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Uncertainty analysis 
and optimization of laser thermal 
pain treatment
Honghua Liu 1, Chang She 1, Zhiliang Huang 2, Lei Wei 3, Qian Li 1, Han Peng 1 & Mailan Liu 1*

Uncertainty in operating parameters during laser thermal pain treatment can yield unreliable results. 
To ensure reliability and effectiveness, we performed uncertainty analysis and optimization on these 
parameters. Firstly, we conducted univariate analysis to identify significant operational parameters. 
Next, an agent model using RBNN regression determined the relationship between these parameters, 
the constraint function, and the target function. Using interval uncertainty analysis, we obtained 
confidence distributions and established a nonlinear interval optimization model. Introducing RPDI 
transformed the model into a deterministic optimization approach. Solving this with a genetic 
algorithm yielded an optimal solution. The results demonstrate that this solution significantly 
enhances treatment efficacy while ensuring temperature control stability and reliability. Accounting 
for parameter uncertainties is crucial for achieving dependable and effective laser thermal pain 
treatment. These findings have important implications for advancing the clinical application of this 
treatment and enhancing patient outcomes.

Motivation and incitement. Pain and associated abnormal sensations are often linked to current or 
potential tissue and nerve  damage1–3. Proper nociceptive stimulation techniques can facilitate the early diagno-
sis of neurological  disorders2, which can enable patients to receive timely treatment and prevent deterioration. 
Additionally, these techniques can provide a more comprehensive understanding of the pathogenesis of the 
 disorders4,5, which can serve as an important theoretical basis for their eradication. The laser-evoked poten-
tial (LEP) technique is one such nociceptive stimulation technique that stimulates sensory nerve endings and 
induces pain by increasing the skin tissue’s temperature through laser  irradiation4. The thermal pain stimulation 
produced by the LEP technique conforms to the stimulation pattern of human senses and has great potential 
for development in nociceptive  research6,7. Since about 90% of the infrared laser energy is absorbed by the 
more superficial stratum corneum and epidermis, the activation of nociceptive receptors is mainly achieved by 
thermal conduction. Therefore, the temperature of nociceptive receptors is used as a target parameter for laser 
thermal therapy for pain. If the temperature of the nociceptive receptors is too low, it can be difficult to achieve 
the conditions necessary for their activation. Conversely, if the temperature is too high, it may result in damage 
to sensory nerve endings or generate false-positive signals, which can impact the accuracy of the study results. 
Therefore, the intensity of the stimulus, i.e., the temperature of the nociceptive receptors, must be controlled 
between the nociceptive and tissue damage thresholds.

A comprehensive understanding of the challenges in this field can be gained by analyzing the temperature 
distribution of the medium. Ding H. et al.8 simulated and compared the temperature distribution induced by 
continuous and pulsed lasers on human skin. To account for the diverse thermal characteristics of distinct skin 
layers, including the stratum corneum, living epidermis, and dermis, scholars have introduced two-dimensional 
and three-dimensional models derived from one-dimensional  models9–12. Rossi F et al.13 developed a two-
dimensional model of facial skin using the finite element method (FEM), considering different skin structures 
and their optical and thermal parameters. Shurrab K.M. et al.14 developed a three-dimensional finite element 
thermal model and used FEM to calculate the temperature distribution of skin tissue.

However, these studies mainly focused on modeling tissue temperature distribution with high accuracy and 
rarely considered the effects of different factors on nociceptive receptors. In typical laser thermal pain stimula-
tion studies, there is significant uncertainty in several parameters, such as the laser wavelength, spot diameter, 
irradiation time, laser power density, ambient temperature, optical parameters of biological tissues, and thermal 

OPEN

1Hunan University of Chinese Medicine, Changsha 410208, People’s Republic of China. 2Hunan City University, 
Yiyang 413000, People’s Republic of China. 3Hunan Institute of Science and Technology, Yueyang 414006, People’s 
Republic of China. *email: mailan_l@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38672-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11622  | https://doi.org/10.1038/s41598-023-38672-y

www.nature.com/scientificreports/

physical parameters. These uncertainties can have an error effect on the treatment results. To ensure objective 
and accurate determination of laser output dose, safe and effective evocation of nociceptive potentials, and real 
and reliable nociceptive potential signals by LEPs technology, it is necessary to consider the uncertainties of 
these operating parameters. To achieve precise and reliable measurement of laser output dose, safe and effective 
activation of nociceptive potentials, and acquisition of authentic and dependable nociceptive potential signals 
using LEP technology, it is imperative to develop an optimization method that takes into account the uncertain-
ties associated with these operational parameters.

