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Sulphate‑reducing 
bacteria‑mediated pyrite formation 
in the Dachang Tongkeng tin 
polymetallic deposit, Guangxi, 
China
Fuju Jia 1, Xiangtong Lei 2*, Yongfeng Yan 1, Yaru Su 3, Hongjun Zhou 3, Honglian Wei 4, 
Yuan Yuan 3, Chao Zou 1, Xianwen Shi 1 & Ceting Yang 1

Mediation by sulphate‑reducing bacteria (SRB) is responsible for pyrite  (FeS2) formation. The origin 
of the Dachang tin polymetallic ore field is related to the mineralisation of submarine hydrothermal 
vent sediments. Here, we investigated SRB in these ores via morphological, chemical, and isotopic 
analyses. Polarised and scanning electron microscopy indicated that trace SRB fossils in the metal 
sulphide ore were present in the form of tubular, beaded, and coccoidal bodies comprising  FeS2 
and were enclosed within a pyrrhotite (FeS) matrix in the vicinity of micro‑hydrothermal vents. The 
carbon (C), nitrogen (N), and oxygen (O) contents in the  FeS2 synthesised by SRB were high, and a 
clear biological Raman signal was detected. No such signals were discerned in the peripheral FeS. This 
co‑occurrence of FeS,  FeS2, and the remains of bacteria (probably chemoautotrophic bacteria) was 
interpreted as the coprecipitation process of SRB‑mediated  FeS2 formation, which has, to the best of 
our knowledge, not been reported before. Our study also illustrates that combined energy‑dispersive 
X‑ray spectroscopy, Raman spectroscopy, and isotopic analysis can be used as a novel methodology 
to document microbial‑mediated processes of mineral deposition in submarine hydrothermal vent 
ecology on geological time scales.

Submarine hydrothermal vents are characterised by original materials and environmental conditions hypoth-
esised to be required for abiogenesis and are considered a potential location for the origin of life on  Earth1–3. 
Modern submarine hydrothermal vents often exhibit vibrant biological  assemblies4–6. Microbes (e.g., chemoauto-
trophic bacteria) can acquire the materials and energy needed for biotic activities from hydrothermal vent fluids; 
other organisms (e.g., tubular worms, bivalves, and arthropods) directly feed on, or co-exist with, microbes, and 
together constitute submarine hydrothermal vent  ecosystems5. Submarine hydrothermal vent systems, in addition 
to their lush animal  communities6, are also sites for the enrichment of polymetallic sulphide  deposits7,8. Because 
submarine vents are often connected to the deep part of the ocean crust through faults, hot water circulation 
constantly extracts metal substances from the crust, and metal ions migrate with the hydrothermal fluid to the 
seabed where they are precipitated. Magnetite, pyrite  (FeS2), chalcopyrite, galena, sphalerite, and other minerals 
are commonly found in the deposits of submarine hydrothermal  vents9,10.

FeS2 has stable chemical properties in reduced sediments and represents the most abundant sulphide in 
submarine hydrothermal vent  systems11,12. Although the mechanism of sedimentary  FeS2 formation is still a 
matter of debate, experiments have demonstrated that microorganisms in sediments play a crucial role in the 
process of sedimentary  FeS2  formation13. To clarify the mechanism of  FeS2 synthesis by microbes, numerous 
scientific experiments have attempted to simulate in-vivo conditions in a laboratory environment to microbially 
synthesise  FeS2. In previous experiments on biomineralisation by sulphate  (SO4

2−)-reducing bacteria (SRB), the 
final product yielded only mackinawite and greigite, not  FeS2, even with the addition of aqueous iron (Fe) or Fe 
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 minerals14–20. A breakthrough was not achieved until recent experiments succeeded in forming  FeS2 spheroids 
in FeS-containing biofilms produced by SRB in the presence of organic  compounds21–24. Accordingly,  FeS2 is 
widely suspected to contain traces of biological  activity21; however, only a few examples of the preservation of 
 microfossils25–30 have been noted, with no documents on the SRB-mediated formation of  FeS2.

