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IoT‑based data‑driven predictive 
maintenance relying on fuzzy 
system and artificial neural 
networks
Ashraf Aboshosha 1,3*, Ayman Haggag 2,3, Neseem George 1,2,3 & Hisham A. Hamad 2,3

Industry 4.0 technologies need to plan reactive and Preventive Maintenance (PM) strategies for 
their production lines. This applied research study aims to employ the Predictive Maintenance (PdM) 
technology with advanced automation technologies to counter all expected maintenance problems. 
Moreover, the deep learning based AI is employed to interpret the alarming patterns into real faults 
by which the system minimizes the human based fault recognition errors. The Sensors Information 
Modeling (SIM) and the Internet of Things (IoT) have the potential to improve the efficiency of 
industrial production machines maintenance management. This research work provides a better 
maintenance strategy by utilizing a data-driven predictive maintenance planning framework based 
on our proposed SIM and IoT technologies. To verify the feasibility of our approach, the proposed 
framework is applied practically on a corrugated cardboard production factory in real industrial 
environment. The Fuzzy Logic System (FLS) is utilized to achieve the AI based PM while the Deep 
Learning (DL) is applied for the alarming and fault diagnosis in case the fault already occured.

Industry 4.0 technology is a revolution of the way factories achieve mass production, improve, and distribute 
their products. Producers are merging new techniques, including IoT, cloud computing and computational 
analytics with AI and machine learning into their production lines during the manufacturing process. Through 
the continuous development of AI based automation technologies, the IoT and their applications have the oppor-
tunity to benefit from the industrial development, especially in applying PdM systems1. Through high precision 
smart sensors, we collect a huge amount of data that indicate the state of machines and their healthy or faulty 
operation2. By analyzing these data, we predict quickly and accurately the possible failures of the machine. PdM 
strategies reduce machine maintenance costs and extend the service lifespan of machine parts. The probability 
of line production machine faults are calculated on the basis of historic data from previously tested the expert 
systems3. Machine parameters (such as machine type), operator experience, machine age, operation time, compo-
nent types and operation location), are taken into consideration for fault diagnosis and prediction. This research 
work discusses the role of the AI based IoT and its development, by integrating heterogeneous distributed sensor 
data of all machines to analyze their operation conditions4. To achieve this target, we developed an algorithm 
that helps analyze the data and to make a precise decision5. The presented research work aims to prevent halting 
the production line without reasonable causes.

Benefits of predictive maintenance.  Relying on predictive maintenance, it is possible to improve the 
performance of production machines, predict their conditions and recognize faults, predict their maintenance 
dates, and also predict their lifetime6 based on analyzing and processing the collected data. When a faulty opera-
tion takes place by an operator, the system analyzes the performance, and the operator can be quickly notified 
of the faulty act. By applying the proposed system, it is expected to avoid breakdowns, reduce loss of time, mini-
mize the effort, limit the operation cost7, and predict failure before its occurrence. The most important results 
are to increase the operating lifetime of machines, reduce the cost of spare parts, reduce production downtime, 
improve product quality, and save energy.

OPEN

1Rad. Eng. Dept., NCRRT, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. 2Electronics Technology 
Department, Faculty of Technology and Education, Helwan University, Cairo, Egypt. 3These authors contributed 
equally: Ashraf Aboshosha, Ayman Haggag, Neseem George and Hisham A. Hamad. *email: ashraf.aboshosha@
eaea.org.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38887-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12186  | https://doi.org/10.1038/s41598-023-38887-z

www.nature.com/scientificreports/

Causes behind machine failure.  The overall production line depends on the machinery and a slight fail-
ure may cause the entire production line to halt. Whether it is a failure in a sub or auxiliary parts, the cause of the 
failure may be on behalf of the operators. In the long run, if the basic parts of the machines in the wrong opera-
tion continues, failure will follow after the other, which will increase the cost and consume a longer time. This 
faulty operation will negatively affects the production process8. Due to this faulty operation the percentage of 
wastage in production will also increase, and the failure could be due to the natural malfunctions of the machine 
that depend on the lifetime of the spare parts. This research work will lead to precisely recognition of PM and 
predicts faults clearly before the malfunction occurs9.

