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Multi‑omics characteristics 
of tumor‑associated macrophages 
in the tumor microenvironment 
of gastric cancer and their 
exploration of immunotherapy 
potential
Feng Cao 1,2,3, Yanwei Liu 2,3, Yunsheng Cheng 2, Yong Wang 2*, Yan He 2* & Yanyan Xu 2*

The incidence and mortality rate of gastric cancer (GC) have remained high worldwide. Although some 
progress has been made in immunotargeted therapy, the treatment effect remains limited. With more 
attention has been paid to the immune potential of tumor‑associated macrophages (TAMs), but the 
specific mechanisms of tumor immunity are still unclear. Thus, we screened marker genes in TAMs 
differentiation (MDMs) through single‑cell RNA sequencing, and combined with GC transcriptome data 
from TCGA and GEO databases, the clinical and TME characteristics, prognostic differences, immune 
infiltration, and drug sensitivity among different subtypes of patients with GC in different data sets were 
analyzed. A prognostic model of GC was constructed to evaluate the prognosis and immunotherapy 
response of patients with GC. In this study, we extensively studied the mutations in MDMs such as CGN, 
S100A6, and C1QA, and found differences in the infiltration of immune cells and immune checkpoints 
including M2 TAMs, T cells, CD274, and CTLA4 in different GC subtypes. In the model, we constructed 
a predictive scoring system with high accuracy and screened out key MDMs‑related genes associated 
with prognosis and M2 TAMs, among which VKORC1 may be involved in GC progression and iron death 
in tumor cells. Therefore, this study explores the therapeutic strategy of TAMs reprogramming in‑depth, 
providing new ideas for the clinical diagnosis, treatment, and prognosis assessment of GC.

Gastric cancer (GC) is a highly invasive, heterogeneous malignancy that is characterized by insidious onset, obscure 
clinical symptoms, and rapid  progression1. Statistically, about 1 million new cases and 800,000 deaths are reported 
every  year2. In recent years, although anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4), anti-pro-
grammed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) antibody, chimeric antigen receptor 
(CAR) T-cell therapy and other targeted drugs have achieved certain clinical effects, but most patients with advanced 
GC still have low prognostic benefits, and the median survival is still less than 12  months3,4. Several studies have 
suggested that this is mainly related to tumor heterogeneity caused by tumor microenvironment (TME)5,6.

TME is mainly composed of tumor cells, immune cells, fibroblasts, endothelial cells, and other cells which 
form an ecosystem allowing the survival of tumor cells. These cellular interactions in TME is a major cause of 
tumor heterogeneity and contribute to tumor progression and drug  resistance7,8. Immune cells mainly regulate the 
TME for tumor growth and progression, which not only provides anti-tumor immunity but also promotes tumor 
 immunity9. Numerous studies have demonstrated that tumor cells can be re-programmed by editing the immune 
cells in the TME to evade immune monitoring and promote tumor cell proliferation and  migration10–12. However, 
TAMs are the most dominant immune cell type in the  TME13. They are involved in TME modification, tumor cell 
growth, invasion, and  metastasis14. Previous studies suggest that TAMs are highly flexible and perform various 
functions at different stages of the  TME15. In the initial stages of a tumor, they exert their anti-tumor function by 
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killing tumor cells through direct action and the indirect activation of other immune cells. If the tumor continues 
to progress to advanced stages, the TME will change within the tumor and TAMs will exhibit immunosuppressive 
function by promoting tumor  progression16. Chen et al. have found that chitinase 3-like protein 1 (CHI3L1) secreted 
by M2-TAMs can promote GC transfer through mitogen-activated protein kinase signaling  pathway17. Although 
many studies have shown that TAMs play an important role in GC progression, no specific molecular targets and 
no effective drugs that target TAMs have been found. Compared to targeted lymphocyte therapy strategies, TAMs 
have the advantage of indirectly activating other immune cells through antigen presentation and directly killing GC 
cells. In addition, they also accumulate in larger numbers in the TME and can penetrate the dense interstitial tissue 
around the GC cells. Moreover, compared to GC cells, TAMs are more genetically stable and less susceptible to drug 
resistance. Therefore, targeting TAMs may be important for identifying GC cell neoantigens and the development 
of effective immunotherapeutic targets, and in the detection and prognosis assessment of GC.