The origin of the Dachang tin polymetallic ore field in Guangxi is considered to be related to the minerali-
sation of submarine vent sediments in the late  Devonian31–33. In addition, recent research has shown that the 
ore-bearing rocks are reef limestones rich in fossils and other organic  components33. This tentatively indicates 
the presence of microbial traces in the Dachang tin polymetallic sulphide ore. In this study, suspected traces of 
SRB in polymetallic sulphide samples and compositional data were analysed using a polarising microscope and 
scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM‒EDX). We also used Raman 
spectroscopy to detect biological spectral signals and analyse the stable isotope compositions of Fe, S, C, and O in 
SRB-related minerals. We thus infer the living environment of SRB and the potential processes of SRB-mediated 
 FeS2 formation in Devonian submarine hydrothermal vents systems.

Geological setting
The Dachang tin polymetallic field is a world-renowned non-ferrous metal production area, with large proven 
resources of tin (Sn; 1.47 million tonnes), Zn (6.80 million tonnes), Pb (1.76 million tonnes), Sb (1.38 million 
tonnes), and Cu (0.37 million tonnes), as well as associated economically viable and rare elements such as indium 
(In), cadmium (Cd), and gallium (Ga)9,10. The ore-bearing strata of the deposit are Devonian limestone, reefal 
limestone, siliceous rock, and shale; exposed Late Cretaceous granite porphyry and diorite porphyrite veins 
exist in the mining area as well. It has been suggested that the deposit is of hydrothermal or composite origin, 
derived from Late Cretaceous  granite34–36; however, other researchers reported that the formation of the deposit 
was related to the mineralisation of submarine vent  sediments31–33.

Regional geology. The Youjiang Basin, located on the southwest edge of the Yangtze Craton in southwest 
China, was formed by composite parts of several tectonic units, including the Yangtze, North Vietnam, and 
Simao blocks. The Dachang Sn polymetallic ore field in Guangxi is located in the far northeast of the Youjiang 
Basin (Fig. 1a). The Youjiang Basin evolved in two stages: the Hercynian (Devonian‒Permian) saw a passive 
continental margin rift stage, and the Indosinian (Early‒Middle Triassic) saw a back-arc rift basin stage. In 
the Devonian, a NW‒SE faulted sub-basin was formed inside the Youjiang Basin, in which the southwest mar-
gin of the Yangtze Craton underwent extensional  faulting37. In the early Middle Devonian (Nabiao Formation 
period), reefs developed in the Dachang area with local underwater uplifts. Synsedimentary faults developed in 
the Dachang area from the Late Devonian Liujiang to Wuzhishan periods, and siliceous rocks and banded lime-
stone were widely  deposited31. Some studies have shown that there were two stages of submarine hydrothermal 
vent sedimentation and mineralisation in the Late Devonian Dachang Sn polymetallic ore field. In the first stage, 
the Yanjiang Formation strata (D3l; Fig. 1b), dominated by banded siliceous rocks, were formed, and the No. 
92 cassiterite-sulphide type orebody was produced. In the second stage, the Wuzhishan Formation strata (D3w; 
Fig. 1b), primarily composed of banded marble and siliceous rocks, was formed, and the No. 91 cassiterite-
sulphide type orebody was  produced31,38,39.

Ore deposit geology. The ore-bearing strata are dominated by sandstone, shale, and carbonate rocks, with 
local carbonaceous mudstone and siliceous rocks. The ore field is primarily composed of five Sn polymetal-
lic deposits, namely Tongkeng (Sn‒Zn‒Pb), Gaofeng (Sn‒Zn‒Pb), Dafulou (Sn‒Zn), Kangma (Sn‒Zn), and 
Huile (Sn‒Zn). It is a non-ferrous metal ore field with one of the largest Sn polymetallic reserves in the  world9. 
The Tongkeng Sn polymetallic deposit is located in the western part of the Dachang ore field and has the largest 
non-ferrous metal reserves in this field. The central part of the Tongkeng deposit is interspersed with granitic 
porphyry dikes (eastern dikes). Zircon U‒Pb dating of the eastern dikes gives an age of 91 ± 1 Ma (i.e., Late 
 Cretaceous40). The No. 92, No. 91, veinlet zone, and large vein zone orebodies are located to the west of the east-
ern dikes, whereas the No. 96, No. 95, and No. 94 orebodies are located to the east of the eastern dikes (Fig. 1b).

