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Establishing haptic texture 
attribute space and predicting 
haptic attributes from image 
features using 1D‑CNN
Waseem Hassan , Joolekha Bibi Joolee  & Seokhee Jeon *

The current study strives to provide a haptic attribute space where texture surfaces are located based 
on their haptic attributes. The main aim of the haptic attribute space is to come up with a standardized 
model for representing and identifying haptic textures analogous to the RGB model for colors. To 
this end, a four dimensional haptic attribute space is established by conducting a psychophysical 
experiment where human participants rate 100 real‑life texture surfaces according to their haptic 
attributes. The four dimensions of the haptic attribute space are rough‑smooth, flat‑bumpy, sticky‑
slippery, and hard‑soft. The generalization and scalability of the haptic attribute space is achieved 
by training a 1D‑CNN model for predicting attributes of haptic textures. The 1D‑CNN is trained using 
the attribute data from psychophysical experiments and image features collected from the images of 
real textures. The prediction power granted by the 1D‑CNN renders scalability to the haptic attribute 
space. The prediction accuracy of the proposed 1D‑CNN model is compared against other machine 
learning and deep learning algorithms. The results show that the proposed method outperforms the 
other models on MAE and RMSE metrics.

The initial medium that humans use for attaining information about textures is the visual  sense1,2. The appearance 
of a texture can provide us with enough information to be able to successfully identify its physical attributes in 
most  cases3. In order to gain in depth information about the said texture, humans rely on the sense of  touch4,5. 
Interaction with a texture to reveal its haptic attributes is a trait intrinsic to human beings. In daily life interac-
tions, human beings use these two senses to identify haptic attributes of textures all around them. Recently, 
researchers have pointed out that interaction sounds can play a role in haptic  identification6. However, it only 
stands for certain haptic attributes and do not play a role as important as vision or haptics in texture  perception7,8.

Visual texture perception can be readily described by the RGB model (or CMYK in case of pigments). The 
RGB model is a physical-level descriptor for identifying visual texture of an  object9–11. In the same sense, surface 
topography of a texture can be termed as the haptic equivalent of the RGB model for visual texture. As humans, 
we label various combinations of RGB as colors to make them understandable and more relatable for the gen-
eral public. However, we do not have a similar representation system for describing and understanding haptic 
texture or surface topography of an object. Haptic texture perception of an object is the result of interaction, 
and in the absence of interaction, any efforts made in explaining surface topography to a layman would be hard 
to understand and mostly futile.

The motivation for this study lies in addressing two significant gaps in the understanding of haptic texture 
perception: the lack of a universal rendering system and standardized perceptual dimensions. Unlike visual 
perception, which benefits from common frameworks such as the RGB model, haptic perception lacks an acces-
sible, standardized mechanism. Moreover, the absence of a common language to describe and understand haptic 
texture or surface topography presents challenges in both academic research and practical applications. This 
disparity limits our ability to communicate, understand, and experiment with haptic textures effectively. By pro-
posing the Haptic Attribute Space (HAS), we aim to establish a framework akin to a swatch book for the visual 
sense, where haptic textures can be readily identified and arranged based on their haptic attributes (roughness, 
hardness, etc). Such a system would make haptic textures more comprehensible to both the general public and 
professionals working with haptic texture modeling. In the contemporary world, consumers buy online products 
without being able to touch them. Consumers are less likely to buy online products that have a strong tactile 
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 aspect12. A standardized system where haptic attributes of products are made available would allow the end 
user to make more informed decisions. By establishing the Haptic Attribute Space (HAS) and a method to infer 
haptic properties from visual data, we aim to democratize the understanding of haptic textures, making them 
more accessible and applicable across various domains.

Recently, different researchers have attempted to explore/identify haptic attributes of real and virtual textures 
via their physical or virtual properties. To this end, Wu et al.13 and Mun et al.14 created textures with perceptually 
differentiable haptic attributes by manipulating properties of virtual textures. Similarly, Ujitoko et al.15 were able 
to generate vibrotactile signals to render different textures based on their images or haptic attributes. The stud-
ies  in16,17 used the SynTouch BioTac sensor to collect physical interaction signals from objects and use them for 
predicting haptic attributes of textures. Another study attempted to establish one such space (authoring space) 
where textures were located based on their haptic  attributes18. The space was created from a combination of physi-
cal interaction signals (contact acceleration patterns) with texture and haptic attributes (hardness, roughness) of 
texture. A total of 25 texture surfaces were used in this study. In the authoring space, new haptic textures could 
be rendered (by interpolation) based on arbitrary attribute values within the convex hull of the authoring space 
textures. This space was primarily used for haptic texture authoring but it did contain haptic textures populated 
based on their haptic attributes. However, the aforementioned studies had a few shortcomings if they were to be 
considered for a standardized haptic attribute space. First, the dataset in some studies was too small to begin with 
and statistically satisfactory results could not have been achieved with it. Second, scalability in terms of adding 
new real textures into the space was not straightforward. In certain studies the whole space would have to be 
remade in case of a new entry. Third, the authoring space  in18 was intended to create virtual textures inheriting 
properties of real textures, while our current goal is to establish a space which can accommodate and identify new 
real textures based on their haptic attributes. Last, all of the aforementioned studies needed physical interaction 
with a surface in order to incorporate them into the space.

In the present system, the main aim is to facilitate and expedite the process of haptic attribute extraction 
by avoiding the requirement of physical interaction for every new texture, which introduces a bottleneck into 
the process. To this end, the current study attempts to extract haptic attributes of texture from image features, 
without the need for physical interaction. The use of image features for haptic attribute extraction in combination 
with the structure of the attribute space facilitates the rapid scalability of the overall attribute space in terms of 
addition of new textures into the space.