In this study, we first screened out the key prognostic genes related to the differentiation of TAMs accord-
ing to GC single-cell RNA sequencing (scRNA-sequencing), and GC tissue transcriptome data to construct a 
risk model for predicting prognosis and response to immunotherapy. Based on this, we also performed cluster 
analysis on patients with GC, identified different subtypes of TAMs, and analyzed clinical characteristics, immune 
infiltration, and differences in TMEs in different subtypes that provide potential markers and targets for GC 
detection and treatment.

Methods and materials
Data source
We downloaded 850 GC samples from The Cancer Genome Atlas (TCGA) (https:// ciber sortx. stanf ord. edu/) 
and the Gene Expression Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ geo/) databases, thus including 433 
GC samples from the GSE84437 dataset and 10 single-cell samples from the GSE112302 dataset. All raw files 
were normalized and annotated by R language. Then, batch effects of the three datasets were eliminated by the 
"Combat"  algorithm18, and any missing total survival time (OS) data were excluded.

Patient population and tissue specimens
Eighty patients diagnosed with GC in the Second Affiliated Hospital of An Medical University were included in 
the clinical study. Clinical data, such as sex, age, tumor size, stage, lymph node metastasis and activated partial 
thromboplastin time (APTT), and postoperative tissue samples were collected. All patients and their families 
have agreed and signed informed consent for this study. And the study was approved by the Ethics Committee 
of the Second Affiliated Hospital of Anhui Medical University. And the research was performed in accordance 
with relevant guidelines/regulations and the Declaration of Helsinki.

Data quality control
We installed the “Seurat”  package19 in R to filter any sequencing data in GSE112302. First, load the data into the 
data structure of "Scanpy" using the "read" function of "Scanpy". Then, For each cell, the quality control (QC) 
metrics were calculated using “perCellQCMetrics” from the “ScatterDensity”  package20. Performing quality 
control (QC) and selecting cells using the “CreateSeuratObject”  algorithm19. Filter conditions included at least 
three cells, at least 50 genes expressed in each cell, and > 5% mitochondria. The "LogNormalize" method is glob-
ally used to scale and normalize the gene expression of each  cell19.

Cell annotation and pseudotime analysis
Firstly, Logarithmic conversion and batch effect removal were performed for expression levels. Based on scaled 
data, the JackStraw algorithm was used for principal component analysis (PCA) and dimension reduction 
(dims = 1:15)21. We used the FindClusters and the FindNeighbor function to perform t-distributed stochastic 
neighbor embedding (tSNE) clustering on the data of first 15 principal components (PC) (resolution = 0.5). 
Among them, The “pp.neighbors” function calculates similarities between cells, and the “tl.leiden” function 
divides cells into clusters. Then, Use the "tl.umap" and "tl.tsne" functions to embed cells in a low-dimensional 
space. We next annotated and visualized each cluster. The FindMarkers function and the “CIBERSORT” algo-
rithm (https:// ciber sortx. stanf ord. edu/) were used to screen for the marker differentials. Further, cell trajectory 
analysis of both cell and gene annotations was performed using the "monocle"  package22.

Analysis of mutations and copy number variations
Macrophage differentiation markers (MDMs) were extracted form sc-RNA sequencing analysis, and their muta-
tions in GC samples from the TCGA database were calculated using the R language’s "maftools"  package23, and 
a waterfall chart of MDMs mutations was created. Copy number data in GC downloaded from the UCSC Xena 
(https:// xena. ucsc. edu/) database to analyze any copy number variations (CNV) of MDMs by "Rcircos" of the R 
language (https:// github. com/ hzhan ghenry/ RCirc os).

Enrichment analysis
A fold-change of ≥ 1 and an adjusted P-value of < 0.05 were screened according to MDMs. Gene ontology (GO) 
and Kyoto encyclopedia of genes and genomes enrichment analysis (KEGG) functional enrichment analyses 
of MDMs and MDMs-related genes were then performed using the "enrichplot" and "org.Hs.eg.db" packages 
to explore the underlying biological role of genes, comprising three terms, i.e.,biological process (BP), cellular 
component (CC), molecular function (MF) and biological  pathways24–26. In addition, after downloading the 
signaling pathway set file from the MSigDB database immunological enrichment analyses of MDMs and MDM-
related genes were performed using the “GSVA”  packages27. In addition, a single-sample gene set enrichment 

https://cibersortx.stanford.edu/
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https://xena.ucsc.edu/
https://github.com/hzhanghenry/RCircos
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analysis (ssGSEA)  algorithm28 was used to quantitatively analyse each cell to compare differences in immune 
cell infiltration among different subtypes.