The No. 92 orebody is characterised by laminar-banded, network-vein, nodular, and a small amount of 
interlayer vein mineralisation. The main ore minerals are sphalerite and  FeS2; secondary ore minerals are cas-
siterite, arsenopyrite, and FeS; gangue minerals are primarily quartz, followed by calcite  (CaCO3), tourmaline, 
and plagioclase.

The No. 91 orebody is primarily composed of laminar-banded and NE-trending jointed vein-like mineralisa-
tion. The main ore minerals are cassiterite, marmatite, arsenopyrite, and FeS, followed by  FeS2. The main gangue 
minerals are quartz and tourmaline, followed by  CaCO3 and potassium feldspar.

The orebody of the veinlet zone primarily consists of veinlet mineralisation with local laminar-banded min-
eralisation. The main ore minerals are marmatite,  FeS2, and jamesonite, followed by cassiterite, arsenopyrite, 
FeS, and franckeite. The main gangue minerals are  CaCO3, quartz, and tourmaline.

The orebody in the large vein zone is mineralised primarily by joint veins. The main ore minerals are marma-
tite,  FeS2, jamesonite, and franckeite, followed by cassiterite and arsenopyrite.

Results
Mineralogical and geochemical signatures of hydrothermal vent sediments. Polarised micros-
copy and scanning electron microscopy of well-polished surfaces of the hydrothermal vent sediments showed 
that  FeS2 formed tubular (Fig. 2a‒d,f‒g), beaded (Figs. 2h and 3a‒b), and coccoidal structures (Figs. 2e and 
3c). Hydrothermal vent sediments also exhibited multi-stage mineralisation, in which the  FeS2-containing fila-
ments and tubes were metasomatised by minerals, including arsenopyrite, sphalerite, and cassiterite, to form 
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remnants (Fig. 2c‒d). This multi-stage mineralisation indicates that FeS was formed in the earliest metallogenic 
process and that the formation environment of  FeS2 was related to the Late Devonian mineralisation of subma-
rine hydrothermal vent sediments. Numerous pores were filled with carbonate minerals in both samples (Fig. 2a 
and c), which may have constituted micro-hydrothermal vents. A similar phenomenon, known as the ‘ghosts’ 
of bacterial cells, has been observed in other submarine hydrothermal vent sediments as well as in modern vent 
settings and is believed to have resulted from bacterial iron accumulation on vestimentiferan  tubes41–43.

Microscopic backscatter imaging and elemental analysis (Fig. 3) were performed in areas typical for the pres-
ence of SRB. An evident contrast was present in the mineral contents of FeS,  FeS2, and non-metallic minerals in 
the backscattered electron images (Fig. 3b and c). In the EDX elemental images, areas of FeS showed high Fe and 
low S values, whereas those of  FeS2 showed low Fe and high S values (Fig. 3d and e). C, N, and O were less present 
in FeS areas, all of which instead showed high values in areas of  FeS2 and non-metallic minerals (Fig. 3f‒h).

Figure 1.  Geotectonic location and ore deposit profile. (a) Geotectonic location of the Dachang Sn polymetallic 
ore field in Guangxi (Modified from ref.40). (b) Geological profile of the Tongkeng Sn polymetallic deposit 
(Modified from ref.41). This map was created using Adobe Illustrator 2020.
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Figure 2.  Microtextural characteristics of pyrite  (FeS2) and related mineralogy. Tubular, beaded, and spherical 
SRB traces composed of  FeS2 were distributed within pyrrhotite (FeS). (a) Micro-hydrothermal vents, 
filamentous bodies, and FeS. (b) Tubular and spherical bodies, and FeS. The  FeS2-containing filamentous and 
tubular SRB in (c) and (d) were metasomatised with arsenopyrite, sphalerite, and cassiterite to form a residual 
structure. (e‒h) Backscattered electron (BSE) image of  FeS2 and related mineralogy. po = pyrrhotite (FeS); 
py = pyrite  (FeS2); apy = arsenopyrite; sp = sphalerite; cst = cassiterite. The white arrows in (a) and (c) indicate 
micro-hydrothermal vents.