The current study aims to provide a Haptic Attribute Space (HAS) where haptic textures are defined by 
their haptic attribute values. The HAS is a four dimensional space where the dimensions are haptic attributes 
of textures, i.e., rough-smooth, flat-bumpy, sticky-slippery, and hard-soft. The study comprises of two parts. 
The first part of the study deals with establishment of the HAS from a dataset of 100 texture surfaces. The HAS 
is established by conducting psychophysical experiments with human subjects. They select a list of attributes 
that could define the haptic properties of the surfaces in the dataset, and then rate all the 100 surfaces in the 
datasets against those attributes. The four attribute pairs chosen as a result of this exercise become the axes of 
the HAS. The second part deals with generalizing the HAS to new textures by using images of new textures and 
predicting their attribute values. It is proclaimed that there lies an area of intersection between visual and haptic 
texture  perception19–21, and this study aims to exploit that area of intersection. This study introduces a multi-
scale 1D-CNN model to predict haptic attribute values of new textures from their image features. The 1D-CNN 
model is trained using the data from psychophysical experiments and image features of the 100 surfaces dataset. 
The aim of the 1D-CNN model is to make it possible to assign attribute values to newly seen and/or physically 
absent texture surfaces.

Contributions. The major contributions of the paper are listed below.

• Collecting a dataset of 100 unique texture surfaces and establishing their perceptual space.
• Establishing a four dimensional Haptic Attribute Space from the dataset of 100 texture surfaces. The HAS 

describes the real textures based on their haptic attribute values.
• Designing a multi-scale 1D-CNN model to predict haptic attributes of textures based on their image features.

Expected outcomes. The HAS allows a textured surface to be defined by its haptic attributes as rated 
by human subjects. For example, how smooth or how bumpy a surface feels. A surface with a higher value of 
smoothness would intuitively mean a smoother surface. It would help in categorizing and defining textures 
based on their haptic attributes. In general, humans compare textures by going back and forth exploring all the 
textures while concentrating on different aspects of perception each time. Oftentimes, the characteristics should 
be memorized in the form of multiple perceptual scales and, keeping them consistent is not an easy task. The 
HAS describes textures numerically, which makes it intuitive to rank various textures in terms of certain proper-
ties or as a combination of several. Given that new textures can be effortlessly placed into the HAS without the 
need to remake the whole space, it is possible to scale the HAS using the 1D-CNN.

The 1D-CNN used for predicting haptic attributes of textures can be used to haptically describe arbitrary 
textures from their images. It is important to acknowledge that human users maintain a certain degree of standard 
deviation in their haptic ratings for the same textures. Therefore, if the prediction error of the algorithm remains 
less than the standard deviation observed in human ratings, the error could be deemed perceptually insignificant.

From a practical standpoint, the predicting capability opens several avenues of applications for the proposed 
system. The HAS could be utilized to ease the e-commerce experience. In the fashion and textile industry, this 
approach could enable designers and consumers to better understand the feel of fabrics and materials from 
online images, assisting in design and purchasing decisions. Such a system would let users make informed 
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decisions while shopping online. Another possible application of the HAS could be in the haptic mapping of 
remote environments. One of the benefits of the proposed system is that surfaces can be haptically labeled from 
images, without needing physical interaction with the actual surface. Once the images of a remote environment 
are available, its contents could be segmented and each segment could be haptically labeled using the proposed 
1D-CNN model. For individuals with visual impairments, this research could significantly enhance accessibil-
ity technologies, making tactile maps, braille displays, and haptic feedback devices more detailed and useful. In 
fields where physical interaction may be harmful, like archaeology or art preservation, our method could provide 
additional haptic information without risking damage.

Related works
Haptic texture attributes. Haptic interaction with textured surfaces can occur in two ways, i.e., tool-
mediated interaction, or bare-handed interaction. In bare-handed interaction, a user directly touches the tex-
tured surface using their fingers. In tool-based interaction, a user interacts with a textured surface through a 
rigid probe, and the interaction vibrations pass through the tool onto the user’s hand. Researchers have used 
both these techniques to discover the underlying perceptual dimensions of haptic textures. In case of bare-
handed interactions, pioneering work was done by Yoshida et al.22. Their experiments resulted in four major 
perceptual dimensions, namely, hard-soft, heavy-light, cold-warm, and rough-smooth. Two of these dimen-
sions (rough-smooth, hard-soft) were corroborated by Hollins et al.23 by using bipolar haptic attributes. Other 
 studies24–26 concluded that haptic texture consisted of three main perceptual dimensions, i.e., rough-smooth, 
hard-soft, and cold-warm. Okamoto et al.24 presented a comprehensive study and provided a strong case for 
including friction as a major perceptual dimension. They also provided reasonable arguments for differentia-
tion between macro and micro roughnesses as perceptual dimensions. Currently, a total of five attributes are 
considered as the major perceptual dimensions for haptic perception of texture. These dimensions are micro-
roughness, macro-roughness, friction, stiffness, and warmth. In tool mediated interactions, Lamotte et al.27 used 
active tapping as a method of interaction and reported that texture perception mainly varied on the hardness-
softness dimension. They reported that softness can be more easily discriminated when participants used active 
tapping as a mode of interaction. Similarly, other researchers uncovered the rough-smooth dimension using tool 
mediated  interactions28,29.

Most attempts at describing haptic attributes deal with perceptual dimensions. The relation between physical 
attributes of texture and the perceptual dimensions is not clearly defined. Therefore, researchers have focused on 
the relation between haptic attributes of texture (roughness, stiffness, etc) and the perceptual dimensions. The 
haptic dimensions and attributes of texture have been successfully  identified22,24,28,30. However, the goal of these 
studies was the dimensions/attributes only and no further investigation was done.

Haptic texture classification. Texture classification using image features has remained the focus of several 
researches over the years. One of the pioneering efforts was presented by Haralick et al.31. They introduced the 
Grey Level Co-occurrence Matrix (GLCM) from which image features were calculated and used for texture clas-
sification. Various texture classification algorithms have been presented with ever improving prediction accu-
racy. These algorithms include but are not limited to filter bank  features32, binarized statistical image  features33, 
local binary pattern  features34,35, color  maps36, neural  networks37,38, etc. All the above mentioned algorithms and 
many more such texture classification algorithms reported high accuracy on various texture datasets. However, 
these are purely based on image features and as such could not be applied to haptic texture classification.

A recent method of collecting sensorized data from haptic interaction with textures has been used for haptic 
texture classification. Customized interaction tools with various sensors are used to collect information from 
texture surfaces. Various features are calculated from this collected information. In this regard, Stresse et al.39–41 
used a custom built pen-like tool to interact with textures and collect acceleration signals, sound, frictional force, 
and images. These data are then used to collect various features that are used for haptic texture and material 
classification. Similarly, Romano et al.42 used normal force, friction, scanning velocity and acceleration result-
ing from tool exploration. Kerzel et al. used a single force sensor to record the signals during lateral and vertical 
motions of the tool and trained a neural network using these data for compliance and texture  identification43. 
Recently, Lima et al. used raw data from an inertial measurement unit (IMU) and deep barometer for texture 
classification using machine learning  techniques44.

