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Cardiac Purkinje networks are a fundamental part of the conduction system and are known to initiate 
a variety of cardiac arrhythmias. However, patient‑specific modeling of Purkinje networks remains 
a challenge due to their high morphological complexity. This work presents a novel method based 
on optimization principles for the generation of Purkinje networks that combines geometric and 
activation accuracy in branch size, bifurcation angles, and Purkinje‑ventricular‑junction activation 
times. Three biventricular meshes with increasing levels of complexity are used to evaluate the 
performance of our approach. Purkinje‑tissue coupled monodomain simulations are executed to 
evaluate the generated networks in a realistic scenario using the most recent Purkinje/ventricular 
human cellular models and physiological values for the Purkinje‑ventricular‑junction characteristic 
delay. The results demonstrate that the new method can generate patient‑specific Purkinje networks 
with controlled morphological metrics and specified local activation times at the Purkinje‑ventricular 
junctions.

The ventricular conduction system (VCS) is an essential part of the heart since it is responsible for synchronous 
stimulation of the ventricular walls and is crucial for the proper maintenance of the heart rhythm. The VCS 
comprises the His-bundle, left and right bundles branches, and the Purkinje fiber network (PN). The system 
provides ventricular contraction from apex to base, together with synchronization of the left and right ventricles, 
which allows the correct coordination of electrical activity in mammalian  species1.

In the current clinical and modeling literature, several studies have implicated the PN as both trigger and 
maintainer of deadly cardiac arrhythmias, such as ventricular fibrillation (VF)2–5. Furthermore, it has been shown 
that Purkinje cells and ventricular cells have different electrophysiological  properties6,7. For instance, Purkinje 
cells’ action potentials (APs) have a faster depolarization and a more negative plateau phase. This characteristic 
results in longer action potential duration (APD) when compared to ventricular  cells8, which makes Purkinje cells 
more susceptible to developing pro-arrhythmic abnormalities, like early-after-depolarizations and delayed after-
depolarization. This contrast in the APD form is likely apparent at the Purkinje-ventricular-junction (PVJ) sites. 
Due to the distinct shape of the action potential of Purkinje and ventricular cells, electrotonic effects and APD 
dispersion occur between the cells from the Purkinje fiber and those from the ventricular  tissue6. In addition, 
at the PVJ sites, a characteristic delay in conduction, 3–5 ms, is observed from the Purkinje to the ventricular 
tissue. Mainly, this phenomenon arises when a small volume (i.e., the source, Purkinje cells) tries to depolarize a 
large volume (i.e., the sink, many connected ventricular cells) and is also referred to as source-sink  mismatch9–11. 
Therefore, to properly study cardiac electrophysiology via computational modeling, reliable models of the PN 
are needed and must take into account both morphological and electrical properties.

Personalized models of cardiac electrophysiology that match clinical observation with high fidelity, referred 
to as cardiac digital twins (CDTs), are promising tools for tailoring cardiac precision  therapies12. An essential step 
towards CDTs relies on the ability of models to replicate the ventricular activation sequence under a broad range 
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of conditions. However, despite recent progress on cardiac functional and imaging techniques, there is not a valid 
technique to extract a PN from clinical data, which makes the development of a coupled Purkinje-ventricular 
patient-specific computational model  challenging13,14. Therefore, as a result of their complex geometry, manual 
generation of PNs can become a highly demanding and time-consuming  task15, making the development of 
methods that can automatically generate PNs a requirement to advance studies in this field.

Purkinje networks are known to have a complex morphology with several branches and bifurcations, as can 
be seen in physiological  images16–19. A wide variety of methods have been used to address the generation of 
realistic PNs. In particular, PNs can be generated using image processing techniques by extracting the structure 
from images of dissected ventricles and them projecting these flat networks onto realistic endocardial  surfaces17. 
Such models gather both the geometry and the local activation time (LAT) from the processed network. On the 
other hand, the generated PN may not be acceptable for other subjects due to biological variability. Another set of 
widely utilized methods for PN generation is fractal trees. In such models, the L-System is commonly described as 
an alternative to automatically produce PNs using a pre-defined set of rules that not only can prevent  collisions20 
but also enhance its  geometry21. An alternative to the L-System is the fractal method proposed by Costabal 
et al.22 which allows the automatic generation of PNs using controllable curvature of the branches, enhancing 
the geometry of the tree, especially in irregular surfaces. Moreover, fractal trees and image processing techniques 
can be combined to construct the VCS. For instance, in the work of Bordas et al.23, from magnetic resonance 
images of a rabbit, it was possible to identify the Purkinje network partially. After manually constructing the 
His-Bundle, a fractal method was applied to extend the PN to the myocardium. Furthermore, there are models 
which are LAT constrained. Activation times data is acquired from patients and utilized to grow the networks, 
like in the work of Vergara et al.13 and in the recent study of Barber et al.24.

Another class of methods is based on optimization  principles25 and was inspired by the Constructive Con-
strained Optimization (CCO) method that can generate detailed and realistic vascular  trees26. A major advantage 
of this method is the flexibility of using any cost function in the method’s optimization process and including as 
many topological and electrical metrics as needed (e.g., bifurcation angles, PVJ location, LAT).

We develop a novel method using optimization principles to generate patient-specific PNs with geometrical 
and activation accuracy. The new method, named Constructive Optimization (CO), is a modified version of the 
classical CCO method that is traditionally utilized for the construction of vascular networks. The CO is focused 
on generating patient-specific PN models and as such it considers a cost functions that relies on electrical and 
geometrical metrics. Both methods rely on optimization principles to generate a topology. However, their main 
difference is that the CCO considers vascular concepts in its equations and has a set of constraints that all seg-
ments in the tree must fulfill during the optimization process. These restrictions are associated with blood flow 
and hydrodynamic resistance of the segments from the growing tree, which are not present in the CO method 
for Purkinje networks.

In this work, we have evaluated the generated PN models by coupling them to biventricular meshes and 
comparing the LATs obtained in the simulations to different references. The simulations are based on modern 
cellular electrophysiology models for human Purkinje and ventricular cells and a fast parallel cardiac simulator. 
Our results show that the generated patient-specific PNs can accurately reproduce important geometrical and 
electrical features. In addition, the new PN models also correctly reproduced the anterograde physiological delay 
at the Purkinje-ventricular junctions. Therefore, we believe the results presented in this work are an essential step 
towards a better understanding of Purkinje networks and provide a valuable tool to study the role of patient-
specific models and their impact, for instance, in the simulations of cardiac arrhythmias.

