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Optimized minimal genome‑wide 
human sgRNA library
Yangfan Zhou 1,2,3,6, Lixia Wang 2,3,5,6, Zhike Lu 1,2,3, Zhenxing Yu 2,3,5 & Lijia Ma 2,3,4*

Genome‑wide clustered regularly interspaced short palindromic repeats (CRISPR)‑based knockout 
screening is revolting the genetic analysis of a cellular or molecular phenotype in question but 
is challenged by the large size of single‑guide RNA (sgRNA) library. Here we designed a minimal 
genome‑wide human sgRNA library, H‑mLib, which is composed of 21,159 sgRNA pairs assembled 
based on a dedicated selection strategy from all potential SpCas9/sgRNAs in the human genome. 
These sgRNA pairs were cloned into a dual‑gRNA vector each targeting one gene, resulting in a 
compact library size nearly identical to the number of human protein‑coding genes. The performance 
of the H‑mLib was benchmarked to other CRISPR libraries in a proliferation screening conducted in 
K562 cells. We also identified groups of core essential genes and cell‑type specific essential genes by 
comparing the screening results from the K562 and Jurkat cells. Together, the H‑mLib exemplified high 
specificity and sensitivity in identifying essential genes while containing minimal library complexity, 
emphasizing its advantages and applications in CRISPR screening with limited cell numbers.

CRISPR/Cas technology offers a versatile toolbox for genome editing. Facilitated by the efficiency of Cas9 endo-
nuclease, specific genes can be targeted and disrupted simply by changing the sequence of the single guide RNA 
(sgRNA), which leads to the generation of genome-wide CRISPR-based knockout  screening1,2. These CRISPR-
based knockout screening systems have been applied to hundreds of cell types in different  organisms3,4 and made 
significant advancements in unraveling biological processes in many aspects, for example, functional  genomics5, 
cancer, and  immunotherapy6–9. Accordingly, many studies have been performed to improve the performance 
of CRISPR-based knockout screening systems, including CRISPR/Cas enzyme  optimization10 sgRNA library 
 design11–13, and sgRNA  delivery14. However, the sgRNA library size remains a stringent barrier to the application 
of CRISPR-based knockout screening systems.

The sgRNA library size limits the development of CRISPR-based knockout screening technology from several 
aspects: (1) Full library representation needs typically around 50–100 × the original size of the  library15. In the 
typical workflow of CRISPR-based knockout screening, most cells possess mutations in only one gene, meaning 
one sgRNA for one cell. However, from the moment the library is introduced into the cell, the sgRNA distribution 
will immediately be affected by the culturing process and downstream processing which may lead to a loss of 
yield and potential representation. Therefore, each sgRNA must be represented by 50–100 cells to mitigate this. 
Finally, the screening cell population will be 50–100 × larger than the sgRNA library. (2) Unfortunately, some 
cell populations can’t reach millions of cell numbers easily for whole genome screening, as primary cells and 
non-immortalized lines have a limited capacity for expansion. (3) Additionally, a larger library size means more 
cost. The manipulation size for experiments of sgRNA pool construction, the delivery system establishment, 
and cell treatment will increase exponentially on the original sgRNA library number, leading to exponentially 
increased consumption. (4) Moreover, the sgRNA number is typically 4–10 × larger than the number of target 
 genes11–13,15,16. sgRNA library is designed with inherent redundancies to reduce sgRNA off-target effects and 
achieve equal representation and performance across all target genes. Therefore, the redundant sgRNAs library 
is widely used and challenges the feasibility of a CRISPR-based knockout screening system.

Recently, some genome-wide human sgRNA libraries have been assembled. Especially for mouse and human 
cells, several libraries are now widely available in public plasmid  repositories3,4,17,18. For example,  Brunello19, 
 Gattinara20,  GeCKOv221, and  TKOv322. Those libraries are designed with different rules, contain varying numbers 
of sgRNAs and target genes, and are for distinct applications. In this research, we designed the minimal human 
genome-wide sgRNA library (H-mLib), by utilizing a dual sgRNA CRISPR/Cas system with novel selection strat-
egies. The performance of H-mLib was validated by K562 cell fitness screening. Screening results demonstrated 
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the outperforming specificity and efficiency of the H-mLib library, guaranteeing the reliability and feasibility 
of H-mLib for further application. Combined with Jurkat cell fitness screening, we expanded the human core-
essential gene list and defined cell-type specific essential genes.

