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Conservation laws, solitary 
wave solutions, and lie analysis 
for the nonlinear chains of atoms
Muhammad Junaid‑U‑Rehman *, Grzegorz Kudra  & Jan Awrejcewicz 

Nonlinear chains of atoms (NCA) are complex systems with rich dynamics, that influence various 
scientific disciplines. The lie symmetry approach is considered to analyze the NCA. The Lie symmetry 
method is a powerful mathematical tool for analyzing and solving differential equations with 
symmetries, facilitating the reduction of complexity and obtaining solutions. After getting the entire 
vector field by using the Lie scheme, we find the optimal system of symmetries. We have converted 
assumed PDE into nonlinear ODE by using the optimal system. The new auxiliary scheme is used 
to find the Travelling wave solutions, while graphical behaviour visually represents relationships 
and patterns in data or mathematical models. The multiplier method enables the identification 
of conservation laws, and fundamental principles in physics that assert certain quantities remain 
constant over time.

The Lie symmetry analysis approach1–12 has many applications in different fields, including physics, engineering, 
and mathematical modelling. It can be used to study a wide range of nonlinear PDEs, including those that are 
difficult to solve using other methods. Additionally, this approach provides a powerful tool for developing new 
theories and models that improve our understanding of complex physical systems. Overall, the Lie symmetry 
analysis approach is a valuable tool for studying nonlinear PDEs and has many significant applications in differ-
ent branches of science and engineering.

The Lie symmetry analysis approach13–23 is a powerful method used in the study of nonlinear PDEs. It is based 
on the concept of Lie groups and Lie algebras, which are mathematical structures that describe the symmetries 
of a system. The Lie symmetry analysis approach involves transforming a given PDE into an equivalent system of 
ODEs using a Lie group transformation. This transformation is constructed from a set of symmetry generators 
that preserve the form of the original PDE. Once the PDE is transformed into an equivalent system of ODEs, it 
is possible to use various analytical and numerical methods to solve the system and obtain the solution to the 
original PDE. Additionally, the Lie symmetry analysis approach can be used to identify the conservation laws 
that govern the physical behaviour of the system under study. These conservation laws provide important insights 
into the underlying physical mechanisms responsible for the observed behaviour of the system.

Nonlinear PDEs24–27 play a critical role in mechanical engineering by modelling complex phenomena such 
as stress and deformation in materials, fluid flow, and heat transfer. Unlike linear PDEs, which can be solved 
analytically in many cases, nonlinear PDEs require numerical or approximate methods to solve due to their 
complex nature. The use of nonlinear PDEs is essential in the design and optimization of mechanical systems 
such as turbines, engines, and aircraft. They also provide a framework for predicting the behaviour of materials 
under different conditions, such as high temperatures, high pressure, and rapid deformation. By incorporating 
nonlinear PDEs into mechanical engineering models, engineers can improve the accuracy of their designs and 
ensure that their systems are safe, reliable, and efficient.

Nonlinear chains of atoms28–34 have a wide range of applications in mechanical engineering, particularly in 
the study of materials science and solid mechanics. These models provide valuable insights into the behaviour 
of materials at the atomic level, enabling the design of high-performance materials for various applications. 
Applications of nonlinear chains of atoms include the study of thermal conductivity in materials, investigating the 
deformation and fracture mechanisms of materials under various loading conditions, and studying the dynamics 
of crystals, such as the propagation of waves and the formation of defects. Nonlinear chains of atoms models 
are crucial in understanding the behaviour of materials under extreme conditions and can inform the design 
of materials for high-performance applications, leading to the development of new materials with enhanced 
mechanical and thermal properties.
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The analysis of nonlinear chains of atoms using Lie symmetry analysis and conservation laws is motivated by 
the desire to uncover the fundamental principles that govern the behaviour of these complex systems and gain 
a deeper understanding of their dynamics and properties. While there has been extensive research on nonlinear 
chains of atoms, there exist research gaps that can be addressed through the application of Lie symmetry analysis 
and conservation laws. These gaps include a need for comprehensive studies on the symmetries and conserva-
tion laws specific to nonlinear atomic chains, exploration of multiscale behaviour, and bridging the gap between 
theoretical analysis and practical applications. By addressing these research gaps, researchers can contribute to 
a more comprehensive understanding of nonlinear chains of atoms and pave the way for advancements in fields 
such as materials design, nanotechnology, and engineering applications.