Methods
Method overview. Constructive Optimization (CO), a method developed to generate Purkinje  networks25 
in tri-dimensional domains following a cost function that minimizes the total length of the network, is the foun-
dation to develop the PN models of this work. In this work, the new method uses as input a given cloud of points 
representing the surface to be covered, an initial root position, and a prescribed cost function to be minimized. 
The method aims to generate a tree with branches that satisfy a set of restrictions and, at the same time, minimize 
the user-specified cost function.

The novel patient-specific Purkinje generation method (Algorithm 1) can be summarized as follows: 

1. To generate a Purkinje network the framework requires an endocardium surface �S containing a set of points 
S with distal locations for the terminal branches and a proximal location of the root branch xprox . Optionally, 
an initial Purkinje network topology can also be provided as starting root of the method.

2. Two different cost functions are used in the optimization procedure. One for placing new intermediate 
branches, cost function CFi , and another for active branches, cost function CFa.

3. CFi is used to assure that the PN topology respects the patient-specific anatomy, and other know character-
istics of human PN topology, such as segment length, angle between bifurcating segments, among others.

4. CFa is used to assure that the PN reproduces the patient-specific electrophysiology, such as ECG, and endo-
cardial activation maps.

5. A PreProcessing subroutine is responsible for dividing the set S into two subsets: intermediate points, Si , and 
active PVJs, Sa . These two subsets are used by the two different cost functions described above.

6. The main loop consists of branch generation using geodesic pathways and the minimization of the two cost 
functions until a stop criterion is reached.

7. Finally, a PostProcessing subroutine connects any remaining active PVJs, via pruning and other techniques.
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To emphasize, set S contains the locations of the active PVJs, Sa , and an extra cloud of intermediate points, Si , 
that homogeneously cover �s.

In addition, the PN is represented by a graph data structure, where the nodes represent points over the sur-
face, and the edges are segments that link two points. Based on this data structure, each segment has access to 
its parent and offspring. A terminal segment is defined as a segment with no offspring, and a branch is a set of 
segments between bifurcations. For more details related to the geometrical concepts and data structures used 
by the method, please refer to Supplementary Material section A.1.

In the following subsections each step of the method is explained in more detail.

Pre‑processing steps. Before growing the PN, a PreProcessing step is executed on the provided endocardium 
surface �s . We extract all the points, store them in a set S, and divide them into two sets: intermediate and active 
PVJ points. An intermediate point is mainly used to increase the endocardium coverage of the growing PN with 
additional branches. On the other hand, an active PVJ point has a corresponding LAT, which is used as a target 
in the optimization process.

First, the PreProcessing subroutine reorders the indices of the intermediate points in S, as illustrated in Fig. 1A. 
This operation considers the initial root position, xprox , passed as an input parameter to reorder the points in S 
so that the numbering of points increases with the distance to the initial root position. The user can also provide 
an input set of active PVJ points inside the set S. In this case, during the PreProcessing subroutine, we pre-process 
the PVJs by sorting them according to their LATs and return these points as set Sa.

Root placement. After this initial step, the method constructs the root branch, which can be done in two differ-
ent forms: using only the given initial root position xprox or by providing an initial PN topology.

In the case an initial PN is provided, this structure is used as the initial topology of the tree. This input 
offers flexibility and advantages, in particular in two scenarios. Firstly, well-known structures of the VCS, like 
the Left-Bundle-Branch (LBB) and Right-Bundle-Branch (RBB), can be constructed using different techniques 
and supplied as the initial network. The second advantage of this feature is extending an already created PN by 
adding other branches to its topology.

Therefore, if the initial PN is not provided, given the initial root position xprox , a distal location xterm is 
selected from the intermediate set Si and must satisfy a distance criterion, which is explained next. After select-
ing a feasible position (one for which the distance criterion is satisfied), a geodesic pathway that connects xprox 
to xterm is constructed over �s.

The distance criterion consists of checking whether the minimum distance dcrit of a new candidate terminal 
location xterm to all existing segments exceeds an adaptive threshold ( dthresh ). This threshold is dynamically 
decreased when the number of terminal branches increases during the process of PN generation. The same 3D 
formulation utilized in Ulysses et al.25 was applied in the present work. Before adding a new terminal branch, 
the threshold distance dthresh is initially given by:

where kterm is the current number of terminals in the PN and ld is the characteristic length of the domain in 
millimeters. Figure 1B illustrates how the threshold distance dthresh varies as the number of terminals in the PN, 
kterm , increases for ld = 10mm . It is important to note that as the network grows, the threshold distance decreases 
as more terminals are connected to the tree. This behaviour leads to longer branches in the early iterations of the 
method. Consequently, shorter branches start to appear during later iterations.

Connection of an intermediate branch. After the root is placed, the method enters the main loop. At each itera-
tion, a point xterm from Si is selected, and a new intermediate branch B is generated by calling the GenerateTer‑
minal subroutine. When selecting the new branch B, we try to minimize the total length of the PN. To do so, we 
select the shortest branch that connects xterm to one of the existing segments of the tree, s, subject to the following 
restrictions, Ri : the new branch must satisfy the distance criterion, its segments must belong to the endocardial 
surface and there should be no collisions with other segments in the tree. Therefore, given a point xterm from Si 
we connect it to a segment s of the PN by solving minimization problem (2) alongside the cost function given 
by Eq. (3):

with the cost function

where lk is the length of each segment k of the branch B, Nseg is the total number of segments in B, and the sub-
script i refers to intermediate points. To speed up this minimization process, we use the Euclidean distance as 
a proxy for the geodesic pathway over �s , as explained next. First, we sort all the segments of the tree by their 
Euclidean distance to xterm and store the closest Ni segments. Then, a geodesic pathway algorithm, which is 

(1)dthresh =

√

l2d
kterm

,

(2)
min
s∈PN

CFi(B(xterm, s))

s.t.B ∈ Ri ,

(3)CFi(B) =

Nseg
∑

k=0

lk ,
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computationally expensive, generates new branches that connect xterm to the nearest Ni segments. After this step, 
we choose the shortest branch that attends the distance criterion without collisions. The procedure of connecting 
an intermediate point is illustrated in Fig.  1C and D.

Figure 1.  Summary of the method. In panels (A) and (B), the PreProcessing step is highlighted showing how 
the intermediate points are renumbered and the effect of the distance criterion in the dthresh evolution, as 
more terminals are added to the PN, respectively. Next in panels (C) and (D), an example connection for a 
intermediate terminal, xterm , is depicted, while in panels (E) and (F), a connection considering an active PVJ 
terminal, xPVJ , is illustrated. Finally in panels (G) and (H), the PostProcessing step is shown illustrating the 
pruning of extra branches and connection of the remaining active PVJs.
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Connection of an active PVJ branch. In the main loop, we attempt to connect the active PVJs present in Sa when 
kterm is a multiple of a connection rate parameter, Lrate , by calling the AttemptPVJConnection subroutine. In this 
scenario, we try to sequentially connect all the unconnected PVJs. For each active PVJ, xPVJ , we now look for a 
new branch Ba that minimizes the difference between the target LAT and the simulated LAT at xPVJ , subject to 
the following restrictions Ra : the new branch must satisfy the distance criterion, its segments must belong to the 
endocardial surface, there should be no collisions with other segments in the tree, and the absolute LAT error 
must not exceed a given tolerance, Lerror.