Contributions and salient features. In recent years, various optimization algorithms and neural net-
works have been widely applied in the fields of optimization problems and pattern recognition. Optimization 
algorithms, such as variants of Chaotic Grey Wolf Heuristic, Marine Predator Optimization Using the Key Term 
Separation Technique, Dwarf Mongoose Optimization Metaheuristics, Design of Aquila Optimization Heuristic 
and Design of Nonlinear Marine Predator Heuristics, have demonstrated their effectiveness in solving complex 
optimizatio Zn problems by mimicking natural or computational  processes15–19. Neural networks have gained 
significant attention for their ability to learn complex patterns and make predictions based on vast amounts of 
 data20–25. Some current research in the medical field has focused on numerical simulations and computational 
approaches for understanding complex  phenomena26. Researchers, such as Mubashir et  al.27, have explored 
the generation of traveling wave solutions using the He-Laplace algorithm. Additionally, Al Alwan et al.28 have 
investigated the formation of exact solitary waves in the generalized Calogero-Bogoyavlenskii-Schiff equation. 
Furthermore, Partohaghighi et  al.29 have analyzed fractional differential equations using different methods. 
Shaikh et al.30 have proposed a nonlinear structure model for chemical reactions, emphasizing the significance 
of existence and uniqueness through numerical modeling. These studies contribute to the expanding knowledge 
in their respective areas of research.

In this paper, we propose an effective optimization method for uncertainty laser thermal pain stimulation. 
By employing RBNN as a surrogate model, we train it to predict the output response for new input variables 
using a limited number of simulation runs. This approach improves computational efficiency by reducing the 
need for repetitive simulations. The RBNN model serves as a reliable proxy, enabling accurate predictions based 
on the given input variables. Interval optimization is a new uncertain optimization method that fully considers 
the fluctuation range of the operating  parameters31,32. Interval optimization has gained increasing attention in 
the fields of mechanics, acoustics, and heat  transfer33–38. By fully considering the influence of the uncertainty of 
the operating and skin parameters on the constraints, interval optimization ensures that the obtained optimal 
solution can meet the reliability requirements. In this paper, we use the interval optimization method as an 
uncertainty optimization method to develop an optimization model for the gentle moxibustion treatment process.

Paper organization. In the method section, we initially developed a simulation model and mathematical 
model for laser thermal pain treatment. Then, we conducted a single-factor analysis of the operating parameters. 
Subsequently, we established an RBNN agent model. Afterwards, we utilized the interval uncertainty analysis 
method to construct a nonlinear interval optimization model. This model was converted into a deterministic 
optimization model by incorporating RPDI. Finally, we employed a genetic algorithm to solve the deterministic 
problem. In the results and discussion section, we first analyzed the influence of the operating parameters by 
integrating the outcomes of the single-factor analysis and orthogonal experimental analysis. Next, we assessed 
the error of the RBNN model. Additionally, we performed uncertainty analysis on the operating parameters 
and achieved nonlinear uncertainty optimization of the target parameters. The conclusion section provides a 
summary of the findings. We have created a graphical representation of the study to effectively capture the key 
aspects of our research (Fig. 1).

Figure 1.  The graphical representation of the study.
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Method
Simulation model building. In this paper, we established a 3D physical simulation model of laser thermal 
pain treatment using COMSOL to study the relationship between the temperature within the skin tissue and the 
operating parameters. Human skin is composed of three layers, namely the epidermis, dermis, and subcutaneous 
tissues. Due to the short duration of laser irradiation, the skin tissues’ temperature rise is limited, so the mod-
eling does not include subcutaneous tissues, such as fat and muscle. The two remaining layers of biological tissue 
are refined into five parts, including the stratum corneum, epidermis, upper dermis, blood layer, and subdermal, 
with thicknesses of 10 μm, 80 μm, 260 μm, 150 μm, and 1500 μm, respectively.

The biological tissue model is shown in Fig. 2, and the specific properties are listed in Table 19.
This paper replaces the cuticle with the epidermis when building the physical model. The triangular mesh 

divides the axisymmetric model in this paper, as shown in Fig. 3. In this model, the maximum size of the grid 
cell is 159 μm, and the minimum size is 0.9 μm.

By employing an appropriate mesh division, a more precise representation of temperature changes in both the 
skin surface and deeper tissues can be achieved, resulting in simulation results of higher accuracy. Additionally, 
this approach allows for optimization between precision and computational resource usage.

Mathematical modeling. The laser transmits heat to the skin through radiation. The heat absorbed in the 
skin through thermal radiation becomes the biological group’s heat source. It is the basis for heat transfer analy-
sis in biological tissues and leads to temperature field distribution throughout the tissue being treated. The heat 
transfer in biological tissues can be solved by the Pennes  equation39.

(1)ρc
∂T

∂t
= ∇ · (k∇T)+ ωbCb(Tb − T)+ qm + qr

Figure 2.  The biological tissue model.

