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Development of a machine 
learning‑based prediction model 
for sepsis‑associated delirium 
in the intensive care unit
Yang Zhang 1,2, Juanjuan Hu 1,2, Tianfeng Hua 1,2, Jin Zhang 1,2, Zhongheng Zhang 3 & 
Min Yang 1,2*

Septic patients in the intensive care unit (ICU) often develop sepsis‑associated delirium (SAD), 
which is strongly associated with poor prognosis. The aim of this study is to develop a machine 
learning‑based model for the early prediction of SAD. Patient data were extracted from the Medical 
Information Mart for Intensive Care IV (MIMIC‑IV) database and the eICU Collaborative Research 
Database (eICU‑CRD). The MIMIC‑IV data were divided into a training set and an internal validation 
set, while the eICU‑CRD data served as an external validation set. Feature variables were selected 
using least absolute shrinkage and selection operator regression, and prediction models were built 
using logistic regression, support vector machines, decision trees, random forests, extreme gradient 
boosting (XGBoost), k‑nearest neighbors and naive Bayes methods. The performance of the models 
was evaluated in the validation set. The model was also applied to a group of patients who were 
not assessed or could not be assessed for delirium. The MIMIC‑IV and eICU‑CRD databases included 
14,620 and 1723 patients, respectively, with a median time to diagnosis of SAD of 24 and 30 h. 
Compared with Non‑SAD patients, SAD patients had higher 28‑days ICU mortality rates and longer 
ICU stays. Among the models compared, the XGBoost model had the best performance and was 
selected as the final model (internal validation area under the receiver operating characteristic curves 
(AUROC) = 0.793, external validation AUROC = 0.701). The XGBoost model outperformed other models 
in predicting SAD. The establishment of this predictive model allows for earlier prediction of SAD 
compared to traditional delirium assessments and is applicable to patients who are difficult to assess 
with traditional methods.

Sepsis is a severe organ dysfunction caused by a dysregulated host response to infection, with high incidence 
and mortality, and is a common critical  illness1. Approximately 48 million people worldwide suffer from sepsis 
each year and approximately 11 million people die from  it2. Delirium is the most common manifestation of 
brain dysfunction in critically ill patients, characterized by symptoms such as altered consciousness, impaired 
attention, disorientation, hallucinations and  delusions3. Delirium is a common neurological complication in 
septic patients in the intensive care unit (ICU), with reported incidence rates ranging from 17.7 to 48%, and its 
severity is closely associated with patient  prognosis4,5. Furthermore, sepsis-induced delirium is also associated 
with long-term cognitive dysfunction after discharge, causing physical discomfort and pain to patients and a 
burden to families and the  economy6,7.

Sepsis-associated delirium (SAD) is a complex clinical syndrome, the mechanism of which is not fully 
understood. It may be related to several factors, including neuroinflammation, cerebral perfusion abnormali-
ties, blood–brain barrier damage, and neurotransmitter  imbalances8. Currently, there is no definitive diagnostic 
criterion for SAD, and the Confusion Assessment Method for the ICU (CAM-ICU) score is the most effective 
tool for diagnosing and assessing delirium in adult ICU patients according to the 2013 Society of Critical Care 
Medicine guidelines for pain, agitation, and  delirium9. There is still no specific treatment for SAD, and early 
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detection and prevention of SAD in septic patients are critical to its occurrence and  prognosis10. Several studies 
have analyzed the risk factors for SAD in septic  patients4,5,11, but there is still no early prediction tool for SAD 
in septic patients.

The aim of this study is to develop an early prediction model for SAD using machine learning methods based on 
sepsis-related data from large public databases and to evaluate the clinical applicability of this model. Our ultimate 
goal is to provide clinicians with a tool to identify high-risk patients more quickly and comprehensively, allowing for 
earlier implementation of preventive measures and ultimately reducing the incidence and mortality of SAD.