To simulate the LATs we use the cable equation, which is commonly used to describe the electrical flow in 
neurons and cardiac  cells27. Here, the Purkinje fiber is considered to have a cylindrical shape, with a certain 
length, diameter, internal conductivity, and membrane capacitance. The conduction velocity (CV) across the 
cable is given by

where G is the internal conductivity, Cf  is the membrane capacitance, τf  is a time constant, and d is the diameter 
of the cable. To evaluate a new branch in terms of LAT, we temporarily connect that branch to the PN via a 
segment, s. Next, we sum to the current LAT of the segment s the times of conduction velocity obtained via the 
cable equation, of every segment in the pathway between xPVJ and the segment s. To speed up the minimiza-
tion process for selecting branch Ba , we use the Euclidean distance as a proxy for the geodesic pathway over �s . 
First, we estimate the LAT errors of each segment s of the PN using the cable equation applied to a straight line 
that connects s and xPVJ . Next, we use a geodesic pathway algorithm to compute the Na branches with the low-
est estimates for LAT errors. We temporarily connect each branch to the PN and compute the LAT error using 
the cable equation. After this step, we choose the branch with the lowest LAT error that satisfies restrictions 
Ra . Therefore, given a active PVJ, xPVJ , from Sa we connect it to a segment s of the PN by solving minimization 
problem (5) alongside the cost function given by Eq. (6):

with the cost function

where s is the new terminal segment linked to an active PVJ, LAT(s) is a function that returns the LAT of a given 
segment s using the cable equation, T(PVJ) is the known value for the LAT of the PVJ, and the subscript a refers 
to active PVJ points. Finally, if at least one PVJ is connected to the PN, the procedure is repeated until there are 
no updates to the tree. The whole procedure of connecting an active PVJ, xPVJ , is illustrated in Fig. 1E and F.

Post‑processing steps. After we reach the stopping criterion of the main loop, a PostProcessing step is applied 
and illustrated in Fig. 1G and H. Any remaining active PVJs that were not connected in the main section of the 
method are handled in this step. First, we prune all extra branches of the tree. A branch is considered extra if 
it is not in a pathway that links an active PVJ to the root, as represented by the blue branches in Fig. 1G. Next, 
the LAT error tolerance constraint is dropped, and we attempt to connect all unconnected PVJs in Sa using the 
pruned tree.

However, after this procedure, some PVJs may still be unconnected. This scenario could happen if xPVJ is 
already close to the current tree or in case of collisions. Therefore, we drop the distance criterion for these PVJs 
and attempt the connection again. Finally, if there are still unconnected PVJs, we connect them to the segment 
with the lowest LAT error among the Na closest segments, using a straight line. Therefore, we solve the minimi-
zation problem (5) by incrementally losing the restrictions Ra.

After this step, all the active PVJs that the user specified are connected, and the geometric and electric met-
rics are computed in this topology, which is referred to as the minimum network. More information and details 
regarding all the steps and parameters of the method are supplied in the Supplementary Material section A.7.

(4)CV =

√

Gd

4Cf τf
,

(5)
min
s∈PN

CFa(B(xPVJ , s))

s.t.B ∈ Ra,

(6)CFa = |LAT(s)− T(PVJ)|,
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Biventricular models. Three different meshes were used to evaluate the robustness of our method. The 
first considers a simplified mesh that captures the main structures of the biventricular system. Secondly, a canine 
mesh is the target of the study. A human patient-specific mesh is utilized as the final experiment to evaluate our 
model. These meshes are shown in Fig. 2.

The simplified biventricular synthetic mesh was constructed via ellipsoids, for the left ventricle (LV) and right 
ventricle (RV) endocardium and epicardium. The main idea consists of subtracting the ellipsoids and cutting 
their surfaces along the base plane, as shown in Fig. 2A. Fiber orientation and transmural distance of the mesh 
were calculated using the Laplace-Dirichlet Rule-Based (LDRB)  algorithm29. In addition, a simplified PN was 
generated using a fractal  method22. This simplified PN was considered as our reference for comparisons. The 
branches of the reference PN activate the endocardium at the early region sites of the LV and RV as reported 
 in22,30. For instance, these regions are close to the apex in the left and right ventricles and the posterior-basal 
region of the left ventricle. The locations of the PVJs and the His-bundle were manually selected and constructed 
to provide an activation pattern similar to what is observed  physiologically30. All the terminals of the reference 
PN are considered active PVJs, representing a total of 43 and 20 PVJs in the LV and RV, respectively. Detailed 
information about the simplified mesh construction, as well as the parameters set used to generate the reference 
PN with the fractal method are described in the Supplementary Material, Section A.2.

A biventricular canine mesh whose PN was reconstructed from histological  images17 and later processed 
into a graph  representation25 was considered as our reference for comparison and can be visualized in Fig. 2B. 
In the previous work proposed by Ulysses et al.25 only the LV was considered in the experiments. In the present 
work, both ventricles are utilized to better evaluate the proposed method. Similar to the simplified mesh case, 

Figure 2.  Biventricular meshes used during the experiments of the present work. In panel (A), the simplified 
mesh alongside the corresponding reference PN (black) and their active PVJs points (red). In panel (B), the 
canine mesh  from17 is highlighted with the gold standard PN (black) and their active PVJs points (red). In panel 
(C), the patient-specific mesh  from28 is depicted with its active PVJs points (red). The left ventricle is colored red 
in all the upper panels, while the right ventricle is blue.
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fiber orientation and transmural distance of the mesh were calculated using the LDRB  algorithm29. Furthermore, 
since only the reference PNs of the LV and RV were available, we manually built the His-bundle structure. The 
provided data has 130 and 98 PVJs over the LV and RV, respectively.

