. The net emissions within forests can be attributed to plantation 
activities such as thinning, salvage cutting and selective logging and activities that result in forest degradation 
such as timber poaching. Both emissions from forest conversion and forest degradation can be caused by envi-
ronmental hazards such as strong winds, insects, landslides and fire.

As a good practice, we summarized the carbon fluxes and forest areas at country scales and compared them 
to similar results in the literature, see Table S5. In comparison with the FRA and other similar  studies21,22,33,51, 
our estimates mostly depicted (agreed with 2 out of 3 sources) the Netherlands, the Philippines and Sweden as 
carbon sinks. In these countries, our estimates were often in between the estimates of FRA and similar studies 
suggesting we conservatively estimated carbon fluxes. While there is a large discrepancy in forest areas (since we 
included other woody non-forests) and a few years difference in the monitoring period, the comparisons in the 
results of Brazil and USA showed we overestimated the country carbon emissions compared to other sources. 
Recall that the samples for these countries are insufficient (see Fig. 3) which may allow the prediction models to 
overfit especially for a random cross-validation (Table 3). Our next carbon flux maps of the two countries will 
benefit from the anticipated USA Forest Inventory Analysis plots and additional re-measured LiDAR data for 
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both USA and Brazil. Nevertheless, our estimates included reported uncertainties at the country level among 
the other sources. We also recommend further country cases based on the need to diversify the ecological con-
ditions of case countries.

Outlooks in carbon accounting based on remote sensing. Data sources of carbon flux maps are 
expected to further increase given the upcoming Earth Observation (EO) missions for forest monitoring. The 
development of EO-based data sources is seen as  an opportunity for the next generation UNSEEA  accounts9. 
This also transpired in the last Advancing Earth Observation for Ecosystem Accounting conference in December 
2022 https:// eo4ea- 2022. esa. int/. Remote sensing is also central to various projects that aim to upscale UNSEEA 
carbon accounting such as the following: 

1. Pioneering Earth Observation Applications for the Environment (PEOPLE, https://esa-people-
ea.org/en)

2. Artificial Intelligence for Environment and Sustainability (ARIES, aries.integratedmodelling.
org)

3. Open Earth Monitor Project (OEMP, https://earthmonitor.org/)

Our current carbon accounting spans 8 years due to data availability for 2010 and 2018, but the UNSEEA eco-
system accounts are generally considered most useful if compiled at higher temporal resolution, e.g. annually 
or every 3  years3. We also plan to compile accounts for all carbon pools including at least the below-ground and 
soil components. In the future, increasing availability of satellite-derived biomass and carbon projects should 
allow this much higher temporal resolution of EO-based carbon accounts.

Carbon stocks and fluxes maps are always subject to map assessments and integration with reference data 
especially now that country NFIs are increasing even in developing countries in the  tropics54. Given these country 
data in addition to the upcoming LiDAR  sites52, sufficient global data would allow map errors of the global carbon 
fluxes to be modelled and minimized using our bias modelling  approach28. A bias-adjusted global carbon flux 
welcomes the possibility of carbon accounting for all countries. This would not only benefit UNSEEA carbon 
accounting, but also the UNFCCC GHG reporting and even the UNFCCC Global Stocktake.

Conclusions
To provide the carbon stock and flux input data required for UNSEEA carbon accounting, we spatially predict 
the 2010-2018 net carbon flux using ensemble machine learning in five countries with reference data. We found 
that mapping carbon fluxes at high resolution is challenging, judging by the variability in map accuracy results. 
Remote sensing is able to detect clear-cutting of forests and forest loss due to land conversion, but detecting 
gradual forest changes is more challenging. A further challenge in using remote sensing to estimate carbon 
fluxes is the saturation effect, which can be reduced with bias correction  approaches28,59. Whereas there are clear 
uncertainties in pixel-level estimates of carbon fluxes derived from EO, these uncertainties are much reduced 
when pixels are aggregated to UNSEEA ecosystem types where carbon stocks and flows are reported by extent 
type, e.g. forest (Level 1) or deciduous forest (Level 2). For Level 2 classification, we found a short-range cor-
relation of carbon flux map errors that can be considered negligible when we aggregate the carbon flux from 
pixel to UNSEEA.

The resulting carbon accounting tables revealed the net carbon sequestration in natural broadleaved forests. 
Both in plantations and in other woody vegetation ecosystems, emissions exceeded sequestration. Overall, our 
estimates align with FAO-Forest Resource Assessment and national studies with the largest deviations in Brazil 
and USA. These two countries used highly clustered reference data, where clustering caused uncertainty given the 
need to extrapolate to under-sampled areas. We anticipate that, with more EO data and reference data becoming 
available in the near future, annual carbon mapping will be increasingly feasible and can reveal trends concern-
ing gradual forest changes. This allows for compiling more accurate, timely and cost-effective carbon accounts 
in line with UNSEEA.

Data availability
The contact person for the NFI reference data is Mart-Jan Schelhaas (martjan.schelhaas@wur.nl). Refer to the 
Labriere et al. 2018 paper for more information about the LiDAR datasets. The spatial models and information 
about the remote sensing datasets can be accessed here: https:// github. com/ arnan araza/ SEEA_ RS.
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