In essence, the aforementioned techniques use physical vibrations from interaction with surfaces or mechani-
cal properties of textures to classify haptic textures. It can be argued that such data could provide a high accuracy 
in haptic texture classification tasks. However, the process of collecting information from real textures every 
single time can be a tedious and time consuming process. One of the bottlenecks of such methods is the require-
ment of a physical surface for classification, as the signals are collected by interacting with a real surface, therefore, 
generalization or scalability of the system can be hindered. Using the proposed system, haptic attributes/proper-
ties of textures can be classified or identified based on their images only. Thus eliminating the requirement of a 
real texture, and making the process of haptic attribute identification more robust and usable.

Visual and haptic texture. Humans rely on both visual and haptic information when interacting with an 
object. Both the modalities contribute towards the identification of the object. Information about shape, color, 
location, etc., is mostly provided by the visual sense, while, the haptic sense aids in attaining richer texture 
 information21,45. Contrary to popular belief, Lederman et al. and Heller showed, in separate studies, that vision 
and haptics perform equally well in texture perception  tasks19,45. In fact, it was argued that texture perception is 
intrinsically a bimodal (visual and haptic) phenomenon and perception degrades if observed through either of 
the individual modalities. Humans judge haptic and visual cues of real textures similarly, and the two modalities 
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depict congruent perceptual  characterizations46,47. Functional Magnetic Resonance Imaging (fMRI) evidence 
shows that haptic and visual perception of texture activate same areas within the medial ventral temporal cortex 
of the  brain48. Similarly, the fMRI based studies by Eck et al. indicated a crossmodal interaction in the soma-
tosensory and visual cortices when humans process texture  information21. Either of the visual or haptic sense 
can attain a dominating role in terms of texture perception depending on the nature of the task and the amount 
of variability available to either of the modality. To this end, Ernst et al. modeled the human nervous system 
responses using a maximum-likelihood integrator which accepted visual and haptic cues as inputs and estimated 
the role of each modality in  perception20.

The aforementioned studies provide evidence that the visual and haptic sense operate in a harmonious man-
ner and that there remains an overlap between their functionalities. The current study aims to capitalize this 
overlap of haptic and visual senses and to use it for predicting haptic attributes of textures using their images.

Overview
Figure 1 presents the overall system and the interaction of individual components. The constituent components 
of the system and their relationship will be briefly defined in this section.

The main aim of the current study is to provide a standardized space where texture surfaces are located based 
on perceptually meaningful haptic attributes. This is achieved by accurately predicting the haptic attributes of 
texture surfaces from their images and subsequently locating the haptic textures in terms of quantifiable haptic 
characteristics in a haptic attribute space. The overall study can be divided into two major parts, i.e., establishing 
the haptic attribute space, and establishing a relationship between the haptic attributes and the image feature 
space.

The study starts with the collection of 100 different texture surfaces (see “Texture dataset” section) which are 
rated by human users to establish the haptic perceptual space (see “Haptic perceptual space” section) and the 
haptic attribute space. The haptic perceptual space is a 3D space achieved from the multidimensional scaling 
(MDS) of similarity ratings from human subjects. The haptic attribute space is established based on user ratings 
of texture surfaces according to different perceptual properties. The haptic attribute space is a four dimensional 
space where each dimension defines a perceptual characteristic of the 100 haptic textures used in this study. All 
the textures are located in this four dimensional space according to user ratings.

The next step is to establish an image feature space (see “Image feature space” section) where each surface is 
defined by its image features. A combination of various algorithms is used to extract meaningful textural features 
from the 100 texture surfaces used in this study.

Figure 1.  A block diagram of the overall framework. The top row details the steps required to establish the 
HAS. The next two rows show the training and testing methodology of the 1D-CNN.
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A relationship between the haptic attribute space and the image feature space is established using a multi-scale 
1D convolutional neural network (1D-CNN) (see “1D-CNN” section). The 1D-CNN takes the image features 
extracted from texture surfaces as input, and predicts the corresponding haptic attributes. The haptic attribute 
space established as a result of this exercise can potentially be scaled by populating it with new unseen textures.

Haptic attribute space
The Haptic Attribute Space (HAS) is a four dimensional space where haptic textures are located based on the 
differences in their physical characteristics and properties. Each axis of HAS represents a particular attribute that 
defines the textural properties of surfaces. Psychophysical experiments are conducted on a dataset of versatile 
textures to establish the HAS space. In one experiment, human subjects rated all the textures according to various 
attributes that define the haptic properties of textures. These ratings were used to establish the four dimensional 
HAS space. In another experiment, the human subjects rated the texture surfaces based on their perceived dis-
similarities. The result of the second experiment created a three dimensional perceptual space where texture 
surfaces are placed based on their dissimilarities. The perceptual space highlights that the variance in the 100 
texture surfaces can be satisfactorily explained using only three dimensions, whereas, the HAS has four dimen-
sions. The four dimensions of HAS explain the perceptual attributes of textures, and these are prone to percep-
tual correlations. The attribute pairs are regressed into the perceptual space in “Haptic attribute regression into 
perceptual space” where they exhibit non-orthogonal intersection angles to show their correlation. The details 
of the texture dataset, the psychophysical experiments and their purposes are provided in the following sections.

Texture dataset. A total of 100 different texture surfaces were collected to be used as stimuli in both psy-
chophysical experiments. An effort was made to collect texture surfaces in such a way that they captured a wide 
variety of daily life haptic interactions. The 100 texture surfaces are provided in Fig. 2 and the dataset is provided 
as a Supplementary Material. The textures in the dataset can be subjectively categorized into varied categories 
based on material or textural/surface properties. The material categories are wood, rubber, plastic, fabric, leather, 
sandpaper, paper, sponge, and metal. Each of these categories contains multiple texture surfaces, i.e., flat surfaces 
with varying degrees of smoothness, metallic and fabric meshes, fabric with visible threads, flat fabrics, wooden 

Figure 2.  The 100 texture surfaces used in this study.
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surfaces with different textures, and many more. Some of the textures in these subjective categories are similar in 
haptic perception, while others are completely different. There are surfaces present with similar textural proper-
ties across different categories.