Consensus clustering analysis
Both “Reshape2” and “ggpubr” were first used to extract MDMs that were differentially expressed in both normal 
and tumor tissues of patients with GC. Combined with clinical prognostic information for each sample, those 
MDMs with significant survival differences were further screened and their interaction network was mapped 
by “igraph” and “psych” algorithm. “RColorBrewer” package was used to calculate the importance of all nodes 
and identify the key  nodes29. Based on the extent of their expression in each sample, a consensus unsupervised 
cluster analysis was conducted for all patients with GC using the k-means method in the "ConensusClusterPlus" 
package to classify all GC patients into different molecular  subtypes30. The principal component analysis (PCA) 
graph was drawn by analyzing the expression levels of MDMs and visualized by the "ggplot2" software  package31.

Analysis of clinical characteristics and survival differences
We analyzed the clinical characteristics and prognosis of patients with GC in different subtypes based on the 
results of the consensus unsupervised cluster. The "ggplot2 3.4.0"  package31 was used to compare age, gender, 
and the TNM staging of all patients across all subtypes, The prognostic and clinical features between distinct 
subtypes were compared using the R "survival" package and the "PheATmap"  package32, and was visualized with 
the R language. In addition, we incorporates expression data and clinical information of MDMs genes by “limma” 
package. Kaplan–Meier survival curves for survival time and state of patients with GC with different subtypes 
were analyzed and plotted by “survival” and “survminer” packages.

Screening for prognostic‑related DEGs
Univariate COX regression analysis was performed for MDMs related differentially expressed genes (DEGs) in 
both "limma" and "survival" packages to obtain prognostic genes in the TCGA database. Prognostic-related genes 
in the GSE84437 dataset were detected by the "WGCNA"  package33. During this process, the shear height was set 
at 1000; the cut size, at 10; the number of module genes was ≥ 30; and the clustering height of module character-
istic genes was 0.3. The prognostic genes obtained in both data sets were selected through the "VennDiagram" 
package to take intersection genes and a Venn diagram was drawn.

Constructing a prognostic model and prognostic scoring system
The "caret" package (https:// github. com/ topepo/ caret/) was used to divide patients with GC (1:1) into training 
and test groups to construct and verify models, respectively. The packages "glmnet", "survminer" and "timeROC" 
were then used for the least absolute shrinkage and selection operator (LASSO), and the multivariate COX 
regression analysis was used for prognostic associated  DEGs34,35. The risk scores (RS) of genes with non-zero 
regression coefficients were calculated. RS = 

∑n
j=1

Xj ∗ Coefj , where n represents the number of included genes, 
Xj , the gene expression, and Coefj represents the risk coefficient. The independent prognostic analysis function 
was defined using the package "survival" to confirm that the RS score was an independent factor that affected 
patient prognosis, and a forest map was drawn subsequently. The "SurvivalROC" package was used to plot and 
calculate the area under the curve (AUC) of the time-dependent receiver operating characteristic (ROC) to 
evaluate the predictive power of this prognostic model. We then used the "rms" package and the "calibration" 
function to draw a nomogram diagram and a calibration curve.

Immune‑infiltration and TME analysis
The "preprocessCore" package was used to calculate the degree of infiltration of various immune cells and 
immune checkpoints in different samples, and the "CIBERSORT" analysis method was used to calculate the dif-
ference in immune cells and immune checkpoints and the correlation of DEGs different subtypes between high 
and low risk groups. For TME analysis, differences in stromal, immune, and estimation scores were calculated. 
Any difference in tumor mutation burden (TMB) was then analyzed using "reshape2" and "ggpubr" packages after 
combining them with TMB data and RS scores of patients with GC. Finally, combined with the microsatellite 
instability (MSI) data and tumor stem cells (CSCs) scoring data of all tumors, the correlation between MSI and 
CSCs and RS was calculated through the "ggplot2" and "ggpubr"  packages31.