A biventricular human patient-specific mesh utilized  previously18,28 was used to further evaluate our novel 
method in a more realistic scenario, as illustrated in Fig. 2C. Along with the mesh, the locations and LATs from 
the active PVJs were estimated using an electroanatomical map (EAM) and contact-mapping catheter systems 
(CARTO3 TM, Webster BioSense Inc.)31,32, with 31 and 16 active PVJ points on the LV and RV surfaces, respec-
tively. To allow time for the Purkinje to grow branches and activate the estimated PVJs, a 40ms shift is introduced 
in their original LAT, i.e., after this shift, the earliest LAT is t = 40ms . For this particular mesh, fiber orientation 
was already available. However, our studies did not consider any ischemic or fibrotic regions. In addition to the 
estimated PVJ sites, an extra set of points from the EAM located in healthy regions was selected to validate the 
patient-specific PN model. An essential aspect of the experiments using the patient-specific mesh is that we do 
not have a reference PN for comparison; only the early activation sites and some EAM points in the endocardium 
are available.

For each of these meshes, we randomly generated the sets S, which is the main input parameter of the method 
(see the previous section), by sub-sampling the set of points on the endocardial surfaces of the meshes.

Numerical methods. Monodomain model. Cardiac myocytes are electrically coupled through gap junc-
tions, a specialized set of proteins that allow the spreading of the electrical wave of excitation from one cell to 
another in the tissue. This phenomenon can be described by a reaction-diffusion equation, called the monodo-
main  model33, which is given by

where V is the transmembrane potential, Iion is the total ionic current that may also depend on gating variables 
�η , β is the surface-volume ratio, Cm is the membrane capacitance, Istim is the current due to an external stimulus, 
and σ is the monodomain conductivity tensor. The model is further equipped with appropriate initial conditions 
and no-flux boundary conditions: σ∇V .�n = 0 on ∂� , where �n is the normal vector of the surface, ∂�.

In the present work, when the monodomain model was applied, the Purkinje networks were solved using the 
one-dimensional form of the equation. On the other hand, for ventricular tissue modeling, the three-dimensional 
form of Eq. (7) was used with an anisotropic conductivity tensor. Regarding the cellular models used for the 
ionic current Iion term, the Trovato et al.,  model7 for human Purkinje cells and the recent version of the ToRORd 
 model34,35 for human ventricular cells were applied to provide a sinus rhythm activation.

To numerically solve the monodomain equations and simulate the action potential propagation in both the 
Purkinje networks and the ventricular tissue, we used the MonoAlg3D, which is an efficient parallel cardiac 
 solver36. This particular solver can handle non-uniform, non-conforming adaptive meshes and, most importantly, 
use the graphics processing unit to speed up the solution of both the diffusion and reaction terms associated 
with the model.

Regarding the parameters to enable the solution of the monodomain model, the surface-to-volume ratio was 
set to β = 0.14 µ m and the tissue capacitance to Cm = 100 pF/µm2 . A total simulation time of tmax = 200 ms was 
used and a time discretization dt = 0.02 ms was used to solve the associated partial differential equation (PDE). 
For the ordinary differential equations (ODEs) system related to the Purkinje and ventricular cellular models, a 
Rush-Larsen scheme with a fixed timestep of dt = 0.01 ms was utilized. A space discretization of 400µ m was used 
for all the ventricular domains, while for the Purkinje network this value was set to 100 µ m. The conductivities 
from the ventricular domain were anisotropic with σl = 0.75 S/m, σt = 0.225 S/m and σn = 0.1125 S/m, in the 
longitudinal, transverse and normal directions, respectively, resulting in CVs close to physiological values given 
by Durrer et al.30. For the Purkinje domain the conductivity was set to σpurk = 2.567 S/m, with a CV approxi-
mately equal to 2 m/s. The stimulus protocol was a single pulse coming from the His bundle with the following 
parameters: Iamp = 40 pA/pF, duration = 2 ms, Ncells = 25.

In addition, for the cellular dynamics, the ToRORd model for human ventricular  cells34,35 and the Trovato 
et al. model for Purkinje  cells7 were used mainly because these two cellular models are now considered the latest 
models in terms human cellular model available in the literature, presenting important advances over previous 
models like the classical TT3  model37 and the O’Hara-Rudy  model38 in several aspects. Similarly, the Trovato 
et al., Purkinje model provides several features that the Stewart et al.,  model39 was not able to capture. Moreover, 
to the best of our knowledge, there was no published work that coupled both models in a Purkinje-biventricular 
simulation.

To properly evaluate the activation time generated by the PNs, the monodomain equation was solved both 
for the Purkinje and ventricular domain, instead of the coupled Eikonal model seen in the previous work  from25. 
This approach was used to capture essential features of propagation from Purkinje and ventricular cells accurately 
including at the PVJ sites, such as the characteristic delay that happens at these  locations10, giving rise to a more 
realistic simulation in terms of cardiac electrophysiology. For a detailed description of how the monodomain 
model is solved for the Purkinje-coupled simulations check Supplementary Material section A.8.

The parameters of the cable equation used in the generation of the PNs were chosen by comparing the con-
duction velocity of Eq. (4) and that obtained using the monodomain equation on a 10 cm linear cable composed 

(7)βCm
∂V

∂t
+ βIion(V , �η) = ∇ .(σ∇V)+ Istim,

(8)
∂ �η

∂t
= f (V , �η),
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of cells modeled with the Purkinje human  model7. Constraining the values to those observed in  experiments40, 
we arrived at G = 7.9 m�/cm , Cf = 3.4 µF/cm2 , τf = 0.1 ms and d = 68.86 µm.

Purkinje‑Ventricular‑Junctions. To model the Purkinje-Ventricular-Junctions sites, an additional passive cur-
rent, ItissPVJ , was included in the tissue cells that are coupled to the terminal cells of the Purkinje network:

where Vpurk is the transmembrane potential of the terminal Purkinje cells, Vtiss
i  is the transmembrane potential of 

the ventricular cells i attached to the Purkinje cell, RPVJ is a fixed-resistance and NPVJ is the number of connecting 
ventricular cells. This additional current is included on the right-hand side of the linear system associated with 
the numerical discretization of the monodomain equation of the ventricular domain.

Similarly, for the Purkinje cells, a current, IpurkPVJ = −ItissPVJ , couples ventricular cells to a terminal Purkinje cell. 
Likewise, this is included on the right-hand side of the associated linear system of the Purkinje domain and is 
given by the following equation:

In Supplementary Fig. S2, we illustrate the Purkinje coupling model used in this work and how the terminal 
Purkinje cell is coupled using a fixed-resistance RPVJ to the nearest NPVJ ventricular cells.

Error analysis. To properly evaluate the geometrical features of our PN models, the mean and standard devia-
tion of the branch size and angle of the bifurcations are computed together with the total number of branches 
and bifurcations.