All the texture surfaces were cut to a size of 100 × 100 mm and mounted on hard acryl plates of the same size. 
This was done to provide a uniform base for all the surfaces, otherwise, the stiffness of the underlying table-top 
could influence their perception. Some of the metallic and thick wooden texture surfaces were not mounted 
on top of acryl plates, as the participants could not perceive the effect of the underlying tabletop through these 
surfaces.

Haptic texture attribute space. The main aim of this experiment was to identify the prominent haptic 
attributes that can be used to explain the textural properties of the 100 surfaces. The identification of these 
prominent haptic attributes was carried out using the semantic differential method. It was a multi-step process. 
First, a comprehensive list of attributes/adjectives was compiled that could potentially describe texture surface 
properties. Second, the list was narrowed down to 8 attributes (4 attribute pairs) based on participant responses. 
Third, the 100 texture surfaces were rated according to these four attribute pairs. The four attribute-pairs formed 
the four axes of the four dimensional HAS where all the surfaces were located according to their corresponding 
attribute values.

Participants and stimuli. The 100 texture surfaces detailed in “Texture dataset” section were used as stimuli in 
this experiment. A total of 26 participants took part in the experiment (19 male and 7 female) with an average 
age of 28 (ranging from 25 to 34).

Procedure. The participants sat in a chair in front of a table. They wore headphones playing white noise at 
a volume that blocked interaction and environment noises but experiment instructions could be heard. The 
texture surfaces were provided one at a time. The participants were allowed to use their preferred exploratory 
methods for interacting with the textures. The surfaces were placed under a cardboard box with a small opening 
for the participant’s hand at one end and another larger opening for the experimenter to replace the surfaces. 
The participants were not able to see any of the surfaces throughout the experiment. The experimental setup is 
presented in Fig. 3a.

The first part of the experiment was to collect a comprehensive list of haptic attributes. A total of 60 haptic 
attributes were collected in total. Some of these came from  literature14,49–51, while the others were selected by 
human participants keeping in mind the type of textures present in the dataset. The full list of attributes is pro-
vided in Table 1.

The participants were asked to select attributes that they felt could describe the haptic properties of the texture 
surfaces. The decision was either a 1 for yes or a 0 for no. This process was conducted to filter out the particular 
attributes that were dominant among the 100 surfaces used in this experiment.

A total of 11 attributes (selected by at least 50% of the participants) were short listed for the next experiment. 
Among these 11 attributes, four pairs of attributes with an antonymous relation were selected as they could rep-
resent opposite extremes of the same property. The four pairs were rough-smooth, flat-bumpy, sticky-slippery, 
and hard-soft. The three attributes that did not form antonymous pairs were pleasant, even, and abrasive. It 

Figure 3.  (a) The experimental setup for the haptic attribute rating experiment. (b) The GUI for haptic attribute 
rating experiment.
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must be noted that hard-soft in this experiment referred to texture and not compliance of the surface. All the 
surfaces were mounted on acryl plates to minimize the compliance bias. These four pairs were used in the next 
part of the experiment.

In the next part of the experiment (by same participants), participants rated all the texture surfaces according 
to the four attribute pairs selected in the first part. A GUI (graphical user interface), as shown in Fig. 3b, displayed 
each of the four attribute pairs on opposite sides of a slider. The slider had no scale marks and spanned a length 
of 127  mm49 on the screen. The participants were asked to perceive the surfaces and slide the marker in the direc-
tion of the attribute. The slider values were mapped from zero to hundred and averaged across all participants.

Analysis and results. The four attribute pairs acquired as a result of this experiment were used to establish the 
HAS. Each attribute pair represents a unique dimension. The four-dimensional HAS is shown in Fig. 4 in the 
form of two two-dimensional plots. The data for all the participants is averaged. The axes of the plots are marked 
with attribute pairs. Originally the participant responses were rated between zero and 100 with 50 being the 
center point, however, in Fig. 4 the attribute values are centered around zero. The shifting of the ratings does 
not have any affect on their perception. It has been done to provide an easier visual understanding of the plots.

Haptic perceptual space. The haptic perceptual space is a multi dimensional space where surfaces are 
scattered based on their perceptual similarities. Perceptually similar surfaces are grouped together while percep-
tually different surfaces are located away from one another. The similarities among surfaces are determined by 
human participants using a cluster sorting psychophysical experiment.

Participants and stimuli. The 100 texture surfaces detailed in “Texture dataset” section were used in this experi-
ment. The 26 participants who took part in the previous experiment also took part in this experiment.
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Figure 4.  The four dimensional haptic attribute space is shown as two 2-dimensional spaces. The texture 
surfaces are scattered around in the haptic attribute space.

Table 1.  The list of attributes provided to participants for the attribute rating experiment. The four selected 
attribute pairs are in boldface font.

Abrasive Granular Bald Bouncy Flat Glassy

 Hard Cold Grating Warm Pointy Fizzy

Sticky Sharp Wavy Wooden Hatched Smooth

Jarred Patterned Solid Mild Silky Malleable

Prickly Metallic Refined Angular Rigid Rough

Jagged Irritating Slippery Mushy Slick Furry

Grainy Pleasant Bumpy Spongy Bubbly Thick

Fine Soft Blur Slow Fast Deep

Shallow Thin Heavy Blunt Light Dark

Bright Vague Distinct Sparse Dense Even



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11684  | https://doi.org/10.1038/s41598-023-38929-6

www.nature.com/scientificreports/

Procedure. The participants sat in a chair in front of a table. They wore headphones playing white noise to block 
out interaction and environmental noise. The participants were blindfolded to avoid visual bias.

This experiment was in the form of a cluster sorting task. The participants were asked to group perceptually 
similar textures into a predefined number of groups. They were free to use their preferred method of texture 
exploration. Every participant conducted a total of five trials where the total number of groups were 3, 6, 9, 12, 
and 15. The order of the trials was counter-balanced using Latin square.