Drug susceptibility analysis
The tumor chemotherapy drug data was downloaded from the genomics of drug sensitivity in cancer (GDSC) 
(http:// www. cance rrxge ne. org/) database. A formula package of "pRophetic" was used to calculate the IC50 value 
for GC chemotherapy drugs. The difference in IC50 between the high-risk and low-risk groups was compared 
using the Wilcoxon test, and the filtering condition was set as P < 0.001.

Quantitative real‑time PCR
Total RNA was extracted from tumor tissues and normal tissues of 8 randomly selected pairs of GC patients after 
operation using a Fast Pure Cell/Tissue Total RNA Isolation Kit (ES science, China). Then, we reverse transcribed the 
RNA to cDNA under standard conditions with Evo M-MLV RT Premix (Accurate Biotechnology, China). The SYBR 
Green PCR kit (accurate biotechnology, China) was used for quantitative real-time PCR. We selected GAPDH as the 
internal control. Relative expression levels of target genes were calculated as  2-ΔCt. The primer of target gene as follows:

VKORC1: F, GAG CCT GAT GTG GCT CAG TT
               R, TCA GTG CCT CTT AGC CTT GC

https://github.com/topepo/caret/
http://www.cancerrxgene.org/
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Statistical analyses
The study was carried out under the R version 4.1.3 (https:// www.r- proje ct. org/), Strawberry Perl version 5.32.1.1 
(https:// straw berry perl. com/) and GraphPad Prism 7 (https:// www. graph pad. com/). The data are expressed as 
the means ± SD, and Student’s t-test or one-way ANOVA test was used for difference determinations. *, **, *** 
indicated P < 0.05, P < 0.01, P < 0.001, respectively. A P < 0.05 was considered statistically significant.

Ethics approval and consent to participate
The study was approved by the Ethics Committee of the Second Affiliated Hospital of Anhui Medical University.

Results
Screening of MDMs
Our study flowchart has been described in Figure S1. Before proceeding with analyzing our RNA-sequencing 
data, a thorough quality control (QC) of all data is required to filter out the influence of low-quality cells and 
mitochondrial genes (Figure S2). The total number of unique molecular identifiers (UMI) in each cell does not 
correlate with mitochondria, and the correlation with the total number of genes is 0.38 (Figure S2B). Dimension 
reduction analysis is performed on scRNA-sequencing data, and PCA showed that GC cells showed a signifi-
cant separation trend (Fig. 1A). After normalization, 14 PCs were screened (P < 0.05) (Fig. 1B). The GC cells 
were then divided into six clusters by further performing a tSNE cluster analysis (Fig. 1C). By using cell marker 
annotation, it was found that the clusters were mainly composed of epithelial cells and macrophages (Fig. 1D). 
Among them, SPP1, TYROBP, C1QB, APOE, CCL3, LAPTM5, C1QA, and IL1B were the top 8 genes that had 
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the highest expression in the macrophage cluster (Fig. 1E). In addition, pseudotime analysis showed that cells 
in the six clusters differentiated into 3-medium states and were eventually differentiated into macrophages in 
the second branch (Fig. 1F–H). Finally, 54 MDMs were obtained through the intersection of genes in the second 
branch, marker genes in macrophages, and differentially expressed genes in tumor tissues.

Genetic and transcriptional characteristics of MDMs
The results from the mutation analysis showed that 22.4% of 433 GC samples have mutations in MDMs that are 
dominated by nonsense mutations. The five MDMs with the highest mutation frequency are SPTBN1, CGN, 
COL16A1, ELF3, and ASS1 (Fig. 2A). In addition, during analyzing CNVs of MDMs, it was found that 22 MDMs 
had significant CNVs, among which CGN, S100A6, and EFNA1 showed obvious amplification, and C1QA, C1QB, 
and LAPTM5 showed extensive deletion (Fig. 2B).