Results
To minimize the number of required sgRNAs while maximizing the number of targeted genes, we evaluated and 
selected sgRNAs from all potential sgRNAs with NGG PAMs in the human genome, which yielded 229,969,335 
sgRNA sequences. To increase the targeting specificity, we removed sgRNAs containing repetitive polynucleotide 
stretches or targeting more than six (≥ 6) genomic sites (Fig. 1a; “Methods” section). We obtained a Primary 
Pool of 918,668 sgRNAs covering 19,425 protein-coding genes and 4688 non-coding genes. To evaluate the 
on-target efficiencies of each sgRNA to further filter sgRNAs, we conducted the on-target efficiency prediction 
using algorithms from multiple kinds of literature, including Project  score22, Rule2  score19, DeepCas9  score23, and 
AIdit_ONs  score24. We found that the correlations of these scores varied across different prediction algorithms 
(Supplementary Fig. 1), which might result from different calculation procedures and emphasis on sgRNA design 
principles. We then used a weighted sum of the above four scores to eliminate the bias from the individual algo-
rithm to integrate these scores into our sgRNA selection pipeline, and the resulting sum was named ON-score 
(Fig. 1a; “Methods” section). To evaluate the ON-score performance in predicting the on-target efficiency, we 
used thirty-two public  datasets25 by comparing the experimentally measured cleavage efficiency of each sgRNA to 
multiple prediction scores (Supplementary Fig. 2). Across the datasets, the ON-score showed higher correlations 
in two-third of cases compared to the other four scores (Supplementary Fig. 3) and was employed to evaluate 
gRNAs in the Primary Pool for further selection.

Besides the ranking based on the ON-score, we also considered the location of sgRNAs within the targeting 
gene under the context of biological indication and sequence polymorphism. It has been recognized that con-
served domains largely contributed to a protein’s cellular and molecular  function26. Thus, we reasoned that sgRNA 
targeting the genomic sequence of the conserved domain may perform better than targeting other regions of a 
gene in a dropout screening by interrupting the essential function of that protein. Moreover, we also considered 
the influences from the reported single-nucleotide polymorphism (SNP), which may eliminate the efficiency of 
hybridization between the designed sgRNA sequence and the targeting genomic region, especially when SNPs 
occurred near the PAM  region27,28. Together, the following two criteria were applied to further select sgRNAs for 
each gene from the Primary Pool: (1) the cutting site of each sgRNA located in the conserved domain annotated 
by the conserved domain database (CDD)26; and (2) the sgRNA sequence only contains SNP at distal-to-PAM 
region (10 nucleotides at the most 5’ of sgRNA). Finally, the top 10 sgRNAs after ON-score ranking and filter-
ing were retained for each gene. As a result, we got 177,551 sgRNAs covering 21,157 genes (Fig. 1a; “Methods” 
section).

Besides the on-target editing efficiency, off-target editing specificity is also essential to the performance of 
sgRNA. To further evaluate the editing specificity of sgRNAs, we employed the cutting frequency determination 
(CFD)  score19 to calculate the number of potential off-targets in the human genome, which were used as the OFF-
score in our sgRNA selection pipeline (Fig. 1a; “Methods” section). Up to six mismatches were allowed in CFD 
score calculation for the interests of computing resources. By incorporating the OFF-scores, we further selected 
the best four sgRNAs of each targeting gene and split them into two parallel minimal whole-genome libraries, 
with the top two sgRNAs composed of the H-mLibA and the other two sgRNAs composed of the H-mLibB. 
In some cases, when less than four sgRNAs are available for one target gene, sgRNAs were shared between the 
H-mLibA and H-mLibB (Supplementary Fig. 4a, b; “Methods” section). Each of these two parallel libraries 
composed a minimal set of the best-performed sgRNAs targeting the full set of human genes, which could also 
be used as independent replicates in the whole-genome CRISPR screening.

To further minimize the complexity of the minimal library and increase the screening performance, we 
designed a dual-sgRNA vector to accommodate the two sgRNAs of each targeting gene (Fig. 1b). We also 
designed two compatible cloning strategies, in which the sgRNA libraries of the H-mLibA and H-mLibB could 
be synthesized as one oligo pool while the plasmids libraries could be cloned separately. Each plasmid library 
sized at 21,159 complexities contained 20,659 sgRNA pairs and 500 negative controls (Supplementary Table 1). 
Compared to the published libraries  (Avana19, Brunello, Gattinara, GecKOv2_A, GecKOv2_B,  MinLibCas929, 
 Sabatini30, Sabatini_0095KO,  TKOv1_base3,  TKOv1_sup3, TKOv3,  Wu_V131 and  YusaKoV132), the H-mLib 
advantaged with the minimal library size and the second-highest number of targeted genes (Fig. 1c). Benefited 
from the sgRNA selection strategies with the considerations on the genomic location, the H-mLib also showed 
the highest targeting rate (72.81%) to the conserved  domain26, while the low percentage of genes contain sgRNAs 
that may have off-targets in the genome (Fig. 1d). Additionally, compared to the other libraries, the sgRNA of 
the H-mLib showed significant lower SNP frequency from the positions of 11–20 and 21–23 (PAM sequence) 
(Fig. 1e).