One surface was provided at a time which was assigned to a group by the participant. The next surface, if 
perceptually similar, could be assigned to the same group, otherwise, it could be placed in a new group. After 
assigning all the surfaces to the predefined number of groups, participants were asked to reevaluate the groups 
for errors. The five trials on average took 160 min per participant excluding break times.

Analysis and results. Data from the experiment were in the form of groups made across various trials. Scores 
to a pair of surfaces in the same group were assigned based on the total number of groups in that trial. Scores for 
the surfaces across all trials were subsequently added together to get a similarity score. For example, a pair of sur-
faces were grouped together in the trials with total groups at 6, 9, and 15. The similarity score for this pair would 
be 6 + 9 + 15 = 30. This method ensures that the surfaces that were grouped together across more trails receive a 
higher similarity score. The data across all participants were averaged and used to form a similarity matrix. The 
similarity matrix was converted into a dissimilarity matrix and scaled from zero to one.

Multi-dimensional scaling (MDS) analysis was performed on the dissimilarity data to establish the percep-
tual space. The number of dimensions for MDS was determined by running a Kruskal stress test on the MDS 
data. The stress test results in Fig. 5 show a stress value of 0.048 at the third dimension which is considered as 
fair according  to52, therefore, a three dimensional space is sufficient to describe the variation across the data in 
our dataset. The perceptual space is provided in Fig. 6. The dimensions obtained from the MDS analysis do not 
portray any physical meaning. These are the result of an optimization algorithm used to locate the given surfaces 
at optimum distances to maintain their dissimilarity ratings.

Haptic attribute regression into perceptual space. In order to make sense of the dimensions of MDS 
in terms of attributes of a surface, the four attribute pairs from “Haptic attribute space” section are regressed into 
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Figure 5.  The Kruskal stress value for the first ten dimensions of the perceptual space.
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the perceptual space. Multi-linear regression was performed where the perceptual space dimensions were the 
response variables, whereas, the attribute scores were used as the predictor variables. Figure 6 shows the four 
attribute pairs regressed into the perceptual space. The length of each attribute pair shows the goodness of fit of 
the regression model.

The HAS is the combination of the four attribute pairs, and ideally, one would want the four dimensions to be 
perpendicular to one another. However, Fig. 6 shows that the attribute pairs are not perpendicular. This analysis 
further emphasizes the fact that haptic perception is not a linear phenomenon. Furthermore, it shows that haptic 
attributes of texture are dependent on one another up to varying degrees. This nonlinearity is carried and con-
tained in the HAS dimensions. The angles of the four attribute pairs with respect to origin are provided in Table 2.

The HAS can be constructed in two different ways. First is by projecting the points in perceptual space onto 
the regressed attribute pairs. The projections form the four dimensions of the HAS. This method preserves the 
ordinal relationship between the points. The second method is to directly use the attribute rating values provided 
by the users to form the dimensions of the HAS. In the current study, the second method was followed. The 
motivation behind the current study was to introduce standardized dimensions where textures can be located 
and differentiated based on their differences. Therefore, in addition to the ordinal differences, the numeral dif-
ferences were considered important to be preserved.

Image feature space
The main aim of the current study is to establish a system that enables us to identify the haptic attributes of a 
texture only by examining its image (visual texture). To this end, images of the textures in our dataset were used 
to collect meaningful features that will be used in training the 1D-CNN model. A large variety of image feature 
extraction techniques are available in the literature. In the current study, we decided to use an amalgam of clas-
sical and deep learning based image features. Three image feature extraction techniques were used, i.e., Gray 
Level Co-occurrence Matrix (GLCM)31, Local Binary Pattern (LBP)34, and  ResNet5053. A wide variety of other 
feature extraction techniques were tested before settling down on the aforementioned three methods. The three 
methods chosen in this study contain a complementary modus operandi. LBP captures the local spatial patterns 
in an image, GLCM has the ability to capture local and intermediate level features, while, ResNet50 progressively 
extracts higher level deep features from the input images. A combination of these three features covers diverse 
aspects of an image and the resulting image features show high discrimination ability. The details of the image 
capturing setup and image features are provided in the following sections.

Image capturing setup. All the images used for training were captured using a standardized and uni-
form procedure to guard against any scaling or resolution bias. It is important to capture the finer details of the 
surface with clarity and in high enough resolution so that the algorithm can extract meaningful features from 
the images. All images were captured using dp2 Quattro SIGMA digital camera and saved in high quality RAW 
format (14-bit lossless compression). The camera was mounted on top of the surfaces using a tripod stand. The 
distance between the camera lens and the surfaces was kept constant at 300 mm. The images were taken in 
standard room lighting, however, special care was taken to guard against any shadows. Color does not affect 
the haptic perception, therefore, all the images were converted into grayscale before using them in training to 
remove/reduce color bias.

Gray level co‑occurrence matrix. In31, Grey Level Co-occurrence Matrix (GLCM) based texture feature 
descriptor was proposed for surface classification. Recently, for haptic texture assignment  in54, GLCM was uti-
lized as one of the texture features because of its higher performance in this area. Motivated by this, we employed 
the GLCM, which considers the spatial relationships between two pixels at a time in the surface texture image. 
First, the surface images are resized into 1568 × 1568. Then, the GLCM method is applied to this resized surface 
image, which produces a matrix of 8 × 8. Then, this matrix is flattened to generate a feature vector of size 1 × 64.

Local binary pattern. Local pixel information from an image can be calculated by using Local Binary Pat-
tern (LBP). The LBP is performed by comparing the pixel values of an image by thresholding a circular neighbor-
hood  area34. In this work, we applied the LBP method on the surface image to calculate the local spatial patterns. 
First, the resized input images are divided into multiple cells with sizes 224 × 224. Then, the LBP operation is 
performed on each cell, which generates a feature vector with the size 1 × 59. Subsequently, the feature vectors 
obtained from each cell are combined to produce the final feature vector with size 1 × 2891 using the LBP.

Table 2.  The 3D angles for the four attribute pairs regressed into the perceptual space.