The new auxiliary method35, 36 is a recently proposed method for solving challenging nonlinear PDEs. This 
method involves introducing an auxiliary variable and constructing a system of coupled equations involving 
both the original variables and the auxiliary variable. The resulting system of equations can be solved using 
numerical methods to obtain the solution to the original PDE. The new auxiliary method can handle highly 
nonlinear PDEs that are difficult to solve using other numerical methods, such as the finite difference approach 
or the finite element scheme. Additionally, this method can be used to obtain exact solutions to certain types of 
nonlinear PDEs, reducing the computational cost required to solve some types of nonlinear PDEs. Overall, the 
new auxiliary method is a promising tool for solving challenging nonlinear PDEs in various fields, including 
physics, engineering, and mathematical modelling.

Conservation laws of nonlinear PDEs37–40 are essential concepts that relate to the principle of conservation of 
physical quantities like mass, energy, and momentum. These laws are expressed in terms of PDEs and have crucial 
importance in various fields, including engineering, physics, and mathematical modelling. They provide a math-
ematical framework to predict the behaviour of complex physical systems accurately and develop new theories 
and models to improve our understanding of the underlying physical mechanisms. Furthermore, conservation 
laws play a vital role in the design and analysis of physical systems and the development of numerical methods 
for solving challenging nonlinear PDEs, making them fundamental concepts in the study of nonlinear PDEs.

The layout of this research is presented as. Formation of supposed model is described in section 2. NAM and 
multiplier method are explained in section 3. technique and multiplier scheme are presented in section 2. Lie 
group analysis method is applied on supposed model and entire vector field is described in section 4. Optimal 
system, similarity reduction, wave solutions, and graphics are represented in section 5. Discussion of graphs and 
conservation laws of assumed model are described in section 6 and 7 respectively. The conclusions are stated 
in Sect. 8.

Formation of model
The Hamiltonian of the system is Foroutan et al.41:

where m is the mass of the atom, V(|Un − Ul|) stands for nonlinear potential and dot indicates for derivative w.r.t 
time. We consider l = 1± n and the subsequent potential:

where hnl is relative displacement among l − th atom and n− th . The index i shows the distinct interactions via 
the particles. We omit our focus on the first and second neighbours. From Eqs. (1) and (2) through Hamiltonian 
equations which are

which gives us the equation of motion;

In Hamiltonian’s equations, P.n stands for generalized momentum. Assuming that the δ(inter-atom spacing) is 
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and

hence, Eq. (3) can be supposed as Foroutan et al.42

with the subsequent constants;

here in this paper, we will find out wave solutions and conservation laws for nonlinear Eq. (6) with the use of an 
appropriate transformation method.

Preliminaries
New auxiliary approach.  Assuming the general form of partial PDE is of the form:

where τ is the time part and χ is the spatial part and U = U(χ , τ) is the dependent variable. We will follow the 
following steps.

Step 1 Suppose the new similarity variables or transformation is of the form

where k and c both are actual parameters for Eq. (8). Putting the Eq. (9) into Eq. (8) and we get the new ODE 
below.

Step 2 Assume the general solution for Eq. (10) is of the form

in the above solution, the Ci ’s are constants and we will fine later and the 1st ODE satisfied q(̺).

Step 3 In this step, we will use the balancing scheme to execute the value of N. For this, we have to compare 
the highest-order linear and nonlinear terms to find the value of N.
Step 4 Getting the coefficients of the powers of Fq(̺) ( i = 0, 1, 2, 3, . . . ) by Eqs. (8), (11), and (12). Then collect-
ing the terms of the same power and put them equal to zero which gives us a system of algebraic equations. 
After solving this system of equations by Maple.
Step 5 Finally we will get the different family of solutions for Eq. (12) of the form:
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Case 3 When B1
2 +B2B3 > 0 and B3  = 0 and B3  = −B2
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Case 11 When B1 = k , B3 = 2k and B2 = 0

Case 12 When 2B1 = B2 +B3

Case 13 When −2B1 = B2 +B3

Case 14 When B2 = 0

Case 15 When B2 = B1 = B3 �= 0

Case 16 When B2 = B3 , B1 = 0

Case 17 When B3 = 0

Multiplier approach.  Supposing the Eq. (8) and applying the following steps below:

	 (1)	  Defining the total differential as:

	 (2)	 Defining the Euler operator as below:

	 (3)	  Let us define n-tuple f = (f1, f2, f3, . . . , fm) , i = 1, 2, . . .m,

Equation (39) is said to be the conservation laws and it fulfils all results of Eq. (8).
	 (4) 	 The purpose of �(χ , τ ,U) of the Eq. (8):

for some function U(µ1,µ2, . . . ,µm).
	 (5) 	 We will obtain the determining equations for �(χ , τ ,U) after calculating the derivative of �(χ , τ ,U) in 

Eq. (40):

Equation (41) depends for some function U(µ1,µ2, ...,µm) . Finally, when we calculate the �(X, t,U) with 
use of Eq. (41), the conservation laws can be acquired by Eq. (40).