Meanwhile, we examined the consistency of selected sgRNAs between H-mLib and published libraries. We 
incorporated sgRNAs from the GenomeCRIPSR  database33, as it collected approximately 700,000 sgRNAs used 
in ~ 500 different experiments. Most sgRNAs of the H-mLib have been included, but there were 805 sgRNAs 
unique to the H-mLibA and 672 sgRNAs unique to the H-mLibB (named “sup”) (Supplementary Fig. 5). We 
further investigated the property of these “sup” sgRNAs and compared them with those targeting the same gene 
in other libraries. The median ON-score calculated for these sgRNAs in H-mLib was higher than the most of 
other libraries (n = 11), while only Gattinara and TorontoKoV3 show comparable distributions (Supplementary 
Fig. 6). Meanwhile, the percent of sgRNA targeting CDD got similar results, only Brunello, Gattinara, and 
YusaKoV1 were a little bit higher than H-mLib (Supplementary Fig. 7). Moreover, the SNP frequency at each 
position of “sup” sgRNAs in H-mLib is much lower than in any other libraries, and in some positions, there is no 
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SNP that could guarantee the on-target efficiency (Supplementary Fig. 8). These results suggest that the existing 
genome-wide CRISPR/Cas9 libraries still have room for optimization and may miss some sgRNA candidates.

Next, we conducted a fitness CRISPR screening in K562 cells to validate the performance of the H-mLib 
sgRNA library (Fig. 2; Supplementary Table 2). We chose the Brunello library as a benchmark as it has been 
widely used in many CRISPR-based knockout screening  experiments11,27,34–38 since it was designed. And when 
comparing the prediction scores of on-target efficiencies, the Rule2 score of the Brunello library showed the 
second-best performance besides H-mLib (Supplementary Fig. 2; Supplementary Fig. 3). In brief, the sgRNAs of 
the H-mLibA and the H-mLibB libraries were synthesized and cloned into a dual-gRNA vector respectively, while 
the Brunello library was cloned into a single-gRNA vector according to its original design. The three plasmid 

Figure 1.  Design and property of H-mLib sgRNA library. (a) sgRNA design workflow of H-mLib sgRNA 
library. The process involves iterative annotation and filtration of candidate sgRNAs to identify the most 
effective sgRNAs. The final selected sgRNAs and their target genes after the iterative process were shown in the 
dotted box. (b) Constructs and schematic illustration of the dual-sgRNA system used by H-mLibA (left) and 
H-mLibB(right). I Synthesized oligonucleotide of H-mLibA and H-mLibB, each oligonucleotide contains two 
sgRNAs. II The construct of sgRNA oligo and the backbone plasmid which contains U6 promoter and expresses 
mKate2. According to the utilization of opposite restriction endonuclease, sgRNAs could clone into a specified 
plasmid. III Human transfer RNA Gln (tRNA-Gln) was constructed into the plasmid too, the tRNA processing 
system allows pairwise sgRNA expression in a single cell. (c) Library size and target gene number of H-mLib 
and other reported CRISPR/Cas9 libraries. The name of each sgRNA library is shown vertically on the left and 
the corresponding number of target genes is displayed in the histogram on the right horizontally. The library 
size and average sgRNA number per gene were shown in dot plot on the left, corresponding to library names 
horizontally. (d) CDD target rate and gene off-target rate of H-mLib and other reported CRISPR/Cas9 libraries. 
The bar plot on the top shows the percent of sgRNAs target CDD region in each sgRNA library. The bar plot 
on the bottom shows the percent of genes containing sgRNAs that may have off-target sites on the genome. (e) 
SNP frequency at each site of sgRNA (1–20) and PAM (21–23) sequence in H-mLib and other reported sgRNA 
libraries. The lower SNP frequency at position 11–23 of H-mLib contributes to the lower off-target possibility.
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libraries were then transduced into K562 cells, which were cultured for 24 days with the presence of puromycin 
(“Methods” section). To achieve the 500 × cell-to-sgRNA coverage, each of the H-mLib libraries requires about 11 
million cells and the Brunello library requires 38 million cells (Fig. 3a). The quality control analysis of the plasmid 
library before lentivirus vector packaging and the “0 day” reference library (48 h after transduction) revealed 
consistent and uniform characteristics. The correlation between the plasmid library and the day 0 library was 
found to be greater than 0.88, indicating that the sgRNA abundances in the virus library align with those in the 
plasmid library. Additionally, the quality control assessment demonstrated high coverage rates of over 99% and 
95% for the plasmid library and day 0 library, respectively. The coverage was also observed to be uniform, with 
a 90/10 ratio of less than 2 and 2.5 for the plasmid library and day 0 library, respectively (Supplementary Fig. 9 
and 10). K562 cells bearing the CRISPR screening libraries were collected on day 4, day 10, day 18, and day 24, 
and NGS libraries were prepared to quantify the sgRNAs abundances in these cells.