Prognostic characteristics and molecular subtypes of MDMs
The expression characteristics of 54 MDMs in tumors and normal tissues were verified in the TCGA data. 
We found that 42 MDMs were highly expressed in tumors, and 37 MDMs were prognostic factors for GC 
(Figs. 2C,D). Interestingly, CGN, S100A6, and EFNA1 with significant CNV amplification were favorable prog-
nostic factors, and C1QA, C1QB, and LAPTM5 with widespread deletion were risk factors. This suggests that 
the role of MDMs in GC progression and prognosis could be related to their respective CNV. In addition, GO 
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Figure 2.  Genetic and transcriptional analysis in TCGA dataset. (A) Mutation frequencies and types of 
MDMs. (B) CNV of MDMs. (C) The interaction network between prognostic related MDMs. (D) Differential 
expression of MDMs. (E) Unsupervised clustering of MDMs and consensus matrix heatmaps for k = 2 base on 
TCGA datasets. (F) Kaplan–Meier survival curves. (G) GSVA enrichment analysis. (H) Immune cell infiltration 
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enrichment analysis showed that these MDMs were mainly enriched in biological processes such as cellular 
lipopolysaccharide reaction and cellular immune response, and had molecular functions of activating cytokines 
and chemokines (Figure S3A). The KEGG analysis was mainly concentrated on cytokine-mediated signaling 
pathways and regulatory pathways of epithelial cell migration (Figure S3B).

Clinical and immunoinvasive characteristics of different molecular types of MDMs
Unsupervised cluster analysis showed that all patients in the TCGA data set could be divided into subtypes, A 
and B, and the Kaplan–Meier curve showed survival differences (P < 0.05) (Figs. 2E,F). In GSVA enrichment 
analysis, subtype B with poor prognosis was mainly enriched in oxidative phosphorylation, substance metabo-
lism, and the P53 signaling pathways (Fig. 2G). The B cells, natural killer cells and type 17 T helper cells were all 
highly infiltrated in the B subtype (Fig. 2H). In addition, in the GSE84437 data set, patients with GC could be 
divided into three subtypes (Figure S3C). According to MDMs expression, and a significant difference in their 
prognosis was observed (P < 0.05) (Fig. 3A). In terms of clinical features, there was a significant difference in age 
and T- and N-stages among the three subtypes except for gender (P < 0.05) (Fig. 3B–E). The C2 subtype patients 
had the worst prognosis and the highest degree of TME mesenchymal cell and immune cell infiltration with the 
lowest tumor purity (Fig. 3F–I). Among immune cells, the proportion of macrophages and T cells was the highest. 
However, the degree of infiltration for M0 and M2 macrophages in the C3 subtype was significantly higher than 
that in the other two subtypes (Fig. 3K–L). Moreover, several immune checkpoints, such as CD274, CD80, and 
CTLA4, were significantly up-regulated in the C3 subtype (Fig. 3J). Survival analysis found differences in the 
survival time between these high- and low-infiltrating immune checkpoints and immune cells (Figures S4–S5). 
This suggests that immune cells in the TME may shift to immunosuppressive phenotypes, and play a pro-tumor 
function during tumor progression.

The classification of prognostic‑related DEGs
We screend1661 MDM-related DEGs, and enrichment analysis of these DEGs showed that they were mainly 
involved in energy metabolism and cell adhesion processes (Fig. 4A,B). Further, weighted correlation network 
analysis (WGCNA) showed that two gene modules were associated with prognosis with 540 DEGs (Fig. 4C,D). 
Univariate COX analysis showed that 129 DEGs were prognostically correlated, and 92 prognostic correlated 
DEGs were obtained at the intersection of the WGCNA and Univariate COX analysis (Figure S6A). And the 
clinical characteristics and prognosis of patients with subtype A were better than those of subtype B (Fig. 4E,G).

Establishment of the prognostic model
We analyzed 92 prognostic-related DEGs by the LASSO regression, and the risk coefficient was calculated, and 
five prognostic-related DEGs were further screened out (Fig. 5A,B). Then, three DEGs with the best predictive 
value were selected. In COX regression analyses of RS, it was found that RS was an independent prognostic factor 
(Fig. 5C,D). After patients were divided according to the median value of RS, significant differences in survival 
times between the two groups were noted (Fig. 5E,F). In addition, the AUC of the ROC, which measures the 
ability of RS to predict the prognosis was higher than 0.6 (Fig. 5G,H). Thus, the survival status of patients could 
be comprehensively assessed according to the MDM classification, DEGs classification, and RS (Fig. 5I).

Characteristics of prognostic models and nomogram prediction system
Sorting patients with GC according to the RS value showed higher mortality (Fig. 6A–D). Moreover, DEGs, the 
key to RS score calculation, were also highly expressed in the high-risk group (Fig. 6E–F). This indicated that our 
prognostic model has a good ability to evaluate clinical features. Therefore, this study constructed a nomogram 
prediction system(Fig. 6G). The calibration diagram and ROC curve was also used to verify the accuracy of our 
prediction system (Fig. 6H and Figure S8).