Materials and methods
Data source. This is a retrospective cohort study based on the Medical Information Mart for Intensive Care-
IV (MIMIC-IV, version 2.2) and the eICU Collaborative Research Database (eICU-CRD, version 2.0)12,13. The 
MIMIC-IV database contains information on all patients admitted to Beth Israel Deaconess Medical Center 
between 2008 and 2019, while the eICU-CRD is a multicenter telemedicine database containing data from more 
than 200,000 patients admitted to 335 ICUs in 208 hospitals across the United States between 2014 and 2015. The 
database includes comprehensive information such as length of stay, laboratory tests, medication management, 
vital signs, etc. for each patient. To protect patient privacy, all personal information was de-identified and ran-
dom codes were used instead of patient identifiers. Therefore, this study did not require patient consent or ethics 
approval. The researcher (Zhang) has completed the training program provided by the collaborating institution 
(Certificate No. 53496787) and is qualified to use the database and extract data.

Study population. The diagnosis of sepsis was based on the Third International Consensus Definitions 
for Sepsis and Septic Shock (Sepsis-3), which defines sepsis as a sequential organ failure assessment (SOFA) 
score ≥ 2 associated with infection or suspected infection. Suspected infection was defined as antibiotics given 
within 3 days or 24 h of culture  collection1. The following patients were excluded: (1) those aged < 18 years; (2) 
patients with multiple ICU admissions; (3) patients with an ICU stay of less than 24 h.

The presence of delirium was assessed using the CAM-ICU score, which consists of four features: (1) an 
acute onset of mental status changes or a fluctuating course; (2) inattention; (3) disorganized thinking; and (4) 
an altered level of consciousness. A patient is diagnosed as delirious (i.e., CAM-ICU positive) if they exhibit 
features 1 and 2, along with either feature 3 or  414.

We excluded septic patients without documented delirium assessment and septic patients who could not be 
assessed (documented inability to assess any of the 4 characteristics of the CAM-ICU scale). In addition, patients 
with a positive delirium assessment before the onset of sepsis and outside the ICU were excluded.

Data extraction and processing. The following data were extracted from the MIMIC-IV and eICU-CRD 
databases: (1) demographic information; (2) type of initial ICU admission; (3) initial vital signs and labora-
tory test results within 24 h of ICU admission; (4) SOFA and Glasgow Coma Scale (GCS) scores within 24 h 
of ICU admission; (5) comorbidities (hypertension, diabetes, acute myocardial infarction, chronic obstructive 
pulmonary disease, stroke, chronic kidney disease, acute kidney injury); (6) use of mechanical ventilation (MV), 
continuous renal replacement therapy (CRRT), vasopressors, and sedatives within 24 h of ICU admission; (7) 
ICU length of stay, 28-days ICU mortality, diagnosis time for delirium and sepsis. For continuous variables, 
outliers and obviously conflicting values were considered as missing values (for example, numerical values for 
vital signs were eliminated using certain rules (i.e., heart rate values should be between 0 and 300). Variables 
with more than 20% missing values were excluded from the analysis. Multiple imputation for missing values was 
performed using the “MICE”  package15. For unordered multicategorical variables, one-hot coding was used to 
represent them.

Statistical analysis. Continuous variables were expressed as median and interquartile range. The Mann–
Whitney U test was used for statistical comparisons between two groups. Categorical variables were described as 
counts and percentages, and the Chi-squared test or Fisher’s exact test was used for group comparisons. Kaplan–
Meier survival curves were constructed and compared using the log-rank test.

MIMIC-IV data were randomly divided into training and internal validation sets in a 7:3 ratio, with eICU-
CRD data serving as the external validation set. Least absolute shrinkage and selection operator (LASSO) regres-
sion was used for dimensionality reduction and feature  selection16. After data reduction, predictive models were 
built using the following methods: (1) logistic regression (LR); (2) support vector machine (SVM); (3) decision 
tree (DT); (4) random forest (RF); (5) extreme gradient boosting (XGBoost); (6) k-nearest neighbors (KNN); 
and (7) naive bayes (NB).