Table 1.  Biological tissue model.

biological tissue Cp(J · kg−1
· K−1) ρ(kg ·m−3) k (W ·m−1

· K−1)

Epidermis 2250 1210 0.197

Upper dermis 3350 1090 0.422

Blood layer 3670 1060 0.486

Lower dermis 3350 1090 0.422

Figure 3.  The grid structure of biological tissue.
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Here, T, ρ, c, and k are the temperature, density, specific heat, and thermal conductivity of the biological tis-
sue, respectively. ωb denotes the blood perfusion. Cb , Tb represent the specific heat and temperature of blood. 
qm is the metabolic heat production rate, and qr is the external heat source.

The laser beam profile is modeled as a Gaussian distribution with a standard deviation of 2.85 mm. It was 
fitted by the laser system model and corresponded to a 1/e two diameter of 11.4 mm. Light absorption in tissue 
was modeled as exponential decay using the Beer-Lamberts law. Thus, Q is formulated as the formula.

Here, Pin represents the laser power. µα is the absorption coefficient of the tissue. µs is the scattering coef-
ficient of the tissue. z denotes the depth from the tissue surface. σ is the spot radius. r is the distance to the beam 
center. Table 2 shows the optical parameters of the biological tissue model.

In laser thermal pain stimulation treatment, it is important to consider the optimal temperature range that 
will result in realistic and reliable nociceptive potential signals to the skin tissue nociceptors, while avoiding 
discomfort or irreversible damage to the skin tissue. Previous research by Tillman et al. found that the average 
depth of C nociceptive fibers in monkeys’ hairy skin was 201 μm. In human hairy skin, the "Aδ" fibers penetrate 
the dermis to the epidermis. Hairless skin typically has fewer nociceptors than hairy skin. Previous studies have 
examined laser-evoked responses, such as latency and pain intensity, in hairless and hairy skin of type I and type 
II fiber  groups40–42. The response thresholds for type I and type II were found to be 52 °C and 46 °C, respectively.

Clinical experience shows that when the human tissue temperature ranges from 37 °C to 43 °C, only a warm 
sensation is observed, with no significant effect or damage to the tissue for a longer duration. When the tissue 
temperature ranges from 43 °C to 52 °C, short-time irradiation can activate the injury receptors without causing 
permanent damage to the tissue. However, when the tissue temperature reaches 60 °C, short-time irradiation can 
denature the proteins and collagen in the tissue, resulting in cellular damage and tissue coagulation. Therefore, 
this paper takes 52 °C as the tissue damage threshold, where skin surface temperature above this level could be 
detrimental to the patient. Nociceptive receptors in the skin are distributed within the range of 20 μm to 570 μm43. 
Thus, to generate a more realistic and reliable nociceptive potential signal, it is necessary to achieve thermal skin 
penetration, i.e., the maximum temperature at 20 μm below the skin surface, with skin surface temperatures 
below 52 °C. Therefore, in this paper, skin surface temperature and thermal skin penetration are used as indica-
tors of laser thermal pain stimulation treatment.

The setting of working parameters. The temperature distribution of laser-irradiated skin tissue is pri-
marily affected by laser power, spot radius, irradiation time, and ambient temperature. To investigate the effects 
of these individual parameters on thermal analgesia treatment, we employed a numerical model. Specifically, we 
adjusted one parameter while keeping the other three parameters fixed. The parameter values for each level are 
presented in Table 3.

Single factor analysis of laser thermal pain stimulation. One-factor analysis involves analyzing only 
one variable that is experimentally treated in a single direction. In the context of laser thermal pain stimulation, 
single-factor analysis enables the exploration of the influence of different factors on the index parameters and 
the identification of factors with significant effects. In practical applications, the factors that affect the skin tis-
sue’s temperature distribution after laser irradiation are mainly external factors, which include laser power, spot 
radius, irradiation time, and ambient temperature. In this paper, we conducted single-factor analysis on these 
external factors by setting up external factors and designing simulations.

Establishment of a surrogate model. In laser thermal pain treatment, the effect indicators are mainly 
thermal penetration HPM and skin surface temperature ST. Four optimization factors, such as laser power, spot 

(2)Q(r, t) = Pinµαe
(−µα ,z)

1

σ
√
2π

e

(

−r2

2σ2

)

Table 2.  Biological tissue optical  parameters34.

biological tissue µα

(

cm−1
)

µs

(

cm−1
)

Epidermis 2.7 450

Dermis 0.7 180

Blood 0.5 44.9

Table 3.  The parameter values at various levels.

Levels Laser Power (W) Spot Radius (mm) irradiation time (s) ambient temperature (°C)

1 5 1 0.2 10

2 7.5 1.5 0.4 25

3 10 2 0.6 35
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radius, irradiation time, and ambient temperature, were selected to study the relationship with the effect indica-
tors of laser thermal pain stimulation.