Figure 3.  Plane polarised light photomicrograph, SEM‒EDX backscatter images, and EDX elemental maps of 
SRB traces. The analysed elements included S, Fe, C, N, and O. (a) Plane polarised light photomicrograph. (b) 
and (c) SEM‒EDX backscatter images. (d‒h) EDX elemental maps of Fe, S, C, N, and O, respectively.
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SRB occurrence and morphologies. As observed using microscopy,  FeS2 containing SRB was typically 
distributed within FeS, with miniature hydrothermal vents serving as the main channel for SRB dispersion.  FeS2 
exhibited various morphologies, including tubular (Fig. 2f and g), beaded (Fig. 2h), and coccoidal forms (Figs. 2 
and 4a). Among these, a substantial portion of tubular  FeS2 had relatively similar widths of approximately 25 μm 
(Fig. 2a‒e and g), whereas a small proportion of this type of  FeS2 had narrower widths of approximately 1 μm 
(Fig. 4f‒h). Tubular  FeS2 structures often connect multiple hydrothermal vents and occasionally display nodu-
lar structures at the edges (Fig. 2g and h). Some tubular  FeS2 formations symmetrically develop hemispherical 
structures on both sides, with radii ranging from 10 to 25 μm, creating a beaded overall morphology (Fig. 2h). 
Additionally, some  FeS2 existed as individual spherical particles, with diameters varying greatly from 20 to 50 μm 
(Fig. 2e). This variation in size may be attributed to spatial differences in the three-dimensional morphology of 
 FeS2. Coccoidal and beaded  FeS2 often exhibit distinctive layered structures at the edges (Fig. 4b).

In this study, a 70% nitric acid solution was used to etch the potential  FeS2 regions containing SRB to charac-
terise SRB microstructure. Etched interiors uncovered a substantial presence of spherical and filamentous resi-
dues, which were predominantly organic in nature due to the strong corrosive properties of concentrated nitric 
acid (Fig. 4c‒h). Moreover, in the backscattered electron images, these residues exhibited increased contrast in 
comparison to the  FeS2 particles, further substantiating their association with SRB (Fig. 4c‒h). The embedding 
of spherical SRB fossils (ranging in size from 250 to 450 nm) within the  FeS2 matrix indicates that these spheres 
were unadulterated by contaminants (Fig. 4d,e). Similar spherical microorganisms have also been found in 
modern hydrothermal vent environments from the eastern Manus Basin, where they have been observed at the 
layered periphery of  FeS2, which aligns with the locations in which SRB were found in the Roman Ruins black 
 smokers44. Additionally, filamentous SRB fossils exhibiting distinct branching patterns were preserved within a 
small number of tubular  FeS2 structures after acid etching (Fig. 4f). The diameter of individual filaments aver-
aged approximately 120 nm, and a pronounced curvature could be observed at the endpoints of the filamentous 
fossils, suggesting that they froze in a phase of outward growth (Fig. 4h). There were also instances in which 
multiple filamentous SRB fossils were preserved together (Fig. 4g).

Raman spectroscopy. Because of being non-destructive, rapid, and convenient, Raman spectroscopy has 
been extensively used to identify valuable biological remains in sedimentary and metamorphic  rocks45–49. The 
method has also been used as an effective tool for determining the microstructure of suspected biological speci-
mens, potential microfossils, or other substances from various geological periods, especially when assessing 
their carbonaceous  composition50–52.

In this study, Raman spectroscopy analyses were performed on FeS, spheroidal  FeS2 edges, tubular  FeS2 
walls, and the inner carbonate minerals of tubular  FeS2 (Fig. 5; Supplementary information). The locations of 