Research motivations.  Research motivations.  The needs arose in this study are to determine severity 
and risk evaluation of sudden failure of corrugated cardboard production machine parts which may lead to 
prolong the wasted time. Generally, PM has to be carried out every week for inspection, revision and lubrication 
of mechanical parts, every month to remove the mechanical and electrical parts that have been monitored for 
abnormal performance which require close inspection before unexpected failures occur10–12. This research aims 
to determine the sensors on the machine which recognize failures before they occur.

The rest of the paper is organized as follows; “Related works” section presents the related works. “The pro-
posed predictive maintenance system” section introduces the proposed predictive maintenance system. “Imple-
mentation of the proposed system” section explains applying proposed system. “Methodology” section is the 
methodology. “Failure mode analysis methodology” section presents Failure Mode Analysis Methodology. “Cor-
relation analysis” section presents Correlation Analysis. “Platform and data analysis” section presents platform 
data analysis. “Conclusion” section is the discussion and results analysis.

Related works
Industry 4.0 technologies development and progress result in rapid increase in the size of machines, quantity 
of production modules, mass production, mega stores, big data, and high precision. These changes require for 
sure the IoT, AI and High Performance Computing (HPC) to apply the predictive maintenance. This motivated 
many researchers recently to direct their research studies to the field of data analysis for predictive maintenance 
which became an essential tool in industry 4.0 Technology. Rabatelab et al.13 extended the anomaly detection 
problems. To extract the patterns, they developed a method to considering contextual parameters associated with 
data. Then compliance of the new data and, according to the knowledge extracted, can detect anomaly. Zhang 
et al.11, developed a method to reveal the temporal-dependency embedded in sensor data streams as the basis 
for engine degradation prediction. Huang et al.

Reference14 showed that machine maintenance is ramified issue that relates to many other factors for the 
requirements of modern industrial development. When symmetric components do not perform the same func-
tion, the system is out of balance. A preventive maintenance action is performed once the state difference. The 
research did not take into account the difference in method of operation despite the similarity of the elements. 
Wanga and Miaob15 presents Predictive maintenance for aircraft systems relying on proportional hazard mod-
els. The authors link open overlay panel proposed by Wim et al.16 showing that aircraft operating in hot, sandy 
airports or regions have very different circumstances of operation than aircraft operation in normal cold, wet 
airports, will lead to several failure modes and lifetimes for spare parts. Aircraft fault prediction at maintenance 
service on the basis of regression data and aircraft parameters are studied by Pogačnik et al.17 for predictive 
Maintenance and Reliability. Brauers and Balezentis18 developed a Multi-Objective Decision Making technique 
for Linguistic Reasoning with an Application to staff Selection. The FMEA Traditional Modifications (FMEA 
Improvement) in IT Risk management is proposed by Nina Fadilah et al.19. Liu et al.20 studied the Failure mode 
and its effect analysis.

In 2020, Mourtzis21, this paper investigates the major historical milestones in the evolution of manufactur-
ing systems simulation technologies and examines recent industrial and research approaches in key fields of 
manufacturing and PM. In 2021, Filz et al.22, proposed a data-driven Failure Mode and Effect Analysis (FMEA) 
methodology by using deep learning models on historical and operational data from the use stage of industrial 
investment goods. The developed methodology is supposed to support the maintenance planning for indus-
trial investment goods by enhancing transparency and providing decision support. In 2021, Mourtzis et al.23, 
presented a Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) can be considered as 
the cornerstones of the lifecycle of a manufacturing asset. Since the above-mentioned processes often involve 
multiple engineers, from different departments even from different companies, it is crucial to ensure the flawless 
communication between the different individuals as well as to make the design process more intuitive. In 2018, 
Mourtzis et al.24, proposed a framework for the modeling of milling and lathe CNC machine-tools, through a 
general machine model. The framework is based on the Open Platform Communications—Unified Architecture 
(OPC-UA) communications standard to provide a macroscopic and microscopic view of machine shops, towards 
the Machine Shop 4.0 concept.