Model performance was evaluated using area under the receiver operating characteristic curve (AUROC), 
specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and kappa 
coefficient, with AUROC serving as the primary performance metric. We also evaluated the change in PPV and 
NPV of the model at different prevalence rates. The model with optimal predictive performance was selected 
as the primary model for this study. Calibration curves were used to assess the degree of agreement between 
observed and predicted outcomes, and decision curve analysis (DCA) was used to assess net clinical benefit.

The Shapley Additive Explanations (SHAP) method was used to explore the interpretability of the final pre-
dictive model. Higher SHAP values indicated an increased likelihood of  SAD17. Partial dependence plots (PDPs) 
could be used to calculate SHAP values for each feature, allowing clinicians to make more accurate predictions. 
PDPs can show the marginal effects of each feature on the predictions of the machine learning model.
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To evaluate the application of the model, we applied the final model to another group of patients in the 
MIMIC-IV database who were not assessed or could not be assessed for delirium and predicted the occurrence 
of SAD in these individuals.

All statistical analyses were performed using R 4.2.3 (Vienna, Austria) and STATA 15.1 (College Station, 
Texas), with P < 0.05 considered statistically significant. The machine learning code and the raw patient data are 
available on Github (https:// github. com/ bbyca t927/ SAD).

Ethics approval and consent to participate. The MIMIC-IV database was approved by the Institu-
tional Review Boards of Beth Israel Deaconess Medical Center and the Massachusetts Institute of Technology. 
Access to the eICU-CRD database was approved by the Institutional Review Board of the Massachusetts Insti-
tute of Technology. All protected health information in the database was de-identified, eliminating the need for 
individual patient consent. All methods were performed in accordance with relevant guidelines and regulations.

Results
Participants and baseline characteristics. After applying the exclusion criteria, a total of 14,620 
patients from the MIMIC-IV database and 1723 patients from the eICU-CRD database were included (Fig. 1). 
Baseline characteristics of all patients are shown in Table 1. In the MIMIC-IV database, there were 5,390 cases 
of SAD (36.9%). Figure 2A shows the Kaplan–Meier curves for the two groups, showing a higher 28-days ICU 
mortality rate for the SAD group compared to the Non-SAD group (P < 0.01, Log-rank test). Similarly, ICU 
length of stay was significantly longer in the SAD group compared to the Non-SAD group (Fig. 2B  P < 0.01, 
Mann–Whitney U test).

Supplementary Table S1 shows that the median time to diagnosis of sepsis in the MIMIC-IV and eICU-CRD 
databases was 3 and 0 h, the median time to diagnosis of SAD was 24 and 30 h, and the mean time to diagnosis 
of SAD was 44.9 and 58.7 h.

Feature selection and model development. Initially, 42 feature variables were identified (Table  1), 
and after one-hot coding of unordered multi-categorical variables, a total of 53 feature variables were obtained. 
LASSO regression was then performed. Figure 3A illustrates the cross-validation error for the penalty term. 
Using the lambda.1se criterion, we identified 43 variables with significant predictive ability. Figure 3B shows the 
coefficient profiles for these 53 features in LASSO regression, indicating the optimal point for retaining variables 
with non-zero coefficients. These 43 selected variables, along with their non-zero coefficient values, are pre-
sented in Supplementary Table S2. Based on the selected features, we built a traditional logistic regression model 
and six machine learning models: SVM, XGBoost, RF, KNN, DT, and NB.