Attribute pair Elevation Azimuth

Rough–smooth 324.48 99.93

Flat–bumpy 70.66 52.0

Sticky–slippery 228.96 47.77

Hard–soft 345.58 338.09
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ResNet50. The ResNet model was presented  in53 for the image classification task, which is trained on the 
ImageNet dataset. The network achieved state-of-the-art performance in image recognition due to having resid-
ual learning support. In our work, we used the pre-trained ResNet-50 model to capture the higher level deep fea-
tures from the surface images. At first, the surface images are resized into 224 × 224 in order to match the input 
of the ResNet-50 model. Then, the processed surface images are fed into the pre-trained ResNet-50 model, which 
gives us the feature vector with size 1 × 1000 containing the deep spatial information of the surface texture.

After capturing surface features by employing the GLCM, LBP and ResNet-50, we concatenate the features 
and produce a feature vector with size 1 × 3955, which is then used as input to the multi-scale 1D-CNN.

1D‑CNN
Recently, deep learning-based approaches have become popular for haptics applications, i.e., tactile 
 understanding55, texture signal generation from surface  images37, perceptual similarity learning from haptic 
 textures56 and so on. In light of the aforementioned work’s success, in this paper, we design a multi-scale 1D-CNN 
to establish a relationship between haptic attributes of surface texture and its image features. The 1D-CNN model 
was preferred over 2D-CNNs because 1D contains significantly lesser parameters. A higher number of parameters 
can increase training time and may result in overfitting of the model when training data is limited. The proposed 
infrastructure contains two strands of 1D-CNN models, where each model captures details at different scales 
and thus captures the macro and micro level information separately. The infrastructure of the 1D-CNN used 
here is similar to that of a conventional CNN. The difference is the use of the input data and trainable kernels 
of the one-dimensional (1D) vector. As a consequence, during the training phase, the forward propagation and 
backpropagation procedures are modified. The structure of the proposed multi-scale 1D-CNN is presented in 
Fig. 7. The model takes the image features captured using the previously discussed methods. Then, we train the 
model with respect to the given haptic attribute values. Ultimately, the model is able to predict the haptic attrib-
ute values for the given surface image features. The details of the proposed multi-scale 1D-CNN are as follows.

The network contains two sub-1D CNNs. Each 1D-CNN has five 1D convolutional layers, two 1D max-
pooling layers, and two fully connected layers. The convolutional layers are in charge of extracting the features, 
while the max-pooling layers reduce the dimensionality of each feature map. In the convolutional layers, different 
numbers of kernels are applied with different scales. Therefore, local spatial information in different scales is cap-
tured. In the convolution operation, we operated 1 × 3, and 1 × 5 sizes of kernels, while the max-pooling process 
is performed on 1 × 2 blocks. Additionally, we utilize multiple kernels to obtain the diverse aspects from each 
scale of local information in convolutional layers. For instance, the first convolution layer operates 32 kernels, 
the second convolution layer uses 64 kernels, the third and fourth involve 128 kernels, while the fifth convolution 
layer operates 256 kernels. More specifically, in a 1D convolution layer, the computation is performed as follows.

where g i  is the calculation result of the ith filter, a n is the input data of size 1 × N, w i  is the ith convolutional ker-
nel vector with size 1 × N, b i  is the bias of the ith filter and the ReLU nonlinear activation function is denoted as f.

Each sub-1D CNN model ends with two fully connected (FC) layers having 100 and 50 neurons, respectively. 
Finally, another FC layer with 100 nodes is engaged to concatenate the features achieved through different 1D 

(1)gi = f (wT
i an + bi)

(2)f (z) =

{

z; if z > 0

0; otherwise,

Figure 7.  The structure of the proposed multi-scale 1D-CNN.
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CNN modules. The loss function in this study is the mean-square error (MSE), while the activation function is 
the Sigmoid function. To train the model, the ADAM optimizer is used.

In most cases, the number of samples is significantly less than the number of features when it comes to sam-
pling costs in real-world applications. Due to the lack of texture samples, the complex model can easily lead to 
overfitting problems without considering the model’s generalization ability. In other words, the fitted model can 
correctly predict the adjective rating for the training data, but the test set’s prediction results are poor. Therefore, 
to balance prediction performance and speed up the deep network training process, the rectified linear unit 
(ReLU) and batch normalization (BN) techniques are used after the convolution operation in this study.

Evaluation
The main goal of the proposed system is to predict accurate and reliable haptic attributes of textures based on 
their images. It is important to reliably predict these attributes and that the errors in haptic attribute value predic-
tion stay below human perception. It is safe to assume that an absolute error rate of less than the mean standard 
deviation between participant responses can be considered perceptually insignificant. In this section, a numeri-
cal evaluation of the proposed model is carried out using the Leave-One-Out Cross-Validation (LOOCV). The 
evaluation assesses the prediction capability of the system in terms of how well it can predict haptic attribute 
values for unseen textures.

The proposed model was also compared against other prominent classical and neural network algorithms in 
terms of prediction accuracy. Linear regression and Support Vector Regression were chosen among the classical 
algorithms. These are two of the most commonly used regression techniques. In case of neural network models, 
an Artificial neural network and state-of-the-art 1D CNN by Taye et al.57 were selected.

Leave‑one‑out cross validation. Cross validation is an evaluation method used to verify the estimation 
capability of a trained model on unseen data. It tests the generalization ability of a trained model on a dataset that 
was not used in training the model. One of the most common forms of cross validation is the k-fold cross valida-
tion, where the dataset is split into k subsets. A fixed number of subsets are used for training and the remaining 
are used for testing. The process is repeated until all the subsets are used for testing. LOOCV is a special case of 
the k-fold cross validation where k = 1. The number of subsets is equal to the number of instances in the dataset. 
In every cycle, all the instances are used for training barring one which is used for testing. The process is repeated 
until all the instances in the dataset have been used as test instances. LOOCV provides an accurate and unbiased 
evaluation of a model as every item in the dataset is used for testing. LOOCV was chosen to perform an exhaus-
tive evaluation of the proposed model. LOOCV can be computationally expensive for large datasets, but the 
dataset used in this study is not large by machine learning standards.

The dataset described in “Texture dataset” section was used in LOOCV. The model was trained using 99 of 
the textures in the dataset, and the remaining one was used as a test set. The same process was repeated until all 
the textures were used as test sets. The point by point prediction results from LOOCV for the proposed model 
are provided in Fig. 8. Using LOOCV as an evaluation metric reduces the need to test the model on surfaces 
outside of the original. It must be noted that in every iteration the 100th instance is an unseen surface for the 
model as if the testing was being done with textures outside the original dataset.