In 2021, Martins et al.25, in this paper a methodology to build monitoring solutions for machining devices 
is defined, based on the main equipment and operations used by molds industry companies. For a standardized 
approach, OPC-UA is used for high-level communication between the various systems. In 2019, Liu et al.26, this 
paper proposes a CPMT Platform based on OPC-UA and MT Connect that enables standardized, interoperable 
and efficient data communication among machine tools and various types of software applications. In 2021, 
Schmid et al.27, proposed Acquisition of machine tool data via the open source implementation open62541 for 
OPC-UA. current Industry 4.0 Communication methods are defined as OPC-UA, MQTT, or REST. These com-
munication standards can integrate machine tool and process data in IoT-Clouds or external devices. In 2022, 
Eswaran and Bahubalendruni28, this paper demonstrates the research progress and developments in the AR/
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VR technologies for product design and evaluation, Repair & Maintenance, Assembly, Warehouse management, 
Quality control, Plant layout and CNC Simulation. The critical challenges in AR/VR technology implementation 
at hardware and software level and opportunities for the further developments are discussed.

In 2022, Xiong et al.29, presented the concept of intelligent additive manufacturing and design (IAMD) while 
providing a triple-layer model for reference. Details about these three layers, i.e., digital thread layer, cyber-
physical layer, and intelligent service layer, are presented. Moreover, both scientific and engineering challenges 
rose during the studies and implementations of IAMD are discussed together with potential solutions. In 2023, 
Liu et al.30, in this study, we develop a novel and highly practical maintenance model to fill the gap. The proposed 
model simultaneously considers the predictive maintenance and inventory policies of spare parts. In light of the 
high degree of complexity in modern manufacturing systems and the profound stochastic city in component 
degradation, a met modeling-based simulation optimization method is proposed to find the optimal component 
inventory policy and degradation level thresholds of each component. In 2022, van Dinter et al.31, this research 
aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the 
way for further research. A systematic literature review (SLR) using an active learning tool is conducted on 
published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have 
been analyzed. In 2023, Gupta et al.32, this paper presents a scalable and economical maintenance 4.0 solution for 
such a system using data from sensors installed (on a live system in absence of historical data). Differentiating 
between anomaly detection and outlier detection the paper presents an algorithm that can be used to remove 
idle and noisy data from the datasets. In 2022, Liu et al.33, this article proposed Predictive Maintenance (PdM), 
as a pivotal part of Prognostics and Health Management (PHM), plays a vital role in enhancing the reliability 
of machine tools in the Internet of Things (IoT)-enabled manufacturing. In order to realize a highly reliable 
maintenance plan integrated with the fault prediction, the maintenance decision-making, and the Augmented 
Reality (AR)-enabled auxiliary maintenance, an intelligent predictive maintenance approach for machine tools 
is proposed in this paper via multiple services cooperating within a single framework.

The proposed predictive maintenance system
In this research work we study the possibilities of applying the human faulty operation effect on PdM. Data are 
collected and analyzed to identify operational measurable factors and its influence on the maintenance. We 
adopt a PdM strategy based on the availability of performance over time, service life prediction models, and 
Methods for developing a decision support system for corrective maintenance, PdM. Basis of maintenance, and 
monitoring system. Design of a machine is depending on the technologies of the current industrial revolution, 
and production lines system’s needs10. The first important step is to activate the role of IoT applications4.

Data acquisition system.  The data acquisition system is used to collect the output signals of sensors 
located on all parts of the production lines and converts them into addressable electronic signals and digital 
data that can be analyzed and compared to increase data integrity and to provide an analysis of these data for the 
benefit of the production process. Figure 1 shows an architectural overview of the data acquisition system and 
the IoT interface diagram of the corrugated cardboard factory where this research study is applied practically.

Data aggregation.  All of sensors are connected to an electronic interface card (velamen interface card 
type: k8055) that is connected to the internal network of the factory and then to the cloud through the Internet 
gateway using Message Queuing Telemetry Transport (MQTT) protocol to connect to the IoT such as shown in 
Fig. 1. For more about IoT Interface and Communication, see11.

Figure 1.   Data acquisition system (DAQ) architectural overview on the left side and the overall corrugated 
cardboard factory on the right side.
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Implementation of the proposed system
To assess the effectiveness of the proposed system, we implemented it on a corrugated board factory in Egypt 
as a case of study. The following subsections present the implementation of the proposed system to apply our 
proposed approach in a real case of study.

Machine data acquisition and operation monitoring.  Monitoring of faulty operation in the hydrau-
lic systems of the machine maintenance in corrugating and gluing paper layers machine is depending on the 
operation orders. The monitoring of a human operation is depending on the recommended operation order 
requirements2. Data of this form are recorded for each running order as shown in Fig. 2.