Lie group analysis of Eq. (6)
Here, we are supposing the Lie approach for assumed Eq. (6). Now, suppose the one-parameter Lie group of 
infinitesimal transformations on (τ ,χ ,U) given by
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and ε ≪ 1 is a Small parameter. The associated Lie algebra of infinitesimal symmetries is generated by vector 
fields

Equation (42) creates a symmetry of Eq. (6), and X satisfy the Lie group conditions

The fourth prolongation Pr(4) for X can be written as:

furthermore, we have

Let (x1, x2) = (χ , τ) , where Di can be written as:

Substituting the values of ηi which gives us the following vectors:

We see that

Optimal system
In this section, we observe that from the obtained vector field Eq. (45), the X = {X1,X2} forms an abelian algebra. 
So we can use the (42) and get:

Similarity reduction of Eq. (6).  Here, we will find the similarity variables and analytical results for Eq. (6).

£1 =< X1 >.  Using the vector £1 , we get the new variable

putting the (47) into Eq. (6), which gives us

where m1 and m2 are integration constants.
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Application of new auxiliary method.  Here, we aim to construct the wave patterns for Eq.  (6) from 
Eq. (50) with the use of the proposed technique. Using the balancing method and we obtain N = 1 . Using the 
value of N = 1 in (11) and we have

We have to put Eq. (51) into Eq. (50) and we get the system of the equation after comparing the coefficients of 
Fq(̺) . With the use of Maple, we solved the obtained system of equations and got the following results.

Using Eq. (52) into Eq. (51) gives us the following set of solutions.

Where V1 is an arbitrary constant.
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Case 6 When B1
2 −B2

2 > 0 and B3  = −B2

Case 7 When B2B3 > 0 , B3  = 0 and B1 = 0

Case 8 When B1 = 0 and B2 = −B3

Case 9 When B1
2 = B2B3

Case 10 When B1 = k , B2 = 2k and B3 = 0

Case 11 When B1 = k , B3 = 2k and B2 = 0

Case 12 When 2B1 = B2 +B3

Case 13 When −2B1 = B2 +B3

Case 14 When B2 = 0

Case 15 When B2 = B1 = B3 �= 0

Case 16 When B2 = B3 , B1 = 0

Case 17 When B3 = 0
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where ̺ = χ ±
√

rB2
1 − 4rB2B3 + δ2o τ is given according to.

Graphics and discussion
A graphical representation of obtained solutions is discussed here in this section. By using the new auxiliary 
method we have constructed the analytical behaviour of the considered model in the form of trigonometric func-
tions, hyperbolic trigonometric functions, and exponential, and algebraic-type results. The graph of the tangent 
function is periodic with a period of � and has vertical asymptotes at odd multiples of �

2
 . As χ approaches these 

vertical asymptotes, the tangent function approaches positive or negative infinity depending on the direction of 
the approach. The graph of the cotangent function is also periodic with a period of � and has horizontal asymp-
totes at even multiples of � . As χ approaches these horizontal asymptotes, the cotangent function approaches 
zero. We have plotted the behaviour of some obtained results. Figure 1 shows the graphical behavior of u1(χ , τ) 
for the choice of parameters δo = 1 , r = 2 , po = 3 , B1 = 2 , B2 = 1,B3 = 2 , τ = 1 . Figure 2 represent the behav-
iour of u2(χ , τ) for the choice of parameters δo = 2 , r = 1 , po = 1 , B1 = 3 , B2 = 2,B3 = 1 , τ = 2 . Figure 3 shows 
the Graphics of u3(χ , τ) for the choice of parameters δo = 1.5 , r = 1 , po = 4 , B1 = 4 , B2 = 3,B3 = 5 , τ = 2 . Fig-
ure 4 shows the Graphics of u4(χ , τ) for the choice of parameters δo = 5 , r = 0.5 , po = 3.5 , B1 = 1.5 , B2 = 3.5

,B3 = 2.5 , τ = 3 . Figure 5 represent the behaviour of u19(χ , τ) for the choice of parameters δo = 6 , r = 3 , po = 5 , 
B1 = 1 , B2 = 3,B3 = 5 , τ = 5 . The behaviour of U19 shows Singularities exist in exponential functions due to 
their intrinsic nature of rapid and unbounded growth or decay. The exponential function, typically represented 
as f (χ) = eχ,where e is Euler’s number approximately equal to 2.71828,captures the exponential growth or decay 
phenomenon. However, certain values of χ result in problematic behaviour or undefined outcomes. When χ 
approaches positive or negative infinity, the exponential function exhibits an asymptotic behaviour, approaching 
infinity or zero, respectively, without reaching a definite value. These instances represent singularities where the 
exponential function becomes indeterminate or encounters difficulties in providing a well-defined result. These 
singularities in the exponential function highlight the inherent limitations and special characteristics associated 
with exponential growth or decay processes.