Figure 4.  Electron images of SRB microstructure. (a) and (b) No nitric acid  (HNO3)–etched  FeS2. (c–h) 70% 
 HNO3 etched  FeS2. (a) Micro-hydrothermal vents. (b) Layered structures at the edges of the  FeS2. (c)  HNO3-
etched layered structures of the  FeS2 edges. (d) and (e) Backscattered electron image of spheroidal SRB fossils. 
(f) and (h) Backscattered electron image of filamentous SRB.
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the analysis points are shown in Fig. 3b and c. The laser Raman spectral characteristics of the different types of 
minerals clearly differed. Peaks of FeS and  FeS2 primarily occurred in the range of 100–700  cm−1 (Fig. 5a and b), 
whereas for  FeS2, several peaks were also observed in the range of 1000–1700  cm−1, including the D1 and G peaks 
of carbonaceous material located near 1300  cm−1 and 1590  cm−1, respectively (Fig. 5c‒g). Among these, the D1 
peak is attributed to the presence of incorporated aromatic or benzene clusters, and the G peak is composed of 
the E2g2 mode of graphite or  sp2 C=C stretching  vibrations53. No discernible D2 peak was observed in the carbon 
materials associated with SRB, indicating a limited degree of  graphitisation54. The absence of a D2 peak is directly 
influenced by the maximum environmental temperature experienced by the carbon  material51. Intriguingly, the 
positions and morphologies of the D and G peaks in the Raman spectra of the carbon materials investigated in 
this study closely resembled the Raman signals documented in previous studies on  kerogen55,56. In the case of 
these kerogens with relatively low maturity, the D2 peak was frequently insignificant or could not distinctively 
be separated from the G peak (Fig. 5d and e). This similarity supports the organic origin of the carbon signal 
detected in the  FeS2 region using EDX analysis. These findings thus further corroborate the identification of the 
previously observed microstructures as bacterial  microfossils57.

Figure 5.  Representative results from Raman spectroscopy analyses on major minerals and putative microbial 
features. (a and b) Pyrrhotite. (c‒g) Pyrite. Measurement point locations are shown in Fig. 3b and c.
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Stable isotope composition. Our stable isotope analyses showed that the δ56Fe values of the six Fe-sul-
phide samples were dominated by weak positive excursions (Table 1). The mean δ56Fe value of FeS was 0.10‰, 
and that of  FeS2 was 0.55‰. The δ56Fe values of  FeS2 isolated from each sample were higher than those of the 
corresponding FeS. In addition, the δ13C-PDB of organic C in the ore showed a strong negative anomaly, with a 
mean value of − 34.82‰, and the δ13C-PDB of  CaCO3 exhibited a weak negative excursion, with a mean value 
of − 0.40‰ (Table 1).

Discussion
Role of SRB in isotopic fractionation. The reaction between  H2S generated by the activity of SRB and 
early-stage FeS to form  FeS2 is a matter of  debate13. Views on whether S is gained (Fe‒S bond is not broken) or 
Fe is lost (Fe‒S bond is broken) in the reaction process have been  conflicting58,59. However, more recent stud-
ies reported that the process involves both loss of Fe and gain of  S60–62. Our Fe-isotope analyses show that the 
δ56Fe values of  FeS2 isolated from each sample were higher than those of the corresponding FeS (0.45‰ higher 
on average). We therefore speculate that some 54Fe isotopes were lost during the SRB-mediated conversion of 
FeS to  FeS2, resulting in an increase in the proportion of 56Fe in the synthesised  FeS2 compared with that of the 
original FeS.

The S-isotope composition of FeS and  FeS2 is related to the environmental S-isotope composition. The supply 
of  H2S in hydrothermal vents derives from both inorganic and organic  processes63–65. Thermochemical sulphate 
reduction (TSR) occurs at high temperatures before the  SO4

2−-containing hydrothermal fluid is ejected from the 
seabed, resulting in S-isotope  fractionation66,67. The generated  H2S gas is enriched in light S isotopes, whereas 
the ejected hydrothermal  SO4

2−-rich solution is enriched in heavy S isotopes. Bacterial sulphate reduction (BSR) 
also causes S-isotope fractionation; the S-isotope composition of the resulting  H2S gas depends on the S-isotope 
composition of  SO4

2− in the environment and the extent of selective light S-isotope enrichment during cell-
specific sulphate  reduction68,69.

The S-isotope analysis showed that the δ34S values of FeS and  FeS2 ranged from − 4.91 to − 4.17‰, with a mean 
of − 4.58‰ and a standard deviation of 0.28‰ (Table 1). We infer these abnormal negative 34S values to be related 
to TSR and BSR. The δ34S values of  FeS2 isolated from the samples were higher than those of the corresponding 
FeS, which is probably related to the utilisation of  SO4

2− with a high 34S content in SRB-mediated  FeS2 synthesis. 
Researchers have analysed the S-isotope composition of barite  (BaSO4) and various metal sulphides in other 
submarine hydrothermal vent  systems70, showing that  BaSO4 has the heaviest S-isotope composition.  BaSO4 is 
precipitated by the combination of  Ba2+ and  SO4

2− in hydrothermal vents, and its S-isotope composition is similar 
to that of  SO4

2− in the vent environment, indicating that  SO4
2− has a relatively heavy S-isotope composition in 

vent systems. In addition, the strong negative anomaly of δ13C-PDB reflected the selective absorption of light C 
isotopes by SRB.