Model performance. Table 2 describes the predictive performance of these models on the internal valida-
tion set, while Table 3 describes their performance on the external validation set. In terms of the AUROC, the 
XGBoost model outperformed the other models, with an AUROC of 0.793 on the internal validation set and 

Figure 1.  Research flowchart. n1, patients excluded in MIMIC-IV database. n2, patients excluded in eICU-
CRD database.

https://github.com/bbycat927/SAD
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Variables

MIMIC-IV cohort

p

eICU cohort

p
Non-SAD patients 
(n = 9230)

SAD patients 
(n = 5390)

Non-SAD patients 
(n = 1212) SAD patient (n = 511)

Age 68 (57, 79) 69 (57, 80) 0.03 66 (54, 78) 67 (54, 78) 0.57

Weight, (Kg) 80 (67.5, 95.2) 79.9 (66.2, 96.2) 0.55 79.8 (65.7, 98.7) 77.1 (63.8, 98.8) 0.18

Sex Male, n (%) 3814 (41.3) 2288 (42.4) 0.19 564 (46.5) 256 (50.1) 0.19

Ethnicity, n (%)  < 0.01 0.17

 Asian 311 (3.4) 115 (2.1) 8 (0.7) 4 (0.8)

 Black 766 (8.3) 500 (9.3) 154 (12.7) 70 (13.7)

 Hispanic 360 (3.9) 197 (3.7) 138 (11.4) 43 (8.4)

 White 6372 (69) 3351 (62.2) 857 (70.7) 364 (71.2)

 Other 417 (4.5) 225 (4.2) 5 (0.4) 0 (0)

 Unknown 1004 (10.9) 1002 (18.6) 50 (4.1) 30 (5.9)

ICU type, n (%)  < 0.01 0.25

 CCU 881 (9.5) 485 (9) 175 (14.4) 90 (17.6)

 CVICU 2772 (30) 689 (12.8) 25 (2.1) 10 (2)

 MICU 1601 (17.3) 1477 (27.4) 89 (7.3) 40 (7.8)

 MICU/SICU 1780 (19.3) 926 (17.2) 810 (66.8) 312 (61.1)

 NICU 234 (2.5) 300 (5.6) 31 (2.6) 19 (3.7)

 SICU 1112 (12) 775 (14.4) 82 (6.8) 40 (7.8)

 TSICU 850 (9.2) 738 (13.7) – –

Vital signs

 Temperature, (℃) 36.7 (36.4, 37) 36.8 (36.5, 37.2)  < 0.01 36.8 (36.5, 37.3) 36.9 (36.4, 37.2) 0.63

 Heart rate,  (min−1) 85 (75, 100) 90 (78, 106)  < 0.01 93 (79, 109) 94 (81, 112) 0.11

 Respiratory rate, 
 (min−1) 18 (15, 22) 20 (16, 24)  < 0.01 20 (17, 24) 21 (17, 26) 0.02

 Spo2, (%) 99 (96, 100) 98 (95, 100)  < 0.01 98 (95, 100) 98 (95, 100) 0.75

 Systolic BP, (mmHg) 117 (103, 134) 120 (103, 137)  < 0.01 112 (95, 129) 110 (96, 132.5) 0.45

 Diastolic BP, (mmHg) 63 (54, 74) 66 (55, 78)  < 0.01 62 (51, 73) 61 (51, 74) 0.89

 Mean arterial BP, 
(mmHg) 79 (69, 90) 80.5 (69, 93)  < 0.01 75 (64, 88) 75 (63, 90) 0.72

Laboratory tests

 WBC, (K/uL) 11.4 (7.9, 15.9) 12.2 (8.5, 17.1)  < 0.01 12.7 (8.1, 17.9) 12.9 (8.2, 19.3) 0.35

 Hemoglobin, (g/dL) 10.1 (8.7, 11.7) 10.4 (8.7, 12.1)  < 0.01 10.3 (8.9, 12.1) 10.3 (8.9, 11.8) 0.95

 Platelet, (K/uL) 170 (121, 238) 177 (120, 242) 0.05 193 (128, 265) 195 (130, 266) 0.76

 BUN, (mg/dL) 19 (13, 31) 23 (15, 39)  < 0.01 25 (16, 41.2) 31 (18, 51)  < 0.01

 Creatinine, (mg/dL) 1 (0.7, 1.5) 1.1 (0.8, 1.8)  < 0.01 1.2 (0.8, 2.1) 1.4 (0.9, 2.6)  < 0.01