Figure 8 shows the predicted value and the value assigned by human subjects to each of the texture sur-
faces. The predicted and experimental ratings are provided in the Supplementary Material for reference.  It can 
be seen that in most cases the prediction result is very close to the haptic value assigned by human subjects. In 
order to gain a better understanding of the prediction results, Mean Absolute Error (MAE) was calculated with 
a window size of 20, as shown in Fig. 9. MAE for all 100 surfaces is provided in Table 3. The MAE provides a 
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more direct and intuitive summary of the prediction results. It can be seen that the max MAE (for an average of 
20 surfaces) of 11.2 is achieved by Rough-Smooth towards the beginning of the curve. MAE for the other three 
attributes mostly stays below this value. It should be noted that MAE provided the absolute value of error and, 
thus, an error of 10 means 10 out of 100.

Error comparison. In this section, the proposed algorithm is compared against other popular and state-of-
the-art algorithms. These algorithms are linear regression, support vector regression, artificial neural net, and 
state-of-the-art 1D  CNN57. Note that, linear regression and support vector regression algorithms are used from 
the Scikit-learn machine learning library. On the other hand, ANN is designed with two fully connected (FC) 
layers and a regression output layer. The FC layers have 200 and 100 nodes, respectively. To train the ANN, an 
ADAM optimizer is used along with the MSE loss function. The same LOOCV evaluation strategy was used for 
all four algorithms to keep the comparison fair. Table 4 shows the root mean square error (RMSE) for the four 
algorithms and the proposed algorithm. The Root Mean Square Error (RMSE) is measured as follows.

where yi represents the actual rating of the ith sample, y i  denotes the predicted rating and N is the total samples. 
This experiment shows that linear regression has an RMSE of 29.9, 57.05, 25.04, and 42.18 for Rough-Smooth 
(R-S), Flat-Bumpy (F-B), Sticky-Slippery (S-S) and Hard-Soft (H-S), respectively. On the other hand, ANN has 
an RMSE of 20.41, 30.52, 16.74 and 20.29 for R-S, F-B, S-S, and H-S, respectively. However, SVR shows better 
RMSE for F-B and S-S compared to the other existing algorithms.
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Figure 9.  The mean absolute error (MAE) values for the proposed and four other algorithms.

Table 3.  The mean absolute error (MAE) values for the proposed system and four other algorithms. The 
values are written for each of the four attribute pairs. Bold represent the best results.

R-S F-B S-S H-S

Linear regression 23.11 32.43 19.17 30.21

Support vector regression 17.81 23.85 12.94 20.28

Artificial neural network 16.96 20.62 13.31 16.59

1D CNN (Taye et al.57) 15.57 22.16 14.43 21.44

Proposed 1D-CNN 8.13 8.47 7.12 5.15

Table 4.  The root mean square error (RMSE) values for the proposed system and four other algorithms. The 
values are written for each of the four attribute pairs. Bold represent the best results.

R-S F-B S-S H-S

Linear regression 29.9 57.05 25.04 42.18

Support vector regression 22.78 26.38 15.97 21.46

Artificial neural network 20.41 30.52 16.74 20.29

1D CNN (Taye et al.57) 20.79 27.70 19.70 26.59

Proposed 1D-CNN 13.39 14.30 9.59 7.91
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From Table 4 it can be observed that in most cases, the deep learning algorithm (i.e., 1D CNN) proposed 
 in57 failed to produce lower RMSE (see Table 4) than the simple machine learning algorithms (i.e., ANN). This 
is because the 1D  CNN57 applies kernels with larger window sizes; therefore, this 1D CNN fails to capture the 
local features adequately. Besides, the number of kernels applied to the 1D  CNN57 is also fewer compared to the 
proposed multi-scale 1D-CNN. Capturing the local spatial information in different scales as well as utilizing 
a large number of kernels helps to boost the performance of our model. Hence, the proposed algorithm has 
significantly lower RMSE values as compared to the other four algorithms.

Individual feature error. In the aforementioned comparisons, the proposed model was trained using a 
concatenated 1D vector comprising ResNet-50, LBP, and GLCM features. In this subsection, the three features 
were individually used to train the 1D-CNN model and predict the output. This exercise was conducted to figure 
out the individual accuracy of each feature and whether a single feature could perform better than the concat-
enated version.

Table 5 shows that the model trained with feature concatenation provided the highest accuracy as compared 
to the individual features. This result was expected, as the ResNet-50 captures higher level spatial information, 
while LBP and GLCM focus on micro level spatial arrangement of texture. The concatenated features had the 
advantage of using both higher level and micro level information for predicting the attributes of textures and 
thus performed better than the individual features.

Discussion
Figure 9 shows that different attribute pairs perform differently for certain texture surfaces. The MAE plot of 
the 1D-CNN model shows that the R-S attribute pair has the highest MAE value among all others for the first 25 
textures, and the F-B attribute pair performs the worst for textures 50 to 85. Similarly, the best attribute pair in 
MAE plot of 1D-CNN for the first 50 textures turns out to be H-S, while for the last 50 textures, three attribute 
pairs (R-S, S-S, H-S) predict with similar accuracy.

As mentioned earlier, the prediction error for the R-S attribute pair is relatively higher for the first 25 texture 
surfaces. A majority of these textures are polished surfaces, as seen in Fig. 2. It is probable that the camera used 
in this study could not capture images detailed enough to fully encapsulate the micro geometry of the surfaces. 
The prediction values for the F-B attribute pair for textures 74 to 83 have a very high error rate. It can be seen 
from Fig. 2 that all these surfaces are sandpapers with different grit ratings (80 to 3000). The algorithm predicted 
their attribute values based on the image features. However, it is highly likely that the participants judged these 
surfaces as sandpapers only without going into too much detail about the texture itself. This phenomenon is called 
as pre-judgment, where a participant judges the haptic qualities of a texture based on their past experience rather 
than the textures available at the time. Pre-judgment is defined in greater detail  in58. The fact that the MAE is 
shown in terms of a moving window of 20 surfaces may have resulted in the outliers affecting the average. MAE 
for all the 100 surfaces is available in Table 3, and it can be seen that the highest MAE is 8.47 for F-B.