Precipitation of metallic minerals in hydrothermal vents. Submarine hydrothermal vent fluids are 
often rich in  Fe2+,  Pb2+,  Zn2+, and other metal  cations2,71. With drastic changes in the external physical and chem-
ical environment, metal cations in hydrothermal fluids can easily combine with S, resulting in metal sulphide 
precipitation and  accumulation2. Hydrogen sulphide  (H2S) is an important factor that induces Fe ion precipita-
tion; Fe ions can react with  H2S to form FeS, as shown in Eq. (1)13:

H2S can be formed in submarine hydrothermal vents by both inorganic and organic processes.  SO4
2− pyroly-

sis in vent hydrothermal fluids can release  H2S, which exhausts the  vents63,64. The organic production of  H2S in 
submarine hydrothermal vents is related to SRB, the primary producers of the vent ecosystem, which are both 
chemoautotrophic and organo-heterotrophic.  H2 or organic matter can be used as an electron donor and  SO4

2− as 

(1)Fe
2+

+ H2S = FeS + 2H
+

Table 1.  Fe‒S‒C‒O stable isotope composition.

Sample Composition

δ56Fe (‰) δ34S (‰) δ13C-PDB δ18O-PDB

Pyrrhotite Pyrite Pyrrhotite Pyrite (‰) (‰)

TK-53-1 Fe-sulphides 0.03 0.11  − 4.49  − 4.17

TK-53-2 Fe-sulphides  − 0.43 0.77  − 4.80  − 4.30

TK-53-3 Fe-sulphides 0.71 0.78  − 4.91  − 4.82

Mean 0.10 0.55  − 4.73  − 4.43

TK-53-organic 1 Organic carbon  − 35.67

TK-53-organic 2 Organic carbon  − 33.63

TK-53-organic 3 Organic carbon  − 35.15

Mean  − 34.82

TK-53-carbon 1 Calcite  − 0.11  − 15.73

TK-53-carbon 2 Calcite  − 0.60  − 16.72

TK-53-carbon 3 Calcite  − 0.50  − 18.92

Mean  − 0.40  − 17.12
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an electron acceptor to reduce  SO4
2− to  H2S and obtain energy in the reaction process. These reactions are given 

in Eqs. (2) and (3),  respectively72:

H2S generated by organic and inorganic processes near hydrothermal vents rapidly combines with metal 
cations to form metal sulphides. Fe is first precipitated in the form of unstable mackinawite, greigite, or FeS; Zn 
and Pb form sphalerite  (ZnFeS2), galena  (PbS2), and other metal sulphides. The  HCO3

− generated by the reac-
tion in Eq. (3) easily combines with  Ca2+ and/or  Mg2+ ions in the ocean and is deposited in the form of  CaCO3 
or dolomite.

At present, two main  FeS2 formation pathways are known: polysulfide  (Sn
2−) Eq. (4) and  H2S Eq. (5)60,73:

Sn
2− and  H2S can be produced in marine environments by inorganic processes or by processes involving 

microbes. In the  Sn
2− pathway,  FeSaq is attacked by nucleophilic polysulphides to form  FeS2 (Eq. 4). In the  H2S 

pathway,  FeS2 is formed by electron transfer via the inner sphere complex between FeS and  H2S (Eq. 5)60,73. The 
 O2-deficient and sulphur-rich environment of the early Earth can satisfy both reactions, and the conversion of 
FeS to  FeS2 is considered to be the key energy transfer reaction for the emergence of  life74,75. SRB can efficiently 
synthesise  Sn

2− and  H2S and promote  FeS2 formation.
We infer that the precipitation of FeS is caused by  Fe2+ and  H2S reactions (a mixture of  H2S generated by 

inorganic and organic processes) in hydrothermal vents, whereas the formation of tubular and spherical  FeS2 
is related to the presence and metabolic activities of SRB in the two massive sulphide ores within the Tongken 
Sn polymetallic deposit.