Determination of machine sensors status.  Appropriate exploration method, an active scan method, is 
applied to identify which parts and components of the machine need to have more sensors to provide the system 
with sufficient data. To achieve this target, we rely on applying the information Failure Modes and Effect Analysis 
(FMEA), Fig. 3, based on continuous measurements recorded of the sensors data acquisition system. We can 
plan and apply a Proactive Risk Analysis (PRA) model to sets values from 1 to 10 for each of the factors Sever-
ity, Occurrence, and Detection, for each component in the machine to get the Rick Priority Number (RPN) that 
represents the extent of the hazard and its location in the machine. The Benefit of the RPN values is to know the 
hazard components in the machine that require to get more sensors by which that makes the detection process 
easier. Contineously, the system collects the faults data and compare them to the value of the RPN within the 
previous values and it monitors the difference.

IoT protocols compared: MQTT vs. OPC‑UA.  In IoT world, the challenges of system networking are 
more clear than ever. The introduction of digital technologies is becoming increasingly relevant. IoT applications 
range from Big-Data approach to full digital Industrial IoT solutions. These applications need not only a new 
technology in terms of IoT networks, but also innovative methods to integrate existing machines and AI based 
IoT workflows. In the arena of industrial communication protocols, two standards dominate this context: The 
first is the OPC-UA andthe second is the MQTT, which are compared in this article.

Figure 2.   Implementation of the proposed system.

Figure 3.   The FMEA of the corrugator and glue machine.
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Functionality differences.  MQTT architecture.  The MQTT message protocol relies on the concept of the pub-
lish-subscribe pattern. Important for the publish-subscribe model of MQTT is a broker, which is the key point 
of communication. Clients can be interfaced to the message broker and handle data with each other through 
topics, which are sent with messages. If a message is published on a certain topic, then this is transferred to all 
participants with subscription of this topic.

OPC‑UA architecture.  The server/client design is the classical communication protocol in OPC-UA. It relies 
on the idea that there is a passive server component that delivers data for all client applications in the system. 
These applications may access data from the server through several standard services.

Typical standard applications.  Application cases of MQTT.  IoT applications are the primary utility case for 
MQTT. When data are needed from remote stations and sent over an unreliable internet, MQTT should be the 
first choice. MQTT can guarantee secure and complete data exchange through built-in properties. Another typi-
cal use case of the messaging protocol is the IoT gateways that integrate sensor data, pre-process it, and send it 
to the cloud for data analysis via MQTT.

Application cases of OPC‑UA.  The main case of the OPC-UA communication protocol is the closed-loop 
system control in the local area network (LAN). When machines on a factory floor require to communicate in 
real time, the standard presents its strengths. The standard is especially suitable for the integrated services and 
extensions of SCADA systems.

Methodology
In the methodology we assess the failure impact and apply Fuzzy MULTIMOORA method.

Preventing failures by the assessment of impacts.  We use FMEA which is a methodology that aimes 
to prevent failures relying on the perfect assessment of impacts, and then determines the priority of possible 
actions for reducing the occurrence of failures. Applying of FMEA is achieved to the maintenance system where 
the analysis of FMEA distinguishes the possible failure modes, evaluates the cause and effects of dissimilar fail-
ure modes, and predict of high-risk failures19. Conventional FMEA makes use of a Risk Priority Number (RPN) 
to calculate failure elements O, SandD, where O is the probability occurrence of the failure, S is the severity of 
the failure, and D is the ability of detection for each failure. Each of risk elements have mathematical scale from 1 
to 10. The risk priority is directly proportional to the RPN of the failure mode. Figure 4 shows traditional FMEA 
method flowchart.

Fuzzy MULTIMOORA method.  FMEA is a methodology uses the potential failure modes to prevent 
machine failures depending on the evaluation of impacts, probability of occurrence, and how difficult is it to 
detect. After that, FMEA determines the priority of possible actions to eliminate the occurrence of this fail-
ures. FMEA helps to study the influence of machine parts failures on system performance, safety, and machine 
functions success. The multi-objective optimization by ratio analysis (MULTIMOORA) method is a recently 
introduced based on the multi-criteria decision-making (MCDM) methods34,35. These are considered the best 
way to analyze the potential failure modes, their causes, and arrange them depending on the priority and the 