Optimal Latin hypercube sampling. Interval uncertainty optimization aims to find the optimal design 
that meets the reliability requirements and minimizes (or maximizes) the value of the objective function. Due to 
the time-consuming finite element analysis, it is computationally expensive to invoke the finite element model for 
the optimization solution directly. A radial basis neural network (RBNN) considering the optimization param-
eters is established for the constraint and objective functions to improve efficiency. The approximate response 
function is given to solve the interval uncertainty optimization problem. Experimental design is required to 
build the RBNN. Latin hypercube sampling is a widely used multidimensional hierarchical experimental design 
 method44,45. The sampling steps are as follows. ① Each space in the n-dimensional space is divided into m inter-
vals according to equal probability. ② Each interval is randomly sampled once to ensure that each dimension is 
studied once. ③The number of samples is randomly paired to generate the type matrix. The results are shown in 
Fig. 4. In this paper, the Latin hypercube is used to sample the design points, which is beneficial to the uniform 
distribution of sampling. In this study, 50 experimental design points were obtained using the optimal Latin 
hypercube sampling method within the design range of the operational parameters (Fig. 5).

RBNN training. Based on the results of the sampling points, an agent model is developed, and the response 
surface of the entire design domain is obtained. In this study, RBNN model regression was used to develop the 
proxy model of the objective  function46,47. The objective parameters of any design point in the entire design 
space can be obtained with the accuracy of the proxy model based on the established parameters. The opera-
tional parameter data are first normalized. Since different operational parameters have different magnitudes 
and magnitude units, such a situation can affect the results of data analysis, so the data are normalized in order 
to eliminate the influence of magnitudes between operational parameters. The relative error (RE) between the 
simulation results y(x) and the approximation of the neural network function f(x) can be expressed by Eq. (3)48

Also, the accuracy of the developed proxy model is evaluated through the root mean square error (RMSE), 
which can be expressed as Eq. (4–7)

(3)RE =
y(x)− ⌢

y(x)

y(x)

(4)RMSE =
√

SSE

k

Figure 4.  The Latin hypercube sampling.

Figure 5.  The relationship between the interval and the design range.
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Here, SSE is the sum of squared errors, k is the number of samples (k = 50), and SST denotes the total sum of 
squares. Is the response value of the simulation model at the i-th sample, ⌢yi is the response value of the surrogate 
model at the i-th sample, and y represents the mean of yi.

Objective function uncertainty analysis. When nociceptive potentials are induced using laser radia-
tion to the skin tissue, some of the energy is absorbed by the skin, and heat is generated by absorption and scat-
tering of the skin tissue, enough heat to activate the nociceptive receptors. Various factors such as laser power, 
spot radius, irradiation time, and ambient temperature can influence the temperature of the laser-irradiated 
skin, and there is also uncertainty in these parameters, which fluctuate in an interval range, making it difficult 
to guarantee that each treatment is performed under the same conditions, leading to large temperature fluctua-
tions that may not meet treatment expectations or even damage the skin tissue. Therefore, the optimal solution 
given by the deterministic optimal design only satisfies the constraint when the working parameter is a definite 
value. This so-called optimal solution cannot really have fluctuations in the working parameters, which, as men-
tioned before, is unreliable during the actual treatment. Therefore, in order to obtain a stable optimal solution 
for the laser thermal pain stimulation process, it is necessary to quantify the operating parameters as uncertain 
parameters and also to develop an optimal design of uncertain parameters. In this paper, the uncertainty of each 
operating parameter is expressed as an interval. Using as the design operating parameter, the range of variation 
of this operating parameter can be described as

Here, dI represents the parameter interval, dL and dR are the lower and upper bounds of the parameter inter-
val, respectively. The interval is also denoted as Eq. (9)49,50 :

Here, dc and dω represent the midpoint and radius of the interval, as Eq. (10).

As shown in the equation, the interval can be determined by the midpoint dc and the radius dω . The mid-
point is usually taken as the middle value of the parameter, and the radius reflects the degree of variation of 
the operating parameter.dI should be chosen within a reasonable design domain in the interval uncertainty 
optimization. The design domain of uncertain parameters is denoted as DI , and its lower and upper bounds are 
dl and du , respectively.

Optimal design of nonlinear intervals for laser thermal pain stimulation. Due to the need for 
interval optimization of thermal penetration under uncertainty, the maximum thermal penetration is achieved 
while keeping the working parameters as much as possible under the skin surface temperature constraint. The 
interval optimization problem can be expressed as Eq. (11)51:

Here, XI =
[

XI
1,X

I
2 · · · XI

n

]

 is an n-dimensional interval design vector, Xl and Xu are the lower and upper 
bounds of the interval variable. H and S represent the objective and constraint functions, bj denotes the allow-
able value of the j-th constraint, l represents the number of constraints. The superscripts I, L, and R denote the 
parameter interval and its lower and upper bounds, respectively. Therefore, the interval uncertainty optimization 

(5)R2 = 1−
SSE

SST

(6)SSE =
k

∑

i=1

(yi −
⌢
yi)

2

(7)SST =
k

∑

i=1

(yi − y)2

(8)d ∈ dI =
[

dL, dR
]

(9)

d ∈ dI =
[

dL, dR
]

= {d
∣

∣dL ≤ d ≤dR , d ∈ R}
={d

∣

∣dc − dω ≤ d ≤dc + dω , d ∈ R}
=
〈

dc , dω
〉

, i = 1, 2, 3

(10)dc =
dL+ dR

2
, dω =

dR− dL

2

(11)

min
XI

H
(

XI
)

s.t.