Correlation between RS, immune cells, and somatic mutations
Correlation analysis showed that RS was positively correlated with M2 macrophages and NK cells, and negatively 
correlated with memory B cells, follicular helper T cells, and plasma cells (Fig. 7A–E). Surprisingly, key DEGs 
also showed a strong correlation with macrophages, among which VKORC1 gene had the highest correlation 
with M2 macrophages (Fig. 7F). In addition, in the somatic mutation analysis, the median somatic mutation 
was found to be slightly higher in the low-risk group. Genes with the highest mutation frequency were TTN, 
TP53, MUC16, ARID1A, and LRP1B, which suggested that somatic mutation and gene instability are negatively 
associated with RS (Fig. 7G–H).

The difference in TME, TMB, MSI, and drug sensitivity
The TME analysis showed that stromalScore, immuneScore, and the ESTIMATE Score in the high-risk group 
were significantly higher than in the low-risk group (Fig. 8A). On the contrary, the TMB was negative correlation 
with RS (Fig. 8B,C). In addition, RS was correlated with the MSI status (Fig. 8D,E). Furthermore, an obvious 
negative correlation between RS and CSCs in the correlation analysis of CSCs was also reported (Fig. 8F). These 
results indicated that GC cells with lower RS were more sensitive to immunotherapy and have less differentiated 
stem cell characteristics. Finally, we evaluated the correlation between RS and GC chemotherapy drug sensitivity 
and found a significant difference between the semi-inhibitory concentration (IC50) of multiple chemotherapy 
drugs in both groups. Among them, IC50 of rapamycin, shikonin, dasatinib, docetaxel, embelin, bicalutamide, 
imatinib, parthenolide, sunitinib, and roscovitine was lower in the high-risk group (Fig. 8G–P).
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VKORC1 was up‑regulated in GC and associated with tumor progression and survival
To further verify the role of VKORC1 in GC. We examined its mRNA level in 8 pairs of GC tissues and found 
that the expression level of VKORC1 was significantly upregulated than that in matched normal tissues (P = 0.01) 
(Figure S7A). Then, we next analysed the correction of VKORC1 expression level and the parameters of 80 GC 
patients. In the prognostic analysis, both the prognostic information from the TCGA public database or from our 
clinical research, the results showed that patients with high VKORC1 expression had poor OS (Figure S7B–C). 
In additional, Further analysis showed that VKORC1 was significantly associated with tumor size (P = 0.003), 
stage (P = 0,006), lymph node metastasis (P = 0.001), and APTT (P = 0.015), but not with sex (P = 0.528) and age 
(P = 0.681) (Figure S7D–I). Interestingly, VKORC1 expression decreased significantly in advanced tumors. This 
may be one of the reasons why patients with advanced tumors have poor clotting function.
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Discussion
In recent years, lymphocytes have been the focus of targeted therapy for malignant tumors, and the immuno-
therapeutic potential of TAMs have not been studied extensively. Although TAMs are highly flexible and can 
have both functions of promoting immunity and suppressing immunity in the TME, they mainly exhibit immu-
nosuppressive phenotypes in advanced GC. Therefore, targeting TAMs-specific molecular markers to reprogram 
them into anti-tumor phenotypes is a novel cancer treatment strategy. In the present study, we comprehensively 
analyzed the multiomics of MDMs obtained through screening in the RNA-sequencing data at the transcrip-
tional and genetic levels, to reveal any mutation and CNVs. different molecular subtypes were identified, and the 
clinicopathological characteristics, prognosis, and TME differences among the different subtypes were discussed 
in depth. Identification of risk factors in MDMs and their associated genes contribute to a better understanding 
of the molecular mechanism of GC, providing new immune strategies and drug targets for clinical treatment. 
Thus, we also constructed a prognostic scoring system for patients with GC that can accurately evaluate the 
prognostic survival time of patients.