Figure 4.   The traditional FMEA procedure.
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effects of failure on the machine. This mainly aims to assess the risk associated with the identified failure modes 
and prioritize them. The main target of this is to increase the ability of the system to predict the failure in any 
machine part to support expansion of the scope of its industrial applications. MOORA is the main idea of MUL-
TIMOORA method. MCDM technique makes use of a new model where fuzzy set concept and MULTIMOORA 
method are implemented for the evaluation of failure modes and rating in FMEA36,37. The risk factors and their 
relative weights are treated as fuzzy variables and evaluated by using fuzzy linguistic terms using different teams 
and fuzzy ratings38. MULTIMOORA method is used mainly to compare and to determine the real risk ranking 
of the failure modes that have been identified and calculate the effect of its weights. We study the trapezoidal 
fuzzy numbers which will be utilized in the FMEA model proposed in this article. Figure 5 shows the flowchart 
diagram of rank identify failure modes using MULTIMOORA method in FMEA process39.

Applied case of study.  A case of study of corrugated cardboard machine is provided to illustrate the prac-
ticality and usefulness of the proposed Fuzzy FMEA approach. The main purpose of that is to arrange all failures 
and determine the extent of the risk exposure by which we carry out the appropriate maintenance procedure38–40. 
Ensuring the non-stop production requires a solid maintenance plan. Our machine consists of three major sys-
tems hydraulic, steam, and gluing where it is intended to conduct an FMEA project to minimize the potential 
for failure occurrence. Through the data collection and the sensors readings, 11 potential failure modes were 
explored and listed, presented in Fig. 3, the FMEA of the corrugator & glue machine. These failure modes have 
risk factors (S, O, andD), to calculate RPN for each failure mode which are presented in Table 1.

Ethics approval.  Helwan University and EAEA Research had approved the publishing of this article.

Failure mode analysis methodology
FMEA team member MTk(k = 1, 2, . . . , l) is responsible for the assessment of m.

Step 1 The objectives of the failure risk assessment are defined and the scope of the FMEA is accurately 
described. Defining the main machine function and its sub-parts and defining the systems and components that 
we want to analyze for failure. This step controls the results failure modes FMi(i = 1, 2, . . .m) with respect to n 
risk factors (RFJ ()j = 1, 2, n) . Each (MTk) is given a weight (�k > 0(k = 1, 2, . . . , l)) satisfying (

∑l
k=1 �k = 1) , 

Let (R̃k = (̃rkij)m∗n) Fuzzy assessment matrix of the kth team member, where ( r̃kij = (rkij1), ( r
k
ij2, r

k
ij3, r

k
ij4)) is the 

fuzzy rating. Let (w̃k
j ) = (wk

j1,w
k
j2,w

k
j3,w

k
j4) is the fuzzy weight of the risk factor (RFJ ) is given by (MTk) . Based 

on the above we can procedure the risk ranking of the failure modes as the following steps.
Step 2 To execute the MULTIMOORA method, team 1 and team 2 members (TM1, TM2) have weights (0.55 

and 0.45) respectively for the same failure modes FM1 to FM11 RPN calculation. The two teams’ members can 
rate the failure modes and risk factors in linguistic terms as well. The linguistic ratings given by the two team 
members are (TM1, TM2).

Step 3 Define risk factors and select suitable linguistic variables set of risk elements and their calculation 
metrics which are established to evaluate the hazard of failure modes. FMEA teams members use the linguistic 

Figure 5.   The traditional ranking identifies failure modes procedure.
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terms to evaluate the importance of risk factors and the rate failure modes. Then, transformed into fuzzy numbers 
with the correspondence of their fuzzy equivalents.

Step 4 Assemble the teams’ members linguistic assessment of the fuzzy collected ratings which belong to 
failure modes of each risk factor. Then, risk factors can be calculated to set the fuzzy group matrix. The data 
aggregation for risk factors and weighs then can be deducted.

Aggregated fuzzy weight for each risk factor w̃j is calculated as

Step 5 The Normalized fuzzy assessment matrix uses the fuzzy ratio system to clear the normalization of the 
fuzzy numbers according to appropriate values of fuzzy numbers. The aggregated fuzzy values are calculated by 
Eqs. (4) and (5) are used to calculate r̂  . The normalized fuzzy assessment matrix is then presented.

The ratio (ỹi) for each failure mode can be calculated by the following Eq. (5):

where g = 1, 2 . . . n stands for number of factors to be minimized. Failure modes with higher defuzzified values 
(yi ) are attributed to higher ranks.