To assess the activation accuracy of our model, the minimum/maximum LAT from the active PVJ sites were 
computed along with the maximum absolute error observed in these points in the generated PN. In addition, 
the root mean square error (RMSE) and relative root mean square error (RRMSE) between the LAT from the 
active PVJ sites of the reference points and the generated networks were calculated as follows:

where ȳi is the reference value, yi is the approximated value, and N is the number of samples. Finally, the per-
centage of the active PVJs within a specific range of error (i.e., 2 ms and 5 ms), given by the values ε < 2 ms and 
ε < 5 ms, was also considered.

Results and discussion
Sensitivity analysis of the input parameters. To evaluate the robustness of our method, we performed 
a sensitivity analysis over the input parameters. Our baseline simulation considered the generation of 10 PN trees 
for the simplified mesh with the following parameter set: Ni = 80 , Na = 80 , Lrate = 25 , ld = 10 mm, Lerror = 2 
ms. The RMSE error at the PVJ sites and the total execution time to generate the PNs were utilized to compare 
the different parameter combinations, as shown in Table 1.

Based on the results of Table 1, the number Ni does not significantly affect the accuracy of the trees. On the 
other hand, large values for Ni increase the execution time, since this implies more segments being evaluated by 
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Table 1.  Sensitivity analysis of the input parameters for the baseline configuration of Ni = 80 , Na = 80 , 
Lrate = 25 , ld = 10 mm, Lerror = 2 ms. The mean and standard deviation of the RMSE (milliseconds) at the 
PVJ sites and the total execution time (minutes) to generate the networks are listed.

Parameters Values RMSE (ms) Total execution time (min)

Ni

20 0.95 ± 0.31 1.81 ± 0.30

400 0.95 ± 0.31 5.80 ± 0.54

Na

20 1.20 ± 0.42 1.55 ± 0.12

400 0.86 ± 0.22 6.68 ± 1.75

Lrate
10 0.95 ± 0.33 2.85 ± 0.55

40 0.91 ± 0.32 2.36 ± 0.17

ld
5 mm 1.10 ± 0.66 3.39 ± 0.34

15 mm 1.18 ± 0.43 1.69 ± 0.15

Lerror
1 ms 0.90 ± 0.33 2.54 ± 0.32

5 ms 1.30 ± 1.06 2.56 ± 0.32

Baseline – 0.95± 0.31 2.50± 0.31
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the geodesic pathway algorithm, which is computationally expensive. The results suggest we can obtain faster 
results without sacrificing accuracy by decreasing Ni.

Analyzing the other parameters, we could verify that the Lrate , ld and Lerror parameters do not affect substan-
tially the results of activation accuracy and execution time.

Activation accuracy and execution time are most sensitive to the number Na of branches with lowest estimated 
LAT errors considered, as can be verified in Table 1. Unlike the case with Ni , the use of proxy of the LAT error 
to sort the candidate segments for a connection affects both accuracy and execution time. From the results, we 
see that decreasing the use of the proxy improves the trees electrically. In this regard, the Na parameter should 
be carefully adjusted to generate more precise PNs in a reasonable amount of time.

As a result of this initial analysis, we performed a new set of simulations varying Na to find the optimal value 
for activation accuracy and total computation time for this particular scenario. Our baseline configuration for 
this second analysis considers Ni = 20 , Na = 80 , Lrate = 25 , ld = 10 mm, Lerror = 2 ms, and the results are 
shown in Table 2.

When Na is greater than 120, the RMSE converges to a value around 0.86 ms. Within this context, we conclude 
that it is not necessary to keep increasing this parameter to improve the activation accuracy of the PNs. This 
finding confirms that, although not entirely accurate, sorting the feasible segments using a proxy is beneficial.

Biventricular simulations demonstrate that multiple Purkinje networks can share similar 
properties. The method proposed in this work was evaluated using three different biventricular meshes of 
increasing complexity. For each mesh, we randomly generated 100 sets S, which is the main input parameter of 
the method, by sub-sampling the set of points on the endocardial surfaces of the meshes. A total of 200 PNs were 
generated for each mesh, including 100 PNs for the LV and the remainder for the RV. RMSE was calculated for 
each PN by comparing the LATs at the reference active PVJ sites. The PN samples were sorted by their RMSE val-
ues, and the ten best PNs for each ventricle region were used to compute the metrics and statistics. Based on the 
results of the sensitivity analysis, the parameters of the performed simulations were set to Ni = 20 , Lrate = 25 , 
Lerror = 2 ms and d = 69µm , giving a CV of approximately 2 m/s when using the cable Eq. (4) with Purkinje 
parameters. For the simplified and canine meshes, ld = 10 mm and Na was set to 120 for both ventricles. For 
the patient-specific mesh, ld = 30 mm and Na was set to 200 for both ventricles. The choice regarding the ld 
parameter reflects that the patient-specific mesh has a larger volume than the simplified and canine meshes, 
while for the Na parameter the larger value improved the accuracy of the generated PNs. All simulations were 
performed without any restriction regarding the bifurcation angle and segment length. The geometrical and 
activation features of all PNs were computed considering only the minimum networks (after the PostProcessing 
procedure). Consequently, all terminals of the resultant PNs were connected to active PVJs. More details regard-
ing the geometrical and activation results from the ten best PNs for each mesh are presented in the tables within 
the Supplementary Material, Sections A.4 and A.5.

Figure 3 presents the results for the three different meshes. In addition, we present for each mesh the best (left) 
and worst (right) networks with respect to their LATs at the PVJ sites for the ten PNs of the comparison set. We 
note that, for small changes to the input S, the method generated different PN morphologies with similar LATs 
at the active PVJ sites. For this reason, even for the same set of PVJs, it is possible to have multiple PN solutions 
that share LATs close to the target values. When the best and worst PNs were compared, as shown in Fig. 3, 
the same PVJ site could be activated within the LAT error tolerance through different pathway combinations.

Variability in the geometrical features of the generated Purkinje networks preserve the 
matching of the activation features. Analyzing the geometrical results given in Fig. 4, the proposed 
method shows good accuracy compared to the available reference values. For instance, the simplified mesh 
PNs present a bifurcation angle with a mean value of approximately 49.51◦ and 37.21◦ for the LV and RV trees, 
respectively. Considering the same ventricular regions, these values are close to the target values of approxi-
mately 52.02◦ and 34.23◦ . For the canine mesh, the generated PNs presented more variability in this feature with 

Table 2.  Sensitivity analysis of the Na input parameter considering the baseline configuration. The mean 
and standard deviation of the RMSE (milliseconds) at the PVJ sites and the total execution time (minutes) to 
generate the networks are listed.