To determine the overall performance of our screening experiments, we employed a comprehensive essential 
gene list which was summarized by six gene lists (“Methods” section) and a gold-standard nonessential gene  list39 
as reference gene sets. We first use the replicate quality scores calculated by  BAGEL240 to evaluate the reliability 
of screens. Along with the screening, the quality scores increased accordingly across all three libraries, and after 
day 4 both the H-mLibA and H-mLibB showed reliable quality replicate (quality score > 1). Besides, H-mLibA 
and H-mLibB got higher score results than Brunello at any time point (Fig. 3b).

At the gene level, we performed Receiver Operating Characteristics (ROC)—Area Under The Curve (AUC) 
analysis on individual sgRNAs, which is a measurement of the classification performance on essential and 
non-essential genes and the AUC values represent the degree or measure of  separability41. According to the 
 MAGeCK42 results, we plotted the ROC curve to estimate the performance of each library (Fig. 3c; “Meth-
ods” section). After day 4, all libraries showed high performance in the detection of essential genes while both 
H-mLibA and H-mLibB performed better than Brunello. For non-essential genes, all libraries showed a random 
distribution (AUC ~ 0.5) which indicated these genes were not preferentially depleted. The results showed the 
AUC value of all libraries increased remarkably from day 4 to day 10 and remained at a similar level till day 24. 
Notably, the H-mLibA and H-mLibB reached a high AUC value (0.8518 and 0.8311) on day 10, which is earlier 
than day 18 of the Brunello. Moreover, the H-mLibA showed higher AUC values than Brunello across all time 
points for essential genes. Furthermore, we employed two additional algorithms,  ScreenBEAM43 and  PBNPA44 
to do the same analysis (Supplementary Fig. 11; “Methods” section). Although different algorithms got variable 
results, in all the circumstances, H-mLibA and H-mLibB performed remarkably well than Brunello.