SRB growth pattern. Microscopic observations show that SRB extended and expanded in peripheral FeS 
in the form of filaments, tubes, and spheroids (Fig. 2). As this is difficult to achieve in consolidated FeS, the most 
likely explanation is that precipitation of FeS and the activities of SRB took place concurrently. Specifically, as 
 Fe2+ and  H2S react to form FeS precipitates in hydrothermal vents, SRB migrate from the micro-hydrothermal 
vent to colonise the surrounding area and synthesise  FeS2. Subsequently, both FeS and  FeS2 precipitate with the 
co-occurrence of small amounts of SRB.

The EDX elemental maps revealed that the contents of C, N, and O in FeS were extremely low (Fig. 3f‒h). 
Furthermore, in FeS, no distinct peak was observed within the 1000–1700  cm−1 range, which is where organic 
matter peaks typically manifest in the laser Raman spectrum (Fig. 5a and b). Consequently, organic matter was 
nearly absent in FeS, suggesting minimal external organic matter input into the studied micro-hydrothermal 
vents. Therefore, the observed SRB may represent chemoautotrophic  bacteria76,77, which rely on  H2 supplied by 
the vent hydrothermal fluid as an electron donor and on  SO4

2− as an electron acceptor to synthesise adenosine 
5′-triphosphate in the cell to store energy needed for life, release  H2S, and synthesise  FeS2. Similar to the role of 
atmospheric  CO2 in photosynthesis,  CO2 derived from hydrothermal vent fluids can serve as the exclusive carbon 
source for cell synthesis during the growth of  SRB78. The necessary N for SRB may come from N-containing ions 
such as  NH4

+,  NO3
−, or  NO2

− in the vent hydrothermal fluids. These ions can be obtained via processes such as 
nitrification, dissimilatory  NO3

− oxidation, or  NO2
−  reduction79–81.

Based on the morphological data of SRB traces obtained using polarised light microscopy and SEM, combined 
with the EDX analysis, isotopic analysis, and Raman spectroscopy, we inferred the SRB-mediated  FeS2 formation 
process in FeS under the theoretic framework of hydrothermal vent mineralisation. Microbes preserved in  FeS2 
are chemoautotrophic SRB growing in hydrothermal vents on the seabed, and hydrothermal fluids provide the 
materials and energy needed for their growth. Such bacteria live near micro-hydrothermal vents and rely on  H2 
as an electron donor and  SO4

2− as an electron acceptor in the hydrothermal fluid to produce energy and  H2S. 
 H2S combines with unconsolidated FeS around SRB to form  FeS2. After ore consolidation, these tubular, beaded, 
and spherical  FeS2 structures are preserved within FeS, thus recording the morphological characteristics of SRB 
activity. SRB grow from micro-hydrothermal vents to their peripheries; tubular bodies may branch and thicken, 
sometimes spheroids may develop, and some spheroids may grow and proliferate directly from the micro-vents 
(Fig. 6). Tubular bodies are often interconnected between adjacent micro-vents (Fig. 2a–e).  FeS2 synthesised by 
SRB via sulphate reduction presents the above microbial trace characteristics enclosed within the FeS matrix. 
Although  H2S generated by microbial metabolic processes may promote the precipitation and mineralisation of 
galena, sphalerite, chalcopyrite, and other metal sulphides, no biomorphs of SRB have been found in these metal 
sulphides; this is worth further exploration in future studies.

Conclusions
The genesis of the Tongkeng Sn polymetallic deposit is related to the mineralisation of Devonian submarine 
hydrothermal vent sediments. We investigated ores that contained both morphological and chemical evidence of 
SRB. Tubular, beaded, and spherical  FeS2 structures were discovered in close proximity to micro-hydrothermal 
vents, displaying morphological characteristics typical of SRB flora. By analysing the elemental composition, 
employing Raman spectroscopy, and conducting isotopic analysis, we confirmed that the formation of  FeS2 is 
a result of the metabolic activities of SRB, which involves reduction of  SO4

2− and production of  H2S. We also 

(2)4H2 + 2H
+
+ SO4

2−
= H2S + 4H2O

(3)2CH2O + SO4
2−

= H2S + 2HCO3
−

(4)FeS + Sn
2−

= FeS2 + Sn−1
2−

(5)FeS + H2S = FeS2 + H2
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describe the presence of coccoidal and filamentous biomorphs, which we interpreted as fossil remains of SRB. 
The trace fossils of filamentous, tubular, and spherical  FeS2 enclosed within FeS, along with their elemental 
and isotopic composition, provide a foundation for understanding microbial activities in sulphur-rich anoxic 
environments. Moreover, our study also presents a novel observational method for studying submarine vent 
hydrothermal ecosystems and exploring the potential for life in extreme environments.