Sj
(

XI
)

≤ bj , j = 1, 2, · · ·, l
Xl ≤ XI ≤ Xu

XI
i =

[

XL
i ,X

R
i

]

i = 1, 2, · · ·, n
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of laser thermal pain stimulation is performed to obtain the optimal operating parameter interval. By optimizing 
the operating parameters, the optimal solution of the objective function is achieved while ensuring reliability.

To construct an interval optimization model for the laser thermal pain stimulation treatment process, the 
target and constraint parameters should be set first. According to the above discussion, in this paper, thermal 
penetration is set as the target parameter, and skin surface temperature is set as the constraint function. Due to the 
uncertainty of the operating parameters, both thermal penetration and skin surface temperature are variable and 
uncertain values within the interval. The interval design variables contain the operating parameters such as laser 
power, spot radius, irradiation time, and ambient temperature, as shown in Table 3 above. The objective func-
tion and constraint function values can be optimized by changing the operating parameters during treatment.

Based on the above discussion, the interval optimization model of the laser thermal pain stimulation treat-
ment process can be formulated as follows:

Here, E Indicates thermal penetration of laser thermal pain treatment, F denotes the ambient temperature 
constraint function, both of which are functions on the working parameters and are influenced by the working 
parameters; dI=

[

dI1 d
I
2 · · · dIn

]

 is an n-dimensional interval design vector; b is the value of the desired tempera-
ture, i.e., 52 °C. dl and du represent the lower and upper bounds of the design domain. dLl  and dRl  denote the lower 
and upper bounds of each parameter interval. di i = 1, 2, 3 are the moxibustion parameter intervals, written 
as Eq. (13).

Thus, the laser thermal pain treatment process interval model can be expressed as Eq. (14)

Here, dc=
[

dc1 d
c
2 · · · dcn

]

 is the n-dimensional vector of the interval parameter midpoints. dw=
[

dw1 dw2 · · · dwn
]

 
is an n-dimensional vector of the interval parameter radius.

Before solving the interval optimization design model, the critical concept of reliability-based interval likeli-
hood degree (RPDI) is proposed to be useful for further simplifying the solution process.

For two different intervals AI and BI , RPDI can be expressed as Eq. (15)52:

Here, pr represents the similarity of the intervals. pr
(

AI ≤ BI
)

 has the following  features52:

① −∞ ≤ pr
(

AI ≤ BI
)

≤ +∞;
②  if AR ≤ BL , pr

(

AI ≤ BI
)

≥ 1;
③  if AL ≤ BR , pr

(

AI ≤ BI
)

≤ 0;
④  if pr

(

AI ≤ BI
)

=q , pr
(

BI ≤ AI
)

=1− q where q ∈ (−∞,+∞)。

Here, BI degenerates into an actual number B, and the RPDI can be formulated as Eq. (16).

Solution of the nonlinear interval optimization. The constraint function is expressed as Eq. (17)52.

Therefore, the constraint function is transformed into the deterministic constraint as Eq. (18):

(12)

max
dc ,dω

H
(

dI
)

s.t.

S
(

dI
)

≤ b

dl ≤ dI ≤ du

dIi =
[

dLi , d
R
i

]

i = 1, 2, 3

(13)dIi =
〈

dci , d
ω
i

〉

, i = 1, 2, 3

(14)

max
dI

H
(〈

dci , d
ω
i

〉)

s.t.

S
(〈

dci , d
ω
i

〉)

≤ b

dl ≤
〈

dci , d
ω
i

〉

≤ du

(15)pr
(

AI ≤ BI
)

=
BR − AL

2Aω+2Bω

(16)pr
(

AI ≤ BI
)

=
B−AL

2Aw

(17)F
(〈

dc , dω
〉)

=
[

FL, FR
]

=
[

min
d∈(dc ,dω)

F(d), max
d∈(dc ,dω)

F(d)

]
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Here, � represents the interval-constrained RPDI level, which is set according to the actual usage requirements 
of laser thermal pain treatment. Based on the RPDI, the optimization model for laser thermal pain treatment 
interval design can be converted into a defined optimization problem, as Eq. (19)50:

Here, FL is the lower bound of thermal penetration, and Fw represents its radius. By introducing RPDI, clas-
sical optimization algorithms can be used for solving uncertain interval optimization problems. The interval 
optimization model for the laser thermal pain treatment process is a nested optimization model. The optimiza-
tion is obtained using the outer layer, and the inner layer is used for solving the constraint function. The outer 
layer of the model is optimized using a genetic algorithm (GA), and the inner layer is optimized using sequential 
quadratic programming (SQP).