 Glucose, (mg/dL) 129 (106, 163) 138 (110, 179)  < 0.01 130 (103, 175.2) 133 (103, 180) 0.55

 Sodium, (mEq/L) 137 (134, 140) 138 (135, 141)  < 0.01 138 (135, 141) 139 (136, 143)  < 0.01

 Chloride, (mEq/L) 104 (100, 108) 104 (100, 108) 0.2 104 (99, 108) 105 (100, 109)  < 0.01

 Potassium, (mEq/L) 4.2 (3.8, 4.7) 4.2 (3.7, 4.7) 0.03 4.1 (3.6, 4.5) 4 (3.6, 4.6) 0.71

 Magnesium, (mg/dL) 2 (1.7, 2.3) 1.9 (1.7, 2.2)  < 0.01 1.8 (1.6, 2.1) 1.9 (1.6, 2.1) 0.23

 Total calcium, (mg/
dL) 8.2 (7.7, 8.7) 8.2 (7.7, 8.7) 0.3 8.1 (7.5, 8.7) 8.1 (7.4, 8.6) 0.13

 Phosphate, (mg/dL) 3.5 (2.8, 4.2) 3.7 (2.9, 4.6)  < 0.01 3.4 (2.7, 4.4) 3.5 (2.7, 4.8) 0.04

 INR 1.3 (1.2, 1.6) 1.3 (1.2, 1.7) 0.7 1.4 (1.2, 1.8) 1.4 (1.2, 1.9) 0.17

 Prothrombin time, (s) 14.6 (12.9, 17.2) 14.5 (12.5, 18.1) 0.49 16.3 (14.8, 20.3) 16.9 (14.9, 20.7) 0.15

 PTT, (s) 31 (27.4, 36.9) 31.4 (27.5, 39)  < 0.01 33.5 (29.6, 41) 35.6 (30.8, 44.2)  < 0.01

 Bicarbonate, (mEq/L) 23 (20, 25) 22 (19, 25)  < 0.01 23 (19, 27) 22 (19, 25)  < 0.01

 Anion gap, (mEq/L) 14 (11, 17) 15 (13, 18)  < 0.01 12 (8.8, 16) 13 (9, 17.2)  < 0.01

Score

 GCS 15 (15, 15) 15 (15, 15)  < 0.01 15 (13, 15) 13 (9, 15)  < 0.01

 SOFA 3 (2, 4) 3 (2, 5)  < 0.01 6 (5, 9) 8 (6, 11)  < 0.01

Treatment measures

 MV, n (%) 3256 (35.3) 3341 (62)  < 0.01 442 (36.5) 296 (57.9)  < 0.01

 CRRT, n (%) 78 (0.8) 178 (3.3)  < 0.01 7 (0.6) 5 (1) 0.35

 Vasopressor, n (%) 4238 (45.9) 2900 (53.8)  < 0.01 303 (25) 183 (35.8)  < 0.01

 Sedation, n (%) 4262 (46.2) 2396 (44.5) 0.05 163 (13.4) 111 (21.7)  < 0.01

Comorbidity

Continued
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0.701 on the external validation set. The performance of the other models is also visualized in these figures, 
highlighting the superior performance of the XGBoost model (Fig. 4A and Fig. 4B).

To examine the calibration of the models, calibration curves for the three best performing models (XGBoost, 
RF, SVM) were generated and compared (Fig. 4C). Among them, XGBoost showed the best fit between observed 
and predicted probabilities, indicating its superior calibration. Decision curve analysis (DCA) was performed on 
these three models and the results are shown in Fig. 4D. The analysis showed that using the XGBoost prediction 
model provided the highest net benefit for predicting SAD, outperforming both RF and SVM.

For further analysis, we evaluated the PPV and NPV of the models at different thresholds (prevalence rates). 
In the internal validation set, RF showed the highest PPV at a threshold of 0.3, while XGBoost and SVM main-
tained stable PPV with increasing thresholds. For the external validation set, RF and XGBoost showed superior 
PPV. However, XGBoost showed consistent PPV across all thresholds. While all models showed an increase in 
NPV with increasing thresholds, the NPV was generally lower compared to the internal validation set (Sup-
plementary Tables S3 and S4). Overall, these results confirm the robustness of XGBoost, particularly its stability 
across different prevalence rates.