Step 6 The fuzzy maximal objective reference point (MORP) vector:
(̃r∗ = (x̃∗1 , x̃

∗
2 , x̃

∗
3 , x̃

∗
4 )) is obtained according to the matrix (X̃ = [x̃ij]m∗n).

The distance of each failure mode from the fuzzy MORP can be calculated the appropriate ranking. The 
ranking orders of all failure modes are defined according to the eccentricity from the reference point, Eq. (6).

Step 7 The fuzzy full multiplicative of the overall utility, the ith failure mode, can be expressed as dimension-
less fuzzy number by Eq. (7).

where (Ãi =
∏g

j=1 x̃ij ) The product of factors of the ith failure mode to be minimized and (B̃i =
∏n

j=g+1 x̃ij) is 
the product of factors of the ith failure mode, to be maximized. Then utility (Ũ) is transformed into crisp values 
(U) , the higher (Ui) is the higher the rank of certain failure mode. The fuzzy full multiplicative higher ranks 
are then presented and the ranking of failure modes lists, derived from the three previous steps, are calculated.

(1)(R̃ =(̃r)m×n),
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(
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(6)(di=max d (x̃
∗
j , x̃ij)).

(7)(Ũ = Ãi ⊘ B̃i),

Table 1.   FMEA (risk priority number) RPN ratings.

FM Failure mode Severity(S) Occurrence(O) Detection(D) RNP Ranking

FM1 Hydraulic pump failure 9 2 1 18 11

FM2 Solenoid valve failure 8 3 4 96 8

FM3 Hydraulic piston failure 7 4 6 168 4

FM4 Cylinder bearing damage 9 1 8 72 9

FM5 Corrugator cylinder deformation 9 5 3 135 5

FM6 Main motor overload 8 7 2 112 6

FM7 Steam trap failure 6 6 5 180 3

FM8 Steam proportional valve failure 7 4 7 194 2

FM9 Glue roller motor overload 8 3 2 48 10

FM10 Glue pump failure 9 7 4 252 1

FM11 Asynchronies speed 7 2 7 98 7
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Correlation analysis
Correlation analysis is one of the most important outputs of this research which is applied to analyze data and 
identify correlation and regression analysis of the variables. In this case of study, the effect of faulty operation with 
the failure modes (shown in Fig. 3) in this section, the traits, and correlation analysis were explored. We examined 
the relationships between the variables represented in the sensor data and the impact of the faulty operation 
factor to clarify their effect to the possibility of machine failure on the performance of the production process.

r represents the correlation coefficient. The formula for r is as in Eq. 8.

The equation of a regression line for an independent variable x and a dependent variable y is 

where ŷ  is the predicted y-value for a given x-value. The slope (regression parameter) m and y-intercept b are 
given by Eq. (9).

x represents the faults in machine parts or faulty operation and its effect, y represents the failure dependent 
on these faults.

Logistic regression.  To predict whether faults will lead to failure (standardization DV, failure = 1, no failure 
= 0). The logistic regression curve relates the independent variable, X (shown in Fig. 2), to the mean of the DV, 
P((ŷ)) which is given in the Eq. (10):

where P is the probability (the mean of Y) of a 1, e = 2.7182818 , and a is a regression parameter represents 
amount of increment on the variable y when x which increases by single unit, value of b yields P when X is zero. 
Odds ratio for occurs failure constituents categories. We are going to study a dependent variable that is binary a 
categorical variable that has two values such as “occurs” and “not occurs” rather than continuous. At binominal 
logistic regression by knowing the reference of machine parameters and we can predict whether that fault will be 
cause of failure or not. We can talk about the probability and about the odds of being failure or not. For example, 
let’s probability of failure occurs is 0.80. Then the odds of being failure would be given from the Eq. (11).

Clearly, the probability is not the same as the odds, the odds of failure should be the opposite of the odds 
of non-failure. In our example, the odds of non-failure would be 0.2/0.8 or 2/8 or 0.2. We can calculate the 
natural logarithm, ln where the natural log of 8/2 is 2.217 (ln(0.8/0.2) = 2.217) . The natural logof2/8 is − 2.217 
(ln(.02/0.8) = − 2.217) , so the log odds of failure is opposite to the log odds of non-failure. The natural log = 0 
when X = 1 , When X > 1 , the log curves up. When X < 1, the natural log is less than zero, and decreases rapidly 
as X approaches zero. When P = 0.50 , the odds are 0.50/0.50 or 1, and ln(1) = 0 . If P > 0.50, ln(P/(1− P) is 
positive; if P< 0.50, ln(odds) is negative. ln logistic regression, the dependent variable is the natural log of the 
odds, see Eq. (12),

The odds are the ratio chance of occurrence of failure.