Results and discussion
Single factor analysis of laser thermal pain treatment. A single-factor analysis was conducted to 
assess the influence of operating parameters, namely laser power, spot radius, irradiation time, and ambient 
temperature, on temperature distribution during laser thermal pain treatment.

Influence of the laser power on the temperature distribution. The laser power was changed by fix-
ing the spot radius, irradiation time, and ambient temperature. The temperature rise curve at the target point of 
biological tissue after laser irradiation was obtained, as shown in Fig. 6.

As seen in Fig. 6, an increase in laser power leads to a higher energy delivery to the next layer within the 
biological tissue model, resulting in a deeper temperature penetration. The plot indicates that laser power has a 
substantial impact on the temperature rise of biological tissues, showing a roughly linear relationship between 
the two variables. Specifically, increasing the laser power by 2.5W raises the temperature by approximately 3 °C.

Influence of the spot radius on the temperature distribution. The second step is to change the spot 
radius. In this process, we need to fix the laser power, irradiation time, and ambient temperature. The tempera-
ture rise curve at the target point of biological tissue after laser irradiation was obtained, as shown in Fig. 7.

Figure 7 shows that the spot radius has a significant impact on the temperature change during laser irradia-
tion. Increasing the spot radius leads to a smaller temperature change. Specifically, as the spot radius increases, 
the temperature rise becomes slower and the maximum temperature is lower. For instance, when the spot radius 
is increased from 1 mm to 1.5 mm, the temperature at the target point drops by about 6 °C. However, when 
the spot radius is increased from 1.5 mm to 2 mm, the temperature drop is only about 2 °C. Notably, when the 
spot radius reaches 2 mm, the temperature at the target point does not meet the minimum requirements for the 
nociceptors to generate electrical signals.

(18)pr
(

F
(〈

dc , dω
〉)

≤ b
)

=
b− FL

2Fω
≥ �

(19)

max E
(〈

dc , dω
〉)

s.t.

pr
(

F
(〈

dc , dω
〉)

≤ b
)

=
b− FL

2Fω
≥ �

dl ≤ dc − dω ≤ dc + dω ≤ du

Figure 6.  The temperature rise curve at the target point under different laser power.
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Influence of the irradiation time on the temperature distribution. The irradiation time was 
changed by fixing the laser power, spot radius, and ambient temperature. The temperature rise curve at the target 
point of biological tissue after laser irradiation was obtained, as shown in Fig. 8.

Figure 8 shows that the duration of irradiation has a minimal effect on the temperature distribution of biologi-
cal tissue during laser treatment. With an increase in irradiation time of 0.2 s, the temperature at the target point 
only increases by approximately 1 °C. Additionally, the shape of the temperature rise curve remains relatively 
stable over this short period.

Figure 7.  The temperature rise curve at the target point under different spot radius.

Figure 8.  The temperature rise curves of target points under different irradiation times.
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Influence of the ambient temperature on the temperature distribution. The ambient tempera-
ture was changed by fixing the laser power, spot radius, and irradiation time. The temperature rise curve at the 
target point of biological tissue after laser irradiation was obtained, as shown in Fig. 9.

Figure 9 illustrates that the impact of ambient temperature on the temperature distribution of biological tissue 
during laser irradiation is less significant compared to changes in laser power and spot radius.

Based on the results of the single-factor analysis, it is evident that variations in laser power, spot radius, irra-
diation time, and ambient temperature have notable effects on both skin surface temperature and subcutaneous 
20 μm temperature. Thus, these four parameters were selected as optimization parameters to investigate their 
effects on the therapeutic effect of laser thermal pain.

Orthogonal test analysis. After the single-factor analysis we obtained the simulation results under differ-
ent conditions, and roughly obtained the influence of different influencing factors on the temperature of the two 
target points. In this part of the discussion, we will analyze the significant influencing factors and try to find the 
optimal parameter combination The laser power, spot radius, irradiation time, and ambient temperature were 
selected as the factors of the orthogonal experiment, expressed as A, B, C, and D. The number of factor levels is 
usually 2–4. We selected three levels for each factor, as listed in Table 4.

In laser irradiation, three levels for each of the four factors were selected, written as L9(34).

Analysis of orthogonal experiment results. Based on the laser irradiation simulation model, the simu-
lation analysis was performed on the nine groups of parameters in Table 5. The temperature at the target point 
20 μm below the skin surface was used to compare the results, as listed in Table 6.

Range analysis. The range analysis (i.e., R-method) can be used to analyze the orthogonal experiment 
results for obtaining the optimal level combination and the influence of each factor on the experimental indi-
cator. Specifically, a factor combination is obtained to optimize the experimental indicator, and all factors are 
sorted according to their influence on the experimental indicators.