Figure 2.  Schematic of K562 CRISPR/Cas9 knockout screening using H-mLibA, H-mlibB, and Brunello 
libraries. The oligonucleotides of H-mLib and Brunello containing a different number of sgRNA were cloned 
into plasmids and transduced into K562 cells through lentivirus. Cells were collected at five different time 
points. Benefiting from the small library size and dual-sgRNA system, the number of plasmids and viruses 
required for H-mLibAand H-mLibB were four times less than Brunello’s.
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Figure 3.  Genome-wide CRISPR/Cas9 knockout screens in the K562 cell line. (a) Required cell number 
for H-mLibA, H-mLibB, and Brunello libraries screening. To reach a 500 × coverage screening experiment, 
H-mLibA and H-mLibB require approximately 11 million cells while Brunello requires approximately 38 
million. (b) Mean quality score of H-mLibA, H-mLibB, and Brunello libraries on different time points. The 
quality scores of replicates were directly related to the overall reliability of an experiment. H-mLibA and 
H-mLibB have the same quality scores across all time points and are much higher than Brunello after Day 10. 
(c) ROC-AUC analysis of individual sgRNAs targeting essential (solid line) and non-essential (dashed line) gene 
sets in the H-mLibA, H-mLibB, and Brunello library screened in K562 cells at time point day 4, day 10, day 18 
and day 24. The results were calculated by MAGeCK.
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Genome-wide pooled libraries display possibilities to identify and classify essential genes in different species, 
tissues, or cell types. These essential genes are likely related to different biological functions and processes and 
can be classified into core-essential and tissue/cell-specific essential genes. By identifying the gene essentiality, 
we could gain new insights into key cellular processes and find important targets for disease  therapies3,4,17,45. To 
identify the essential genes, the H-mLib and Brunello libraries were also used to screen Jurkat cells, and cells 
were collected at the effective time points (day 12, day 18, and day 24) refer to K562 (Supplementary Table 3). 
The screen results of Jurkat cells showed high screening performance as good as K562 (Supplementary Fig. 9, 11, 
12, and 13). Then we applied the Bayesian analysis of gene essentiality approach to calculate a log Bayes factor 
(BF) for each gene, and genes with BFs above a certain threshold were considered as essential genes (“Methods” 
section). In the end, the essential genes overlapping by K562 and Jurkat were identified as core-essential, and 
other genes unique from any given essential gene lists were identified as cell-specific essential. As a result, we 
identified 211 human core-essential genes, which contain 132 genes overlapping the previously defined  set45 
and 79 additional genes (Supplementary Fig. 14). Furthermore, we identified 16 K562 and 12 Jurkat cell-type 
specific essential genes which were uniquely classified (Supplementary Table 4; “Methods” section). For K562 
cell-type specific essential genes, we observed feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), 
which has been suggested to relate to  erythropoiesis46, and GATA binding protein 1 (GATA1), which functions 
in erythroid  development47 and biased expression in bone  marrow48. For Jurkat cell-type specific essential genes, 
we observed menin 1 (MEN1), which was related to a tumor  suppressor49. These results would be valuable for 
identifying specific therapeutic targets. Together, the H-mLab had outperformed efficiency on not only gene 
knock speed but also total gene deletion rare. Moreover, the minimal library size offers the greatest cost savings 
and best expandability in the future.

Discussion
CRISPR-based knockout screening is an emerging technology that enables systematic genetic analysis of a cel-
lular or molecular phenotype in question. Here, we design an optimized minimal genome-wide human sgRNA 
library, termed H-mLib. Comparative data indicate that H-mLib has the smallest library size, yet second-largest 
targeting gene numbers (Fig. 1c). The library size has been minimized through an improved sgRNA design 
strategy and utilizing a dual-gRNA delivery system, in which two sgRNAs are employed to target a single gene, 
significantly contributing to reducing the library size.

To design the dual-sgRNA, we gave priority to ensuring that sgRNA1 is the one with the highest efficiency, 
unless the prioritized sgRNA positions are conflict with restriction sites of the cloning steps. Previous studies 
have demonstrated that in the tRNA-sgRNA system, the position of sgRNA has no significant impact on the 
editing efficiency, suggesting the dual-sgRNA design would not lead bias to the final screening outcomes. It has 
also been reported that the distances between the sgRNA targets may induce different efficiency of  deletion50,51. 
However, we did not prioritize the distances between the sgRNA1 and sgRNAs as this will significantly decreased 
the number of available sgRNAs of each gene (Supplementary Fig. 15).

In the fitness screening performed in K562 and Jurkat cells, both H-mLibA and H-mLibB demonstrated 
better library quality and screening efficiency compared to the Brunello library (Fig. 3; Supplementary Fig. 11, 
12, and 13), and they also exhibit superior performance in gene knock speed and total gene deletion rate (Sup-
plementary Fig. 16). The paralleled screenings allowed us to analyze core essential genes and cell-type specific 
essential genes in K562 and Jurkat cells. Among the 211 essential genes we identified from the K562 and Jurkat 
screening, 132 genes were overlapped with  CEGv245 and 79 were new from this study (Supplementary Fig. 14). 
Meanwhile, we set up a series of cutoffs and identified 16 and 12 cell-type specific essential genes in the K562 
and Jurkat cell lines, which may provide valuable insights for targeted therapeutic interventions.

The size of the H-mLib allows screening when the number of cells are limited, and the smaller screening 
scale also saves cost. According to the K562 and Jurkat fitness screening, the H-mLib also demonstrated good 
screening efficiency, reflected by dropping out of genes in earlier time points than other libraries.

In conclusion, the minimal-sized and efficient sgRNA library, H-mLib, added a valuable module to the 
CRISPR screening toolbox and provided more opportunities to identify critical genes in biomedical researches.