(77)U24(χ , τ) = V1 −
12rB3

po

{

eB1̺ −
B2

2B1

}

.

Figure 1.   Graphics of (a) U1(χ , τ) versus time component τ for the choice of parameters δo = 1 , r = 2 , po = 3 , 
B1 = 2 , B2 = 1,B3 = 2 and (b) considering at τ = 1.

Figure 2.   Graphics of (a) U2(χ , τ) versus time component τ for the choice of parameters δo = 2 , r = 1 , po = 1 , 
B1 = 3 , B2 = 2,B3 = 1 , and (b) considering at τ = 2.
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Conservation laws
In this portion, we will construct the conservation laws by multiplier approach for Eq. (6). We obtain the deter-
minant equation for �(X, t, u) by Eq. (41).

Using Eq. (38), we can write the Euler operator is of the form

defining the total derivative operators Dτ and Dχ from Eq. (37).

(78)
δ

δU

[

�

(

∂2U

∂τ 2
− δ2o

∂2U

∂χ2
− po

∂U

∂χ

∂2U

∂χ2
− qo

(

∂U

∂χ

)2
∂2U

∂χ2
− r

∂4U

∂χ4

)]

= 0.

(79)
δ

δU
=

∂

∂U
− Dτ

∂

∂Uτ

− Dχ

∂

∂Uχ

+ D2
τ

∂

∂Uττ

+ D2
χ

∂

∂Uχχ

+ DχDτ

∂

∂Uτχ

− · · · ,

Figure 3.   Graphics of (a) U3(χ , τ) versus time component τ for the choice of parameters δo = 1.5 , r = 1 , 
po = 4 , B1 = 4 , B2 = 3,B3 = 5 , and (b) considering at τ = 2.

Figure 4.   Graphics of (a) U4(χ , τ) versus time component τ for the choice of parameters δo = 5 , r = 0.5 , 
po = 3.5 , B1 = 1.5 , B2 = 3.5,B3 = 2.5 , and (b) considering at τ = 3.

Figure 5.   Graphics of (a) U19(χ , τ) versus time component τ for the choice of parameters δo = 6 , r = 3 , 
po = 5 , B1 = 1 , B2 = 3,B3 = 5 , and (b) considering at τ = 5.
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computing Eq. (78) and we obtain the following multipliers and conservation laws:

by Eqs. (40) and (81), The following conservation laws are found

Using Eq. (82) and we get the following two cases of conservation laws.

Case 1 For C1 = 1, C2 = 0 , then �1 = τ , we get the following fluxes:

Case 2 For C1 = 0, C2 = 1 , then �1 = 1 , we get the following fluxes:

Conclusion
In this research, nonlinear chains of atoms(NCA) are studied. NCA play a crucial role in materials design and 
fabrication, enabling the development of advanced materials with tailored properties. The unique structural 
arrangements and interactions of nonlinear chains of atoms influence the mechanical, electrical, and optical 
properties of materials, which are essential for designing innovative technologies in fields such as nanotechnol-
ogy, optoelectronics, and energy systems. Also, NCA are of great interest in the study of dynamical systems and 
nonlinear phenomena. They provide valuable insights into the behaviour of complex systems, allowing for the 
analysis and modelling of intricate dynamics observed in areas like physics, biology, and control theory. The Lie 
symmetry method and NAM enhances existing techniques, offering additional insights, improved accuracy, or 
simplified computations. Travelling wave solutions describe wave-like behaviour propagating through systems, 
while graphical behaviour provides visual representations of relationships and patterns in data or mathematical 
models. The multiplier method allows for the identification of conservation laws, which are fundamental prin-
ciples in physics that state certain quantities remain constant over time. Understanding conservation laws and 
utilizing mathematical techniques such as the Lie symmetry method, travelling wave solutions, and graphical 
analysis contributes to a deeper understanding of nonlinear chains of atoms and their dynamics.

Data availability
All data that support the findings of this study are included within the article.
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