Parameters Values RMSE (ms) Total execution time (min)

Na

80 0.95 ± 0.31 1.78 ± 0.28

120 0.88 ± 0.30 2.39 ± 0.41

160 0.88 ± 0.27 2.89 ± 0.60

200 0.86 ± 0.22 3.39 ± 0.79

240 0.86 ± 0.22 3.79 ± 1.00

280 0.86 ± 0.22 4.33 ± 1.17

320 0.86 ± 0.22 4.86 ± 1.38

360 0.86 ± 0.22 5.45 ± 1.55

400 0.86 ± 0.22 5.99 ± 1.75

Baseline – 0.95± 0.31 1.78± 0.28
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a mean value around 55.56◦ and 52.73◦ for the LV and RV trees, respectively, which are far from the reference 
values of approximately 89.48◦ and 76.58◦ . In the case of branch size, the mean value for the simplified mesh is 
around 4.40 mm and 6.66 mm for the LV and RV trees, respectively, while the target values are close to 2.93 mm 
and 3.41 mm. For the canine mesh, the generated PNs returned a mean value of approximately 4.18 mm and 4.07 
mm, while the reference values are between 3.56 and 3.43 mm, respectively. The results for the patient-specific 
mesh could not be compared to any reference value since we do not have a gold standard PN for this scenario.

Furthermore, the bifurcation angle and branch size values of the patient-specific mesh varied more than the 
simplified and canine meshes. For instance, the mean value of the bifurcation angle is approximately 55.25◦ and 
60.66◦ for the LV and RV trees, respectively, while for the branch size the mean value is around 16.48 mm and 
18.70 mm for the same ventricular regions. This behavior may be related to the patient-specific mesh having the 
largest volume, leading to longer branches and angles to connect the active PVJs within the LAT error tolerance. 
In addition, the high variability that can be observed in the results of Fig. 4 can be explained due to the fact that 
no restriction was imposed on the geometrical features of the PN.

As can be seen in Fig. 5, the activation results for the PNs generated for the simplified and canine are in 
almost perfect agreement with the reference values for minimum LAT. Moreover, the PNs of these two meshes 
do not present a high variability in this metric. On the other hand, the patient-specific mesh shows a difference 
of approximately 5 ms in the minimum LAT of the RV region. This phenomenon indicates that the PVJ with the 
lowest LAT was not connected during the main loop of the method.

From the RMSE results in Fig. 5 we observe that the error increases as the mesh complexity increases. For 
instance, the RMSE was below 0.5 ms for both ventricles of the simplified mesh and below 1 ms for both ventricles 

Figure 3.  Comparison of the PN morphologies generated by the method for each biventricular mesh. The 
figure depicts the best (left) and worst (right) networks regarding their LATs at the PVJ sites for the ten PNs of 
the comparison set.
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of the canine mesh. For the patient-specific mesh, the RMSE was below 2 ms. The results for the LV varied more 
than those for the RV.

Finally, the fraction of PVJs that were connected within a LAT error tolerance of 2 ms ( ε < 2 ms metric in 
Fig. 5) was above 75% in all scenarios. Within this context, the method was able to generate PNs with reasonable 
accuracy in terms of LAT.

Mesh complexity affects the method computational performance. In addition to the geometrical 
and activation results, we measured important features related to the computational performance of the method. 
The execution time spent on each section of the program, the percentage of time required for the geodesic path-
way calculus and the percentage of PVJs connected in each step were calculated and are presented in Tables 3 
and 4 . The method was divided into four phases: the main loop and three steps of the PostProcessing subroutine, 
which correspond to the LAT error tolerance and distance criterion removal (geodesic and straight line connec-
tions).

The results in Table 3 show that the main loop is responsible for the majority of the execution time with a 
percentage above 90% in almost all scenarios. In particular, for the PNs generated in the LV of the simplified 
mesh, the percentage is around 79% . This behavior can be explained due to the fact that a certain number of 
PVJs could not be connected due to branch collisions to intermediate branches that were still present in the tree 
before the pruning that occurred at the beginning of the PostProcessing subroutine. A further reason is related 
to PVJs being already too close to the tree, which means that these points could be connected only by removing 
the distance criterion constraint, as confirmed in Table 3 by large computation times for Phases II, III + IV, with 
percentages close to 7% and 13% , respectively. Table 4 also verifies that almost half of the PVJs were connected 
during these three phases of the PostProcessing function for the simplified mesh.

Table 3 also shows that the computation time increased with the mesh complexity. The mean execution time 
to generate a PN for the simplified mesh was around 2 min in both ventricles. For the canine mesh, this time was 
approximately 3 min for the LV and 5 min for the RV. For the patient-specific mesh, the time was close to 19 min 
for the LV and 7 min for the RV. This increase in computation time in the LV trees of the patient-specific mesh 
can be explained by two main factors. First, the patient-specific mesh has several physiological features that do 
not appear in the other two meshes, including the papillary muscles and a very irregular endocardial surface 
with tendons, which increased the total number of triangular elements necessary to represent these particulari-
ties. After measuring the computation times of the different subroutines of the method, we observed that the 
computation of the geodesic pathways was responsible for 75% of the total execution time. The complexity and 

Figure 4.  Geometrical results from both ventricles of the ten best PNs generated for each biventricular mesh. 
The boxplot for the bifurcation angle, given in degrees, is illustrated in the top panel, while the boxplot for the 
branch size, given in millimeters, is in the bottom panel. The red cross denotes the mean reference values for the 
gold standard PNs of the simplified and canine meshes.
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computation time of calling the geodesic pathway procedure increased in proportional to the number of ele-
ments of the covered surface. In addition, to improve the accuracy of the generated PNs for the patient-specific 
mesh we increased the Na parameter, which, as presented in the sensitivity analysis section, also increased the 
computation time of the method.

Table 4 presents the percentage of PVJs connected during each phase of the method. By examining Phases 
III and IV, we verified how many PVJs were connected by either a geodesic pathway or straight lines after the 
distance criterion removal. From these results, when considering the simplified mesh, from the 29.53% PVJs of 
the LV trees connected during Phases III and IV, 23.49% are connected using a geodesic pathways, while 6.05% 
of the PVJs are linked using a straight lines in Phase IV. For the RV trees, from the total of 19% PVJs connected 
during the third and fourth phases, 5.50% of the PVJs were connected via geodesic and 13.50% used straight lines 
in the fourth phase. For the canine mesh, a total 10.69% of the PVJs located in the LV region were connected 
after eliminating the distance criterion, whereas 4.23% were linked using geodesic and 6.46% with a straight 
line. In the RV region, the same percentages from the total of 26.33% PVJs connected after the distance criterion 
was dropped, 10.92% were linked using geodesic and 15.41% with straight lines. Finally, for the patient-specific 

Figure 5.  Activation results from both ventricles for the ten best PNs generated for each biventricular mesh. 
The minimum LAT, RMSE error, and ε < 2 ms values were recorded at the active PVJ sites. The boxplot for the 
minimum LAT is presented in the top panel, where the red cross denotes the mean reference values for all the 
meshes. The boxplot for the RMSE error in the middle panel was calculated using only the PNs at the PVJ sites. 
Finally, in the bottom panel, we present the percentage of PVJs connected within a 2 ms tolerance.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11788  | https://doi.org/10.1038/s41598-023-38653-1

www.nature.com/scientificreports/

mesh, from the total of 26.13% PVJs connected during Phases III and IV in the LV trees, 17.42% were connected 
by geodesic pathways and 8.71% using straight lines. For the RV trees, all 16.88% of PVJs connected in the third 
phase of the method were linked by geodesic pathways. Within this context, we can conclude that only a small 
fraction of the PVJs were forced to connect using straight lines during the last step of the method, as represented 
by Phase IV in the tables.