TAMs are an important component of innate and adaptive immunity and can be polarized into two pheno-
types, M1 and M2 according to different signals in  TME36,37. The M1-type macrophages can kill tumor cells by 
directly mediating cytotoxic effects and secreting reactive oxygen species and NO  molecules38,39. In contrast, 
epithelial growth factors (EGF) and matrix metalloproteinases (MMPs) secreted by the M2-type macrophages 
can promote the proliferation and metastasis of tumor  cells40,41. Therefore interaction of TAMs with TME, and 
targeting TAMs is considered the latest therapeutic strategy for  tumors42. Some studies suggest that misexpression 
and ineffectual expression of proteins caused by gene mutation and CNV may be one of the reasons for tumor 
 development43,44. Thus, further exploration of mutant genes can lead to a better understanding of the molecular 
mechanisms of GG. In addition, studies have suggested that mutated genes with high specificity may be useful for 
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the screening and diagnosis of  tumors45. Ghaffari et al. found that the Baculoviral inhibitor of apoptosis repeat 
containing 5 (BIRC5) gene with high CNV could be used as a marker for early cancer  detection46. Gene mutation 
is a significant proportion of genetic factors associated with cancer. Tumorigenesis and progression are the result 
of multiple driver gene mutations. Zhang et al.47 showed that patients with ATR, BLM and MLH1 mutations 
in prostate cancer had worse prognosis and increased Olaparib sensitivity. In this study, the degree of Cingulin 
(CGN) mutation was the most remarkable, and CGN, as a connexin of endothelial cells, was previously thought 
to be mainly involved in the regulation of the endothelial  barrier48. However, other studies have shown that CGN 
can promote cell proliferation by regulating the activity of member A (RhoA) in the Ras homolog gene  family49. 
In malignant tumors, Zhang et al. found that abnormal expression or CGN targeting could induce the prolifera-
tion and invasion of ovarian and colorectal cancer  cells50,51. However, the role of CGN in GC is unclear at present.

The three hub MDMs-related gene risk models constructed in this study not only identified the risk degree 
of different patients with GC but also dynamically monitored the tumor progression and prognosis more accu-
rately. Similar studies have been conducted previously when they screened potential target of endometriosis 
and constructed a risk model of RNA-binding proteins (RBPs) to predict patient prognosis with renal papillary 
cell carcinoma (pRCC)52,53. And, Liu et al.54 deeply analyzed the tumor stemness-related genes in renal clear 
cell carcinoma (ccRCC), and identified a key gene that was significantly associated with the prognosis of ccRCC 
and promoted the proliferation of ccRCC cells. Compared to whole transcriptome sequencing, the quantitative 
detection of key gene expression levels also has higher accuracy in clinical diagnosis, treatment, and prognosis 
assessment, and is more economical and clinically feasible. In addition, M2 macrophages mainly infiltrate in 
tumor tissues of patients with better prognosis and M2 macrophages had a higher positive correlation with the 
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RS of this model. In advanced GC, interleukin(IL)-6 and IL8 released by mesenchymal stromal cells (MSCs) 
promote polarization of M2-type TAMs in TME via the JAK2/STAT3 signaling pathway, resulting in immuno-
suppressive  TME55. M2 TAMs activation is regulated by a variety of signaling pathways. This study indicated that 
the PI3K/Akt/mTOR pathway mediated by various molecular signals is involved in the regulation of M2  TAMs56. 
Proinflammatory cytokines (TNF-α, IL-β, and IL-23) released by M2-type TAMs in solid tumors continue induce 
overexpression of PD-L1, CTLA4, and glucocorticoid-induced TNF receptor family-regulated protein (GITR) to 
inhibit tumor  immunity57. However, these cytokine induced cascades are closely associated with macrophages. 
Activated NF-κB, nuclear factor erythroid 2-related factor 2 (Nrf2), TGF-β/Smad, The MAPK and JAK/STAT 
signaling pathway in turn promote the polarization and infiltration of M2 macrophages, thus promoting the 
progression of the  disease58. One of the most important factors in tumor progression is the formation of new 
blood vessels due to hypoxia. M2-type TAMs mainly accumulate in this area to regulate the secretion of vascu-
lar endothelial growth factor (VEGF)59. M2 TAMs can activate Nrf2 signaling pathway in cancer cells, in turn, 
to increase cancer cells epithelial-mesenchymal transition (EMT) through paracrine  VEGF60. Thence, studies 
have found that targeted VEGF inhibition can reduce TAMs infiltration and cytokine secretion, thus effectively 
inhibiting the growth and proliferation of  tumors61. In addition, TAMs are an integral component of the hema-
togenous spread and metastasis of tumor cells. Xu et al.62 study showed that target MAPK pathway blocking M2 
macrophages can effectively inhibit the growth, invasion, migration and angiogenesis of lung cancer. In addition, 
M2 macrophages can also induce the formation of Tregs by activating the TGF-β/Smad signaling pathway, thus 
promoting tumor  progression63. Direct adhesion of TAMs to type IV collagen and eventual increased extracel-
lular matrix remodeling is another reason for promoting tumor cell  metastasis64. Therefore, all this evidence 
proves that TAMs promote tumor cell proliferation and invasion in advanced tumors, and play a role in tumor 
immune suppression.