The exact value for human JND (Just noticeable difference) for haptic attributes of real textures is unknown. 
However, earlier  research59 showed that perceptual similarity boundaries extend a fair distance beyond a given 
surface in the perceptual space. In order to check how much of an error is negligible in perceptual attributes, we 
calculated the standard deviation of haptic attributes across all participants. The standard deviation for each tex-
ture was calculated separately and then averaged across all 100 textures to get one single standard deviation value 
for all textures across all participants. The mean standard deviation for R-S was 15.14, F-B was 13.48, S-S was 
16.90, and H-S was 16.77. It can be assumed that a prediction error less than the standard deviation can be con-
sidered as perceptually similar. The highest MAE, as mentioned earlier, was 8.47 in this study which is less than 
the mean standard deviation, therefore, the overall prediction error can be considered perceptually negligible.

In Fig. 4 the four quadrants in each plot represent specific types of texture surfaces. For instance, in the first 
plot of HAS (Rough-Smooth and Flat-Bumpy), the first quadrant has smooth and bumpy surfaces, the second 
quadrant represents rough and bumpy surfaces, the third quadrant contains rough and flat surfaces, and the 
fourth quadrant is populated with smooth and flat surfaces. It is intuitive to assume that the rough and bumpy, 
and smooth and flat are densely populated as these attributes often occur simultaneously. The rough and flat 
is also well populated, however, most of the surfaces are close to the origin. This shows that some flat surfaces 
were perceived as mildly rough, for example, high grit sandpapers or some wooden surfaces. The least populated 
quadrant is the smooth and bumpy one. The current dataset contained very few textures that could represent 
these two attributes. The two surfaces in this quadrant are the ones with clearly perceivable bumps on an oth-
erwise smooth surface.

A similar pattern can be seen in the third and fourth dimensional plots of HAS in Fig. 4. The first quadrant 
contains slippery and soft surfaces and is the least populated. The second quadrant has sticky and soft surfaces, 

Table 5.  The RMSE of each individual feature in comparison with the concatenated features. Bold represent 
the best results.

R-S F-B S-S H-S

GLCM 17.91 14.51 15.21 10.81

LBP 18.92 19.16 16.91 11.50

ResNet-50 18.62 15.26 19.00 10.40

Concatenated features 13.39 14.30 9.59 7.91
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the third one contains hard and sticky surfaces, and the fourth quadrant contains slippery and hard surfaces. The 
second and third quadrants are the most populous quadrants which means that a high number of surfaces were 
perceived as more sticky as compared to slippery. It can be seen that in the second quadrant, the surfaces do not 
reach extreme values and are rather situated more towards the origin. It can be argued that we do not encounter 
such surfaces in most of our daily life interactions. Some examples can be organic surfaces (chewing gum, clay, 
etc) or silicone, which are not a part of this texture dataset. The third quadrant consists of sticky and hard sur-
faces. The extremes in this quadrant are some sandpapers and metallic meshes. The fourth quadrant contains 
slippery and hard surfaces. This quadrant incorporates metals or polished hardwood surfaces in the extreme.

The dataset used in this study primarily consists of common office and household materials, with mostly uni-
form textures. However, in real-life scenarios, we encounter a wide range of surfaces that are not represented in 
the current study. These could include organic surfaces, oily or wet surfaces, and surfaces with artificial patterns, 
among others. As a result, it can be said that the current library covers only a portion of the overall haptic space 
of textures. It is important to consider this when evaluating new surfaces; if we test a surface that belongs to the 
same portion of the haptic space as the dataset, the haptic attributes will be predicted accurately. However, if we 
test a surface that lies far away from the dataset in the haptic space of textures, the predicted haptic attributes 
may not be perceptually correct for that particular surface.

Expanding on the aforementioned subset of the overall haptic space, a natural question would be to ask if the 
given 100 textures sufficiently represent the overall convex hull that covers this specific subset. Does the percep-
tual space of the 100-texture dataset offer a comprehensive representation, or would it evolve upon the addition 
of more similar textures? To investigate this, a short analysis of building a stepwise MDS (10 textures at a time) 
was carried out. The MDS from the initial two batches of 10 textures exhibited randomly scattered textures. The 
shape of the perceptual appeared after the next two batches, i.e., a total of 40 textures. The remaining textures only 
helped in filling in the shape, leading to negligible changes to the overall perceptual space. Moreover, a subset 
of the 100 textures, i.e., 84 textures, was used in another  study59 to establish a perceptual space. The perceptual 
space was clustered into groups of perceptually similar textures. These clusters were enclosed in convex hulls, 
and it was noticed that adjacent convex hulls frequently overlapped. The overlapping perceptual convex hulls 
indicate that participants found it difficult to perceptually distinguish the textures. Therefore, it can be reasonably 
inferred that the 100-texture perceptual space is considerably dense and complete.

Incorporating new textures into the HAS is based on their image features. This emphasizes the image cap-
turing setup and the quality of the image being captured. It is a well-known fact that better quality images lead 
to better image features. The algorithm (1D-CNN) can also predict haptic attributes with a lower error if the 
image features are well collected and correctly capture the micro and macro texture information of a surface. It 
is of utmost importance that the image is captured without shadows, the texture should be clearly visible (not 
blurred), and with high resolution.

Conclusions
In this paper, we established a four-dimensional Haptic Attribute Space (HAS) from psychophysical experiments. 
The axes of the 4D HAS are haptic attributes of texture that were chosen by participants to best represent the 100 
textures used in this study. The 100 textures are then scattered in the 4D HAS according to their corresponding 
attribute values. In order to populate the HAS with new textures, a multi-scale 1D-CNN was trained to predict 
haptic attributes of texture based on their image features. The HAS in combination with the multi-scale 1D-CNN 
provides a universal space where all textures can be represented based on their attribute values. This provides 
an intuitive way to classify or identify textures based on their images, without the need to physically interact 
with them.

The current study captures image features from images entirely containing textures. In order to deploy the 
advantages of the proposed system in the real or virtual world, the overall scene needs to be segmented into 
distinct texture regions. These texture segments can then be fed into the proposed system to predict the haptic 
attributes of the various elements in the environment (Supplementary Information).

Data availability
The image dataset and the adjective ratings used during the current study are included in this published article 
and its supplementary information files. Code is available from the first or corresponding author upon reason-
able request.
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