Methods
sgRNA collection and enzyme cut site annotation. All sgRNAs corresponding to potential NGG-
containing target sites on the human (GRCh38/hg38) genome were calculated by a customized Perl script. The 
enzyme cut site was set at the 17 position from 5’ to 3’ of each sgRNA sequence. These sgRNAs have more than 
six (≥ 6) target sites or contain more than four (≥ 4) consecutive bases that were filtered out first.  Bedtools52 
2.30.0 was used to annotate the enzyme cut site of each sgRNA according to the overlap between cut coordinates 
with human genome annotation files downloaded from the National Center for Biotechnology Information 
(NCBI)  database53. For genes without any sgRNA annotation, we search sgRNAs with no more than ten (≤ 10) 
target sites and retain those that could be annotated to a single gene. In the end, a primary pool of 918,668 sgR-
NAs was generated.

ON‑score calculation. DeepCas9 score program takes a 30 bp sequence (4 bp upstream + 20 bp target + 3 bp 
PAM + 3 bp downstream) as an input file. The DeepCas9 package is carried out with default  parameters23. AIdit_
ONs score algorithm takes a 63 bp sequence (20 bp upstream + 20 bp target + 3 bp PAM + 20 bp downstream) as 
an input file to predict the on-target  activities24. The selected cell type and genome editing enzyme were K562 
and SpCas9 respectively. The Project score only requires a 20 bp sgRNA sequence and simply adds the nucleotide 
scores at each position according to the score  table45. Rule2 score program takes a 30 bp sequence same with 
DeepCas9 as input and only the “–seq” parameter is  set11. After Z-score normalization, Pearson’s correlation was 
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calculated and the highest correlation coefficients were set as score weights for each score. The final ON-score 
was the sum of the weighted score of AIdit_ONs score, DeepCas9 score, Project score, and Rule2 score.

Ranking of sgRNA and OFF‑score calculation. All sgRNAs in the primary pool are assigned to each 
gene according to their target sites. Besides, SNPs and conserved domains are also annotated by the same method 
of enzyme cut site annotation. The human SNP annotation file was downloaded from the NCBI database. Con-
served domain annotation information was downloaded from the Prot2HG  database54. sgRNAs are removed if 
any SNP sites were deposited in positions 11–20 (5′–3′) or in the PAM sequence. Then the remaining sgRNAs of 
each gene are sorted in descending order according to the ON-score, and the conserved domain target sgRNAs 
will be carried out first. Finally, the top 10 sgRNAs were selected, and all sgRNAs were selected if the total num-
ber of sgRNA is less than 10.

Next, the potential off-target sequences of these sgRNAs with 1 to 6 mismatches are collected by searching 
all NGG-containing sequences on the human genome. These sequences were used to calculate CFD scores by 
the  CRISPOR55 tools with default parameters and the OFF-score is the sum of all CFD scores for each sgRNA.

Minimal sgRNA library generation. The top 10 sgRNAs were divided into two sgRNA groups according 
to the enzyme cut site number: unique target and multiple target. In the next sgRNA selection step, the unique 
target group is prioritized. Within each subgroup, sgRNAs are sorted by OFF-score in ascending order. After 
filtering out the recognition sites of BsmBI and AarI, the best four ranked sgRNAs were selected and constructed 
into two separate dual knock-out libraries, namely H-mLibA which contains the top two sgRNAs, and H-mLibB 
which contains the remaining two. If there are not enough sgRNAs, the best-ranked one will be reused. In the 
two libraries, we added the same 500 non-target 20-nt sequences on the human genome as the negative control.

Lentiviral vectors construction. Oligonucleotides of the H-mLib library were synthesized by GenScript 
(CustomArray) and amplified in six 50 ul PCR reactions as follows: 25 ul NEBNext Ultra II Q5 Master Mix 
(NEB, M0544S), 2.5 ul forward primer (10 uM), 2.5 ul reverse primer (10 uM), 1 ul template (5.33 ng/ul oligo 
pool), and nuclease-free water up to 50 ul. The PCR program of H-mLibA was set as the following condition: (1) 
98 °C 30 s; (2) 12 cycles of 98 °C 10 s, 64 °C 30 s, 72 °C 30 s; (3) 72 °C 2 min. The PCR program of H-mLibB was 
set as the following condition: (1) 98 °C 30 s; (2) 12 cycles of 98 °C 10 s, 70 °C 30 s, 72 °C 30 s; (3) 72 °C 2 min. The 
PCR products were size separated on 2.5% agarose gel. The gel slice with the targeted size (115-nt) was extracted 
using the QIAGEN Gel Extraction kit (QIAGEN, 28706) and further purified with 1.8 × AMPure XP beads 
(Beckman, A63882). The purified products were cloned into a modified lentiGuide Puro backbone (addgene, 
52963) with mKate2. All primers used here can be found in Supplementary Table 5 (Supplementary Table 5).