Platform and data analysis.  It is important to place the sensors in the places that accurately represent the 
state of the art. As an application of the above, we designed a program using Visual Basic language that collects 
all available data in real time from all sensors of the factory. The data acquisition system includes the entered 
monitoring data, checklist data, operation parameters, and sensors data. These data are processed inside the fac-
tory local network. This data analysis can be useful in the maintenance program for the machine to minimize 
halting time for maintenance and reduce the malfunctions during operation. The data can be classified into three 
categories

•	 Status data which represent the normal operation readings.
•	 Caution data the data which approach the threshold limits need preventive action.
•	 Warning data the out of limits data which need immediate action to avoid damage.

(8)


r =

n
�

xy − (
�

x)(
�

y)�
n
�

x2 − (
�

x)2
�

n
�

y2 − (
�

y)2


.
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The data recorded via server to be able to build up history for each machine then, this information is sent to the 
cloud for use in industrial IoT applications that can be used to predict possible failure modes. Figure 6 shows the 
proposed model of the machine data analysis program.The pseudo code of the software is shown in algorithm (1).

Deep learning based fault diagnosis (DLFD).  This section introduces more details on DLFD in a cer-
tain node, it is the cooling pump. System Cooling Pump (SCP). SCP is considered one of the most important 
parts of the production line (1 of 17 critical points). This critical point has 12 alarming input signals (a1, a2, a3, 
...., a12) and the possibility of output faults are 9 faults (f1, f2, f3, .... f9). The definition of the faults and their 
corresponding alarms are shown in Fig. 7. Deep Learning pattern recognition tool in Python is used to design 
this ANN. It consists of 12 input nodes, 10 hidden nodes, and 9 output nodes. Different designs with different 
number of hidden nodes have been proposed but give great errors that ensured that using 10 hidden nodes give 
more accurate design with small, accepted error. As the error back propagation training algorithm (EBPTA) is 
running, weights of the DLFD are changing till the allowed RMS error reaches its recommended learning value, 
and thus learning stops. DLFD training has been achieved using 41 known alarm patterns, see Fig. 8. Then by 
using these weights of the DLFD, the diagnosis of any fault caused by any other alarm patterns can be achieved. 
For more Details, see41.

This proposed technique can be used in the global fault diagnosis system in all critical points in the produc-
tion lines. According to every Training pattern the hidden layer nodes have their own outputs which are used 
as inputs of the output layer nodes. As the learning process is continuing the Root Mean Square (RMS) error 
decreases tell the allowed error is achieved, then the training stops, see algorithm 2. After network training every 
pattern of data have their own error value which is called pattern error. For More Information , please, read41–44.

Figure 6.   Corrugator and gluing machine platform and data analysis.
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Figure 7.   Alarming and fault definitions.

Figure 8.   DLFD alarming (12 inputs) Faults (9 outputs) training patterns.
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Conclusions
The proposed maintenance analysis model is a superior analysis method since it can correlate maintenance 
reports of machine failures with data sent from sensors. Moreover, it can analyze the severity and evaluate the 
risk when data are very often imprecise and fuzzy. The traditional model of failures evaluation indicates failures 
FM10, FM8 and FM7 which have the highest priority and needing early corrective actions more than the rest 
of the failures. The proposed fuzzy FMEA model using MULTIMOORA method easily quantifies these types 
of data. This method includes an effective method to weight the risk factors and to rank the failure modes as a 
result, failures FM4, FM10, and FM6 become the highest risk priority. The results of comparison analysis show 
that a more accurate ranking can be determined for the machine failures by application of fuzzy set theory and 
MULTIMOORA method to FMEA. That prevents the machine parts to fail by which we can identify the main 
and sub-causes for the failure and we can determine the risk priority of failures. On the other hand the DLFD 
could translate the the different alarming patterns into clear faults by which it guides the control room engineers 
to find the faults.

Data availability
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