Model interpretations. To identify the most influential features in the model, we plotted the feature 
importance ranking for the XGBoost model (top 15 features, Fig. 5A). These features included mechanical ven-
tilation, cardiovascular ICU (CVICU), GCS score, sedation, acute kidney injury (AKI), temperature, anion gap, 
blood sodium, vasopressors, respiratory rate, age, stroke, bicarbonate, platelets, and white blood cells. The SHAP 

Table 1.  Baseline Characteristics of SAD and Non-SAD Patients. Continuous variables were expressed as 
median and interquartile range, the Mann–Whitney U test was used for statistical comparisons between 
two groups. Categorical variables were described as counts and percentages, and the Chi-squared test or 
Fisher’s exact test was used for group comparisons. ICU intensive care unit, CCU  coronary care unit, CVICU 
cardiovascular ICU, MICU medical ICU, SICU surgical ICU, NICU neuro ICU, TSICU trauma-neuro surgical 
ICU, BP blood pressure, WBC white blood cell count, BUN blood urea nitrogen, INR international normalized 
ratio, PTT partial thromboplastin time, GCS glasgow coma scale, SOFA sequential organ failure assessment, 
MV mechanical ventilation, CRRT  continuous renal replacement therapy, AMI acute myocardial infarction, 
CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, AKI acute kidney injury.

Variables

MIMIC-IV cohort

p

eICU cohort

p
Non-SAD patients 
(n = 9230)

SAD patients 
(n = 5390)

Non-SAD patients 
(n = 1212) SAD patient (n = 511)

 AMI, n (%) 937 (10.2) 707 (13.1)  < 0.01 57 (4.7) 25 (4.9) 0.96

 CKD, n (%) 1813 (19.6) 1127 (20.9) 0.07 120 (9.9) 47 (9.2) 0.72

 COPD, n (%) 286 (3.1) 246 (4.6)  < 0.01 136 (11.2) 50 (9.8) 0.43

 Hypertension, n (%) 4072 (44.1) 2226 (41.3)  < 0.01 141 (11.6) 58 (11.4) 0.93

 Diabetes, n (%) 1753 (19) 905 (16.8)  < 0.01 242 (20) 96 (18.8) 0.62

 AKI, n (%) 4689 (50.8) 3469 (64.4)  < 0.01 585 (48.3) 267 (52.3) 0.14

 Stroke, n (%) 453 (4.9) 688 (12.8)  < 0.01 22 (1.8) 17 (3.3) 0.08

Figure 2.  (A) Kaplan–Meier survival curves of 28-days ICU mortality for SAD and Non-SAD groups in the 
MIMIC-IV database. (B) Boxplots of ICU length of stay for SAD and Non-SAD groups in the MIMIC-IV 
database.
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Summary plot (Fig.  5B) complements this ranking by illustrating the impact of each feature on the model’s 
output. Each dot on the plot corresponds to a SHAP value for a feature in a given case. The y-axis represents a 
feature, and the x-axis location indicates the SHAP value or the magnitude of the feature’s effect on the predic-
tion. The color of the dots represents the actual value of the feature, with purple indicating low values and yellow 
indicating high values (e.g., for MV, yellow dots on the right side of the zero line indicate higher MV values 
contributing to a higher risk of SAD).

Partial Dependence Plots (PDPs) provide a graphical depiction of the marginal effect of a feature on the pre-
dicted outcome of a machine learning model (Fig. 6). In these plots, the x-axis represents the actual values of the 
clinical parameters, while the y-axis represents the corresponding SHAP values. This provides a way to quantify 
the relationship between the feature and the risk. A key advantage of PDPs is their ability to highlight non-linear 
relationships between features and the outcome. If the plotted line is not straight, or changes direction, this sug-
gests that the relationship between the feature and the outcome is not linear. Thus, PDPs provide a more nuanced 
understanding of the model’s decision rules beyond what is captured by linear models. For binary features, such 

Figure 3.  (A) Cross-validation plot for the penalty term. The dashed lines represent the lambda.min and 
lambda.1se. (B) Plots for the LASSO regression coefficients over different values of the penalty parameter. The 
vertical dashed lines correspond to the lambda.min and lambda.1se from the cross-validation.