Reprogramming of TAMs is a new malignant tumor therapy that has been recently proposed. Its principle is 
to convert M2-type TAMs back into M1-type TAMs to play the role of an antitumor role in TME. Interference 
with the nuclear factorκB (NF-κB) signaling pathway or association with tumor necrosis factor-α (TNF-α) can 
result in M1-type TAMs that promote tumor  regression65,66. The CSF-1/CSF-1R signaling pathway is one of the 
most important pathways for the reversal of TAMs that can regulate the differentiation of myeloid cells and 
 TAMs67. Emactuzumab is a human monoclonal antibody against CSF-1R. In a drug study, Emactuzumab was 
found to have a higher response rate in patients with tendon sheath giant cell  tumors68. In addition, tyrosine 
kinase inhibitors (TKIs) can also inhibit this pathway. In glioma clinical trials, a TKI BLZ945 showed promis-
ing results when combined with insulin-like growth factor 1 receptor (IGF1R) and phosphoinositol 3 kinase 
(PI3K)  inhibitors69. In addition, the CCL2-CCR2 axis is also an effective way to reverse  TAMs70,71.In addition 
to molecular effects, radiation therapy for solid tumors was also found to affect TAMs. One study reported that 
low-dose gamma irradiation allowed macrophages to differentiate into iNOS + /M1 phenotypes for killing solid 
 tumors72. However, until now, no effective targets and drugs have been developed to reverse TAMs in solid 
tumors. Therefore, we hope to further explore any genetic characteristics of TAMs in GC TME, to provide help 
for treating patients with GC with TAMs reprogramming strategy.
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In this model, we unexpectedly found that the hub gene VKORC1 was highly correlated with M2 macrophages 
in TME. VKORC1 is the primary functional subunit of vitamin K epoxide reductase (VKOR), which is involved 
in regulating vitamin K  synthesis73. Although vitamin K functions primarily as a clotting agent, recent studies 
have shown that it is also effective in preventing ferroptosis in cells and  tissues74. In addition, Beaudin et al. also 
found that VKORC1 and VKORC1L1 were highly expressed in triple-negative breast cancer (TNBC) cell lines 
and advanced breast cancer tissues, and promoted the growth of TNBC cells, and the expression of glutamate-
modified proteins through vitamin K1  synthesis75. This suggests that VKORC1 could be involved in regulating 
the proliferation and in the programmed death of tumor cells through vitamin K. However, specific mechanisms 
are still unclear, especially about TAMs and immune cells. Therefore, we speculate that VKORC1 may play a role 
in tumor progression and may also be regulated by TAMs.
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Conclusion
In this study, the multiomic features such as CNV, clinicopathological indicators, prognosis, immune infiltra-
tion, and TME of MDMs in GC were analyzed in depth, and a prognostic prediction model integrating multiple 
molecular markers, clinicopathological parameters, and other multi-level indicators were constructed to further 
explore a therapeutic strategy of reprogramming TAMs. Our findings show a new direction for clinical diagnosis, 
treatment, and prognosis evaluation of GC. We also observed that hub gene VKORC1 might be involved in GC 
progression and iron death of tumor cells.

Data availability
The datasets generated and/or analysed during the current study are available in the TCGA (https:// portal. gdc. 
cancer. gov/), Gene Expression Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ geo/), UCSC Xena database 
(https:// xena. ucsc. edu/) and Genomics of Drug Sensitivity in Cancer (GDSC) database (https:// cance rrxge ne. 
org). And all code and original data you can find in the link (https:// www. jiang uoyun. com/p/ DaSrl pIQsP GzCxj 
t5PYE IAA). Or you can contact authous.
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