The 50 uL Golden Gate Assembly (GGA) reaction of H-mLibA was set as follows: 50 fmol of backbone, 150 
fmol of inserts, 0.5 ul of T4 DNA ligase (Thermo, EL0014), 5 ul 10 × T4 DNA ligase buffer, 1 ul Esp3I (Thermo, 
ER0451), and nuclease-free water up to 50 ul. The 50 uL GGA reaction of H-mLibB was set as follows: 50 fmol 
of backbone, 150 fmol of inserts, 0.5 ul of T4 DNA ligase (Thermo, EL0014), 5 ul 10 × T4 DNA ligase buffer, 1 ul 
Esp3I (Thermo, ER0451), and nuclease-free water up to 50 ul. The GGA condition of each library was set as (1) 
90 cycles of 37 °C 5 min and 22 °C 5 min; (2) 65 °C 30 min; (3) 37 °C 3 h. For H-mLibA and B, an additional 1 ul 
of Esp3I and AarI was added to the reaction right before the 3 h 37 °C incubation, respectively. For each library, 
three 50 ul reactions and one negative control reaction were performed following the same condition except 
without adding the inserts. The GGA reaction products were purified with 0.8 × AMPure XP beads (Beckman, 
A63882) and then dialysis on the MFMillipore™ Membrane Filter (Sigma, VSWP02500) for 2 h. For each transfor-
mation reaction, 2 ul GGA products were electroporated (Eppendorf 2510, 1700 V) with 25 ul electrocompetent 
cells (Lucigen, 60242-2). One reaction was performed for the sample and one reaction was performed for the 
negative control. The tube with the transformation mixture was recovered for 1 h at 37 °C, then spread on two 
25 cm × 25 cm LB-ampicillin plates and incubated for 20 h at 30 °C. After propagation, colonies were scraped 
from the plates. Plasmids were extracted using QIAGEN Plasmid Plus Midi Kit (QIAGEN, 12945) according to 
the manufacturer’s instructions. The product was called the GGA1 plasmid library.

The second GGA was performed under the same condition except for another restriction enzyme AarI and 
Esp3I were used for H-mLibA and B, respectively. The molar ratio of the GGA1 library and the ‘human Gln-tRNA 
vector’ (The vector and map will be available in addgene) is 1:3, and 50 fmol of the GGA1 library was used. For 
each library, three 50 ul reactions and one negative control reaction were performed. The transformation, propa-
gation, and plasmid library extraction were performed the same way as the preparation for the GGA1 library. 
After propagation, colonies were scraped from the plates. Plasmids were extracted using QIAGEN Plasmid Plus 
Midi Kit (QIAGEN, 12945) according to the manufacturer’s instructions.

CRISPR‑Cas9 K562/Jurkat screens. K562 and Jurkat cell lines expressing Cas9 stably and lentivirus 
pools carrying sgRNA libraries were produced as previously  described14. K562-Cas9 cells were cultured in 
1640 medium with 10% FBS and 1 μg/ml blasticidin on confluency of 0.5 million/ml in shaking incubators at 
120 rpm, 37 °C, and with 5% CO2. For sgRNA screening, cells were transduced by lentivirus pools in two bio-
logical replicates at a low MOI (~ 0.3). Transduction was performed with enough cells to achieve a representa-
tion of at least 500 cells per sgRNA per replicate. After 2 days of culture, transduction efficiency was detected by 
makte2 fluorescent proteins through flow cytometer. Makte2 positive cells representing × 500 coverage of each 
sgRNA library were centrifuged and stored at − 80 °C, which were used as starting reference cells (day 0). The 
other cells were still cultured and selected by puromycin at 2 μg/ml puromycin for the first 4 days and then at 
1 μg/ml puromycin for the next 20 days. The same number of sgRNA-expressing cells as day 0 were collected on 
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days 4, 10, 18, and 24, and these time points were marked as day 4, day 10, day 18, and day 24. Jurkat-Cas9 cells 
were cultured and screened in the same manner as K562, while the cells were collected on days 0, 12, 18, and 24.