The generated Purkinje networks enables matching the reference LAT in monodomain simu‑
lations. To assess the generated PNs in 3D cardiac simulations, we simulate the activation of the ten best PNs 
for each mesh using a high-performance monodomain  solver36 with parameters as previously described in the 
Methods section.

For the patient-specific mesh, as depicted in Fig. 6, the ventricular activation can be quite complex and vari-
able depending on the PN that is coupled to the tissue. The results for this case also show that at specific PVJ 
sites, the PN deviates from the reference value, especially near the regions around the papillary muscles of the 
RV. This behavior indicates that even with RMSE error below 3 ms, there are still regions with a lower LAT accu-
racy due to branches that were forced to connect during the final phases of the method. The LAT and absolute 
difference maps associated with the best and worst PN for the simplified and canine meshes can be analyzed in 
the Supplementary Material Section A.6.

To further investigate the differences in LATs presented in Fig. 6, we performed calculations to determine the 
absolute LAT difference between the LAT maps of the best and worst PNs using the patient-specific mesh (refer 
to Supplementary Material Section A.6.3). The primary objective of this experiment was to confirm whether the 
observed variations in LATs were primarily attributable to the distinct topologies of the PNs.

From Supplementary Material Fig. S6, it is evident that there are notable differences in the activation of the 
LV between the two networks, particularly in the apex region, where the absolute differences are between 3ms 
and 4ms . Furthermore, in this area, we can observe distinct characteristics of the two PNs. It is important to 
acknowledge that, although numerical errors arise from spatial and temporal discretization, both simulations 
employed identical meshes and time steps in our experiments.

Therefore, this analysis provides support for the notion that the differing PNs are the primary cause of the 
observed disparities in LATs, particularly regarding the locations of the potential PVJ sites.

Figure 7 presents the RMSE and RRMSE errors from the LAT maps of biventricular monodomain simula-
tions resultant from the ten best PNs for each mesh. For the simplified mesh, the RMSE and RRMSE values were 
around 1.4 ms and 3.2% , respectively. The Canine mesh generated lower RMSE and RRMSE values of around 
1.3 ms and 2.5% , respectively, compared to the simplified mesh. For the patient-specific mesh, the RMSE and 

Table 3.  Summary of the mean execution time for each phase of the method for all three biventricular 
meshes considering the time for the ten best PNs. Phase I is the main loop, Phase II is the first PostProcessing 
subroutine which drops the LAT error tolerance, and Phases III+IV are the subsequent procedures that 
eliminate the distance criterion to connect the remaining PVJs.

Mesh Region

Phase I Phase II Phase III + IV Total

(min/%) (min/%) (min/%) (min/%)

Simplified
LV 1.65/79.33 0.16/7.57 0.27/13.06 2.08/100

RV 2.25/95.79 0.00/0.01 0.10/4.16 2.35/100

Canine
LV 2.87/94.47 0.03/0.95 0.14/4.56 3.04/100

RV 4.23/90.94 0.10/2.16 0.32/6.88 4.65/100

Patient-specific
LV 17.77/92.58 0.35/1.81 1.08/5.61 19.20/100

RV 6.42/92.87 0.17/2.42 0.33/4.70 6.92/100

Table 4.  Summary of the percentage of active PVJs connected on each phase of the method for all three 
biventricular meshes considering the mean values from the ten best PNs. Phase I is the main loop, Phase II is 
the first PostProcessing subroutine which drops the LAT error tolerance, Phase III is the subsequent procedure 
that eliminates the distance criterion to connect the remaining PVJs but which utilizes a geodesic path to link 
the points and Phase IV is when the connection of the remaining PVJs after dropping the distance criterion 
occurs using a straight line.

Mesh Region
Phase I
(%)

Phase II
(%)

Phase III
(%)

Phase IV
(%)

Simplified
LV 54.19 16.28 23.49 6.05

RV 81.00 0.00 5.50 13.50

Canine
LV 88.00 1.31 4.23 6.46

RV 67.14 6.53 10.92 15.41

Patient-specific
LV 66.13 7.74 17.42 8.71

RV 75.62 7.50 16.88 0.00
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RRMSE values were around 2.5 ms and 3.1% , respectively. In general, these results indicate that the method is 
able to generate PNs with good activation accuracy.

The reported total execution times for constructing the patient-specific geometries demonstrate the method’s 
effectiveness in generating the PN in less than 20 min. This achievement is particularly impressive when com-
pared to the time a specialist would typically spend on the initial manual steps involved in defining the PN, such 
as data importation and seed selection. Moreover, when considering the time required for generating ventricular 
geometry or simulating propagation, it becomes evident that the method remains highly efficient. It is worth 
noting that these results hold true even when considering state-of-the-art implementations for automatic seg-
mentation, which can take in general 5− 5.5 h to prepare an optimal biventricular mesh from cine magnetic 

Figure 6.  Results for the LAT maps for a coupled monodomain simulation using the patient-specific mesh. 
First, in the top panel (A), the active PVJs were activated following the LAT provided by the CARTO3 TM points. 
Next, in the middle panels (B) and (C), the LAT maps of the best and worst PNs generated by our method are 
depicted, respectively. Finally, in the bottom panels (D) and (E), the absolute LAT difference maps for the best 
and worst PNs, respectively, are shown.

Figure 7.  Results for the RMSE and RRMSE errors from the LAT maps of the biventricular tissues from the 
monodomain simulations. The RMSE and RRMSE errors were calculated for all the tissue cells by taking the 
difference between the LATs given by the reference times and the LATs generated by the ten best PNs for each 
mesh.
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resonance  slices41 or parallel simulation using modern  GPUs36, that for the monodomain simulations done in 
this work took on average 36 min , 69 min and 97 min to execute for the Simplified, Canine and Patient-specific 
meshes respectively. These observations further highlight the practicability of our novel method.