The range analysis used the temperature at the target point 20 μm below skin surface as the experimental 
indicator. The influence law of each parameter on heat penetration is revealed.

The finding in Table 7 present 
−
KA3>

−
KA2>

−
KA1 , 

−
KB1>

−
KB2>

−
KB3 , 

−
KC3>

−
KC2>

−
KC1 , 

−
KD3>

−
KD2>

−
KD1 . It suggests that 

the combination of optimal parameter levels is A3B1C3D3.
The Rn values of the parameters are sorted from largest to smallest as the spot radius, laser power, irradiation 

time, and ambient temperature. The parameter that has the most significant influence on the heat penetration is 
the spot radius, the second is the laser power, and the smallest is the ambient temperature.

Figure 9.  The temperature rise curve at the target point under different ambient temperature.

Table 4.  The level of each factor.

Levels Laser power(A) (W) Spot radius(B) Irradiation time(C) (s) Ambient temperature(D) (°C)

1 5 1 0.2 10

2 7.5 1.5 0.4 25

3 10 2 0.6 35
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Analysis of orthogonal experimental result using the variance analysis. Due to the influence 
of various factors, the data obtained by the orthogonal experiment exhibits fluctuations. The factors that cause 
fluctuations can be divided into uncontrollable random factors and controllable changed factors. The range 
analysis cannot distinguish between two types of factors. The variance analysis identifies the factors that have a 
significant impact on the experimental indicators based on the variance of the observed variables. It gives accu-
rate quantitative estimation, as listed in Table 8.

Table 5.  The standard Orthogonal Table of L9(34).

Experimental no Laser power(A) Spot radius(B) Irradiation time(C) Ambient temperature(D)

1 5 1 0.2 10

2 5 1.5 0.4 25

3 5 2 0.6 35

4 7.5 1 0.4 35

5 7.5 1.5 0.6 10

6 7.5 2 0.2 25

7 10 1 0.6 25

8 10 1.5 0.2 35

9 10 2 0.4 10

Table 6.  The orthogonal experimental result.

Experimental no Laser power(A) Spot radius(B) Irradiation time(C) Ambient temperature(D)
Target point 20 μm 
below skin surface

1 5 1 0.2 10 44.190

2 5 1.5 0.4 25 41.418

3 5 2 0.6 35 40.320

4 7.5 1 0.4 35 54.258

5 7.5 1.5 0.6 10 44.122

6 7.5 2 0.2 25 39.628

7 10 1 0.6 25 63.521

8 10 1.5 0.2 35 44.511

9 10 2 0.4 10 41.048

Table 7.  The range analysis for the temperature at the spot center.

Experimental no Laser power(A) Spot radius(B) Irradiation time(C) Ambient temperature(D)
Target point 20 μm 
below skin surface

1 5 1 0.2 10 44.190

2 5 1.5 0.4 25 41.418

3 5 2 0.6 35 40.320

4 7.5 1 0.4 35 54.258

5 7.5 1.5 0.6 10 44.122

6 7.5 2 0.2 25 39.628

7 10 1 0.6 25 63.521

8 10 1.5 0.2 35 44.511

9 10 2 0.4 10 41.048

Kn1 41.98 53.99 42.78 43.12

Kn2 46 43.35 45.57 48.19

Kn3 49.69 40.33 49.32 46.36
−
Kn1

13.99 18.00 14.26 14.37
−
Kn2

15.33 14.45 15.19 16.06
−
Kn3

16.56 13.44 16.44 15.45

Optimal levels A3 B1 C3 D3

Rn 7.22 13.66 6.54 5.07
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The experimental findings suggest that the most influential factor on the temperature at the target point 
20 μm below skin surface is the spot radius, the second is laser power, the third is the irradiation time, and the 
smallest is the ambient temperature.

RBNN training. The results of the error analysis of the developed approximate model are shown in Table 9 
below.

The results of the established approximation model errors show that the model established by RBNN has 
sufficient accuracy in medical practice for the penetration of skin temperature during laser thermal pain treat-
ment (Fig. 10).

Uncertainty analysis of target parameters. Figure 5 shows the parameter uncertainty variables and their design 
ranges. The design ranges and interval radii for the four operating parameters of laser power, spot radius, irradia-
tion time, and ambient temperature are included, as shown in Table 10 below.

As shown in Table 11, sequential quadratic programming (SQP) was used to calculate the response intervals 
for the moxibustion indicators based on the RBNN model created.

Table 11 indicates that the skin surface temperature could exceed 52 °C due to the uncertainty of the operating 
parameters. The actual variation range of the design conditions may cause significant fluctuations in ST, resulting 
in the failure to achieve the desired therapeutic effect of laser thermal pain stimulation. Figure 4 demonstrates 

Table 8.  The temperature variance analysis.