NGS library preparation. Genome DNA was extracted by DNA isolation kit (TIANamp Genomic DNA 
Kit, Cat. no 4992254) based on the protocols provided by the manufacturer. All genome DNA was used for NGS 
library construction in the split 50ul PCR reaction as follows: 2 μg DNA template, 0.25 μM forward primer, 
0.25 μM reverse primer, 25 μl NEBNext Ultra II Q5 Master Mix (NEB, M0544S) and nuclease-free water up to 
50 μl. Before PCR amplification, 20 ul of reaction was used to perform quantitative PCR (qPCR) to quantify the 
PCR cycle following the program: (1) 98 °C 60 s; (2) 40 cycles of 98 °C 10 s, 65 °C 20 s, 72 °C 20 s; (3) 72 °C 2 min. 
The final library PCR procedure was the same as qPCR, while the cycles in step (2) were determined according 
to the results of qPCR. Finally, the PCR product was purified with AMPure XP beads (Beckman, A63882). All 
primers used here can be found in Supplementary Table 5 (Supplementary Table 5).

Data analysis. All libraries were sequenced as 150-bp paired-end. The sequencing reads were first under-
gone adapter removal by ‘cutadapt’. The parameters were set as ‘-n 1 -e 0.1 -O 2 -m 16’56. Alignment was con-
ducted using bowtie2 with ‘-np 0 -n-ceil L,0,0.2 –very-sensitive’57. Customized references were used according to 
the sources of the NGS libraries. The successfully aligned reads were assigned to the designed sgRNA-pairs and 
corresponding genes by a custom Perl script. The read counts were calculated and used for downstream analysis.

To get a reliable human essential gene list, we collected three published essential gene  lists3,12,45 and three 
essential gene lists from the DepMap Public 22Q1 dataset including ‘Achilles_common_essentials’, ‘CRISPR_com-
mon_essentials’ and ‘common_essentials’. Genes within three of these six lists were summarized as essential 
genes (EG_1) and were used for downstream analysis. The used non-essential genes were the gold-standard 
nonessential  genes39 (NG_1) which were also defined as ‘nonessentials’ in the DepMap Public 22Q1 dataset.

Then, the raw read counts for each library were processed with the  BAGEL240,  MAGeCk42,  ScreenBEAM43, 
and  PBNA44, pipeline. To evaluate the performance of each library, we ran BAGEL2 with default parameters on 
all replicates, and the essential and nonessential training sets defined above. The parameters for MAGeCk were 
set as ‘–control-sgrna Negative_control –norm-method median –paired –normcounts-to-file –remove-zero both 
–sort-criteria pos’. The parameters for ScreenBEAM were set as ‘data.type = ’NGS’, do.normalization = TRUE, fil-
terLowCount = TRUE, filterBy = ’control’, count.cutoff = 4, nitt = 15,000, burnin = 5000’. We ran PBNA with default 
parameters on each replicate independently and on all replicates. The results of MAGeCk, ScreenBEAM, and 
PBNA were used to calculate the AUC value for each sample by  pROC58 R package.

To identify core essential and cell-type specific essential genes, we ran BAGEL2 with default parameters on 
day 10, 18, and 24 of K562 samples and day 12, 18, and 24 of Jurkat samples, as these three time points validated 
the ability to classify essential genes. The algorithm uses certain essential and nonessential gene training sets, 
and we note that different training sets would get different BF results. So, besides the EG_1 and NG_1 gene lists, 
we further employed the gold-standard essential  genes39 (EG_2), the expanded essential  genes45 (EG_3) by the 
same group, and another defined non-essential gene  list3 (NG_2) and paired into four training set combinations: 
‘EG_1-NG_1’, ‘EG_1-NG_2’, ‘EG_2-NG_2’ and ‘EG_3-NG_2’. For each cell line, we got 36 gene-level BF results 
across three libraries (3 time points × 3 libraries × 4 training sets). Based on the Cancer Cell Line  Encylcopedia59 
(CCLE) gene expression data, genes with log TPM < 1 were excluded. Next, to get reliable results, we set five 
different cutoffs: (1) Genes presented in 24 results with BF ≥ 6 or any results with BF ≥ 20; (2) Genes presented 
in 24 results with BF ≥ 6 or any results with BF higher than three-sigma above the mean; (3) Genes presented in 
18 results with BF ≥ 6 or any results with BF higher than three-sigma above the mean; (4) Genes presented in 24 
results of K562 and presented in 16 results of Jurkat with BF ≥ 6 or any results with BF higher than three-sigma 
above the mean; (5) Genes presented in 24 results of K562 and presented in 18 results of Jurkat with BF ≥ 6 or 
any results with BF higher than three-sigma above the mean. A gene with BF above the threshold that hits three 
cutoffs was defined as effectively essential.

Data availability
All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression 
Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ geo/) under accession number GSE223086.
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