Materials and methods
Sample collection. We performed a systematic geological survey and sampling work in the Tongkeng Sn 
polymetallic deposit. A total of 70 massive sulphide ore samples were collected and transformed into polished 
thin sections for microscopic identification and chemical composition analysis. Using a polarising microscope, 
we found SRB trace fossils in two samples. These two samples were numbered TK-51 and TK-53 and were taken 
from the No. 92 ore body within the ore-bearing Liujiang Formation (D3L).

SEM–EDX. Our SEM‒EDX analysis was performed using an FEI Quanta 650 FEG scanning electron micro-
scope equipped with an EDAX EDX detector under low vacuum. Backscattered images were captured under the 
following microscope setup: 15‒20 kV accelerating voltage, 5.5 spot size, 10.2 mm working distance, and 100 Pa 
chamber pressure. Elemental maps were collected with a count rate exceeding 10,000 cps and a dead-time of 
approximately 15%.

Raman microspectroscopy. Micro-Raman spectra were collected using an inVia Qontor confocal Raman 
instrument (Renishaw Plc, UK). The laser beam was focused on the sample through a 50× objective lens with 
532 nm radiation provided by a solid-state laser. The laser power was set at 10 mW on the sample surface. Base-
line correction and spectral peak fitting of the Raman spectra of all specimens were performed using Origin 
Pro-2021 (Learning Edition) and PeakFit (v. 4.12).

Isotope ratio mass spectroscopy. Three sub-samples for stable isotope analysis were obtained from sam-
ple TK-53; phases analysed included FeS,  FeS2,  CaCO3, and organic C, and the elements analysed were Fe, S, C, 
and O. The three ore samples were crushed and sieved until the particle diameters were < 0.425 mm; FeS was 
first adsorbed with a magnet and then screened with a binocular microscope (20× magnification) to obtain FeS 
without impurities.  FeS2,  CaCO3, and non-metallic particles with high carbonaceous content were selected from 
non-magnetic mineral particles by screening using a binocular microscope.

The three groups of FeS and  FeS2 samples were powdered for Fe and S stable isotopic analysis. Fe stable 
isotope analysis of FeS and  FeS2 was performed by Guangzhou ALS Chemex (China). S stable isotope analyses 
were performed in the stable isotope analysis laboratory of the Kunming University of Science and Technology 
(China). S in FeS and  FeS2 was converted to  SO2 by a high-temperature combustion method using an elemental 
analyser (Vario isotope cube, Elementar, Germany), which was then transferred into a gas-phase isotope ratio 
mass spectrometer (Isoprime-100, Elementar) to analyse its S-isotope composition.

The C and O isotopic components of  CaCO3 were converted to  CO2 by the phosphoric acid method using 
Isoprime multiflow equipment in the stable isotope analysis laboratory of Kunming University of Science and 
Technology, which was then transferred into a gas-phase isotope ratio mass spectrometer (Isoprime-100) to 
analyse its C and O stable isotope composition.

Non-metallic particles with a high C content were soaked in dilute hydrochloric acid, washed, and dried twice 
to remove carbonate minerals. In the stable isotope analysis laboratory of the Kunming University of Science 
and Technology, the organic C present in ores was converted into  CO2 using a high-temperature combustion 
method, which was then transferred into a gas isotope ratio mass spectrometer (Isoprime-100) to analyse its C 
stable isotope composition.

Figure 6.  Sulphate-reducing bacteria growth modes. Sulphate-reducing bacteria (green dots) growing at a 
micro-hydrothermal vent (grey); chemoautotrophic SRB proliferate, branch, and expand around the micro-
hydrothermal vent in tubular and spherical shapes. Yellow represents pyrite  (FeS2), orange represents pyrrhotite 
(FeS), and blue represents seawater.
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