Variance source fi F Significance

Laser Power 2 0.65 **

Spot Radius 2 4.78 *****

Irradiation time 2 0.44 *

Ambient temperature 2 0.26 *

Table 9.  The error analysis results of the surrogate model.

option RE (%) R2

HPM [− 0.308, 0.852] 0.9991

ST [− 0.297, 0.340] 0.9998

Figure 10.  Schematic diagram of uncertainty optimization design.

Table 10.  The value range and interval radius of moxibustion parameters.

Parameter name Value range Interval radius

Laser power (W) [5, 10] 0.25

Spot radius (mm) [1, 2] 0.05

irradiation time (s) [0.2, 0.6] 0.02

ambient temperature (°C) [10, 35] 1.25
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the importance of setting constraints under the uncertainty of the operating parameters. The design conditions 
are proposed as design points with determined values in the feasible region and away from the failure region. 
However, due to the influence of the uncertainty of the working parameters, the design condition is a chang-
ing region rather than a fixed point. As seen in the figure, a part of the variable domain of the design condition 
during the treatment is located in the unreliable region, indicating the uncertainty of the treatment effect when 
the parameters are uncertain. This paper quantifies these uncertainties as interval variables, and their variation 
domain parameters form a multidimensional box.

To ensure a reliable design, it is essential to ensure that the entire variation domain of the design conditions 
is located in the feasible region. Therefore, the designs created using the interval uncertainty design method can 
be reasonably assured of their reliability. Interval optimization can be used as an optimization method for laser 
thermal pain stimulation, which can improve the effectiveness of the treatment.

Nonlinear interval optimization solution. By introducing RPDIs, classical optimization algorithms can be used 
to solve optimization problems with uncertain intervals. Optimal solutions are computed for different RPDIs.

The study demonstrated that the upper limit of the skin surface temperature interval exceeded the allowable 
value of 52 °C only when λ was 0.9, but when λ was greater than 1, the upper limit of the skin surface tempera-
ture interval was within the allowable limit. The research investigated the impact of different RPDI on thermal 
penetration and surface temperature intervals to identify the optimal solution for the temperature interval. The 
findings, illustrated in Table 12 and Fig. 11, indicate that higher RPDI values corresponded to lower thermal 
penetration and skin surface temperature, implying that an increase in reliability during treatment decreased its 
efficacy. The results also showed that when the RPDI was greater than or equal to 1, the lowest temperature in 
the thermal penetration interval was greater than the nociceptive threshold temperature of 43 °C for nocicep-
tive receptors, and the highest temperature in the skin surface temperature interval was less than the damage 
threshold temperature of 52 °C for skin tissue, thus ensuring reliable laser thermal pain treatment. However, 
when the RPDI was 0.9, the maximum temperature in the skin surface interval exceeded 52 °C, which could 
cause damage to the skin tissue.

Table 11.  The objective function value interval of the mild moxibustion.

Index parameters Value range

HPM (°C) [39.0, 58.1]

ST (°C) [39.2, 59.3]

Table 12.  The optimal solutions under different RPDIs.

�value 0.9 1.0 1.1

ST(°C) [48.44, 52.39] [48.07, 52.00] [47.79, 51.62]

HPM(°C) [47.17, 50.82] [46.76, 50.40] [46.12, 49.71]

Figure 11.  Optimization results under different RPDI.
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Conclusions
Most previous studies on skin tissue temperature distribution in laser thermal pain treatment have been con-
ducted under deterministic conditions, which cannot ensure stable and reliable treatment outcomes. To accu-
rately assess the effect of operating parameters on target parameters, interval uncertainty analysis and optimi-
zation of uncertain parameters were performed to achieve optimal treatment results. First, a simulation and 
mathematical model of laser thermal pain treatment was established, and the constraint function and objective 
function were determined. Then, a single-factor analysis was conducted to identify parameters with significant 
effects. An agent model was introduced, and a neural network (RBNN) was used to establish the constraint 
function and objective function. An interval uncertainty analysis method was also introduced, considering the 
uncertainty of parameters that can cause unreliability in the temperature of laser thermal pain treatment. A 
nonlinear interval optimization model was established, and RPDI was introduced to transform the nonlinear 
uncertain interval optimization into deterministic interval optimization. Finally, a genetic algorithm was used 
to solve the deterministic optimization problem. With the increase of RPDI, thermal penetration and surface 
temperature decreased, and the target parameters were completely reliable when λ was greater than or equal 
to 1. The results of this study demonstrate that the obtained optimal solution not only significantly improves 
the efficacy of laser thermal pain treatment, but also ensures the stability and reliability of temperature control. 
By considering interval uncertainty analysis and optimizing uncertain parameters, the treatment outcomes are 
more robust and consistent. The findings underscore the importance of accounting for parameter uncertainties 
in order to achieve reliable and effective laser thermal pain treatment. These results have important implications 
for enhancing the clinical application of this treatment modality and improving patient outcomes.
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