Electroanatomical map validation. As a final validation experiment, a subset of the original EAM points 
used to estimate the active PVJs in the patient-specific mesh was selected to compare the errors of the best and 
worst generated networks. Only EAM points within healthy regions of the endocardial surface in the LV and RV 
were considered. The points inside or near the damaged tissue that could be affected by fibrosis were eliminated, 
so that 100 and 47 EAM points were selected in the LV and RV, respectively.

3D monodomain simulations were performed considering our method’s best and worst generated PNs. 
Tissue conductivity was manually calibrated to reproduce a tissue LAT close to the ones provided by the EAM 
points. As shown in Fig. 8, the RMSE values were around 6.3 ms and 7.2 ms for the best and worst PNs at the 
EAM points located in the LV, respectively. For the points within the RV, the RMSE was around 4.8 ms in both 
PNs. The RRMSE values for the LV points were around 11.2% and 12.7% for the best and worst PNs, respectively, 
while for the RV the values were about 11.1% in both PNs. The LV networks had the highest errors, indicating 
the complexity of matching activations around this region. In addition, another issue that might have caused an 
increase in the errors in both biventricular areas is associated with the manual adjustment of the tissue conduc-
tivity, which could result in a difference in conduction velocity in these regions.

Limitations
Our simulations consider that the conduction velocity across the PN is constant to avoid an extra layer of com-
plexity in the generation method. However, it is known that at bifurcations, there is a “push and pull”  effect42,43 
which decreases the conduction velocity. We have also considered the diameter of the Purkinje branches to 
be constant. However, physiological imaging studies have observed variations in the diameter of the structure 
depending on the  location19. To address these limitations and improve the generation method, we propose, in the 
near future, incorporating a dynamic adjustment of the diameter of the Purkinje branches. This adjustment would 
account for the observed variations in diameter and allow for different conduction velocities along the network. 
By introducing this dynamic feature, we can enhance the physiological relevance and accuracy of our simulations.

In addition, based on the results it was noticed that the PVJ characteristic delay influences the activation of 
the ventricles. In the near future, we plan to take this delay into account in the active cost function by combining 
a data-based model, trained by monodomain simulations, and the cable equation.

In the present study, we have solely focused on functional PVJs, also known as active PVJs. This choice stems 
from the limited knowledge regarding both the density and activity of the  junctions44. It is worth noting that 
several factors can influence the activity of a specific PVJ, including source-sink mismatch, electrotonic effects, 

Figure 8.  Overview of the EAM points selected for LAT validation is shown in panel (A). The results for 
the RMSE and RRMSE errors from the EAM points selected in the patient-specific LV and RV endocardial 
surfaces are shown in panel (B), where the errors were calculated for all the EAM points by taking the difference 
between the LATs given by the reference times and the LAT values from the closest tissue cell generated by a 
monodomain simulation with the best and worst PNs. In panels (C) and (D), the LAT differences at the EAM 
points for the best/worst PNs are illustrated, respectively.
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and cellular  dynamics8,31,44,45. Furthermore, emerging evidence suggests that non-functional PVJs can exhibit 
both pro-arrhythmic and anti-arrhythmic  properties44, as they may serve as sites for re-entrant circuits or only 
become activated during network failures.

To advance our model and extend its applicability, it would be valuable to explore other techniques that 
incorporate non-functional PVJs as additional input parameters. This expansion would augment the range of 
applications for our novel method, providing a more comprehensive understanding of the complex behavior of 
the cardiac system.

In this study, our monodomain simulations are focused on the activation of PVJs originating from a single 
pulse initiated at the His-bundle. The primary objective was to match the LATs of the PVJ points and validate our 
Purkinje generation method. However, we acknowledge that the density and coverage of PVJs within a specific 
PN can influence its propensity to generate reentry pathways, potentially leading to ventricular  fibrillation46,47.

To address this aspect comprehensively in future work, uncertainty quantification studies can be employed. 
By generating multiple PNs capable of reproducing similar LATs, these studies can assess the probability of PNs 
with reentry pathways for individual patients. Such investigations would enhance our understanding of the 
relationship between PVJ characteristics, PN topology, and the risk of ventricular arrhythmia, contributing to 
personalized assessments and interventions in clinical settings.

Conclusion
Currently, implementing models for patient-specific PNs which combine geometric and activation precision 
are essential for more accurate development of cardiac electrical simulations. In addition, the recent increase 
in the development of cardiac digital twin (CDT) models makes the usage of Purkinje generation methods an 
essential step towards more realistic simulations. Furthermore, to study cardiac pathologies such as arrhythmias, 
models that consider PNs have substantial importance since this structure is known to be a source of ventricular 
 fibrillation48 and its presence may influence behavior of these  states49,50.

In this work, we presented a new method for the automatic construction of the PN to be used in cardiac elec-
trical simulations. The method is an extension of our previous work, which is based on optimization principles. 
The method uses a new cost function that relies on electrical principles using the classic cable equation and targets 
LATs of a given set of active PVJs. We demonstrated the capabilities of the proposed method with the generation 
of different PNs for three biventricular meshes of increasing complexity. In addition, the electrical activity of the 
best PNs generated by our method was evaluated on a biventricular Purkinje-coupled monodomain simulation 
using the latest human ventricular/Purkinje cellular models and a high-performance GPU-accelerated solver.

Our results, both in terms of activation times and geometric features, indicate that the novel method can 
capture key aspects of the PNs (bifurcation angles, branch sizes, and LATs at the active PVJs sites) while pre-
serving the structure within the endocardial surfaces, even near complex regions such as the papillary muscles. 
Furthermore, the method is flexible and scalable by allowing PNs generated by other methods to be used as 
initial roots. As a result, our method can further extend these initial networks to satisfy desired objectives, such 
as increasing the PN endocardial coverage or linking additional PVJs.

In the future, the applicability and performance of the method could be further improved and investigated. 
For instance, the use of additional electrical information, such as ECG readings, could be used to further con-
strain PN generation. The execution time of the method could be reduced by using parallel programming. 
Moreover, uncertainty quantification studies may provide new insights into improving our models and methods.

Finally, the novel method provides a new alternative for generating Purkinje networks for patient-specific 
heart models with controlled morphological metrics and specified local activation times at the Purkinje-ven-
tricular junctions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. The source code for the novel patient-specific method for generating Purkinje net-
works presented in this work is available at https:// github. com/ bergo lho/ Shock er. Monodomain simulations were 
performed with the GPU-based MonoAlg3D software, available at https:// github. com/ rsach etto/ MonoA lg3D_C. 
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