Table 2.  Model performance on the internal validation set.

Model AUROC Sensitivity Specificity PPV NPV Accuracy Kappa

LR 0.758 0.8544 0.5058 0.7449 0.6729 0.7248 0.3795

SVM 0.780 0.8537 0.5463 0.7607 0.6886 0.7394 0.4176

RF 0.791 0.8530 0.5567 0.7647 0.6915 0.7428 0.4267

XGBoost 0.793 0.8515 0.5684 0.7692 0.6939 0.7462 0.4360

NB 0.710 0.8145 0.4476 0.7135 0.5882 0.6781 0.2755

DT 0.692 0.8004 0.5616 0.7551 0.6248 0.7116 0.3696

KNN 0.707 0.9220 0.2857 0.6856 0.6843 0.6854 0.2357

Table 3.  Model performance on the external validation set.

Model AUROC Sensitivity Specificity PPV NPV Accuracy Kappa

LR 0.674 0.7228 0.5205 0.7814 0.4419 0.6628 0.2314

SVM 0.685 0.6634 0.6086 0.8008 0.4325 0.6471 0.2433

RF 0.698 0.6856 0.5969 0.8014 0.4446 0.6593 0.2571

XGBoost 0.701 0.6642 0.5793 0.7892 0.4211 0.6390 0.2196

NB 0.638 0.6221 0.5616 0.7710 0.3852 0.6042 0.1623

DT 0.607 0.6353 0.5793 0.7817 0.4011 0.6187 0.1901

KNN 0.629 0.8812 0.2387 0.7330 0.4586 0.6907 0.1392
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as sedation, AKI, and stroke, the two distinct states of the variable are represented along the x-axis. The y-axis 
shows the average predicted outcome for the instances at each state. For example, a higher average prediction at 
one state over the other indicates that this state has a higher likelihood of leading to the predicted outcome. It’s 
also worth noting that curve fitting for binary variables in PDPs does not indicate a trend or gradient as it does 
for continuous variables, but simply connects the average predictions at the two states.

Application of the model. In the MIMIC-IV database, there were a total of 6625 patients who were either 
not assessed or unable to be assessed for delirium, with 330 patients falling into the latter category (Fig. 1). The 
baseline characteristics of these patients compared with those with sepsis included in the MIMIC-IV model are 
detailed in Supplementary Table S5. These patients had higher ICU 28-days mortality and in-hospital mortal-
ity compared with those in the model (P < 0.01). Using XGBoost model, we predicted the occurrence of SAD 
in these patients. In the total group, 1833 patients (27.7%) were predicted to develop SAD. Furthermore, when 

Figure 4.  (A) The receiver operating characteristic (ROC) curves of the LR, SVM, XGBoost, RF, KNN, DT, and 
NB models on the internal validation set. (B) The ROC curves of the LR, SVM, XGBoost, RF, KNN, DT, and NB 
models on the external validation set. (C) Calibration curves of the XGBoost, RF, SVM models. (D) Decision 
curves of the XGBoost, RF, SVM models.
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comparing patients who were unassessed and those who could not be assessed, we found a higher predicted SAD 
incidence rate in the latter group, at 44.5% compared to 26.8% in the former group (P < 0.01). Mortality rate and 
ICU length of stay were also higher in the group of patients who could not be assessed than in those who were 
unassessed (P < 0.01) (Supplementary Table S5).

Discussion
In this investigation, we found that approximately 36.9% of sepsis patients in the ICU experienced delirium, 
with SAD patients having higher 28-days mortality rates and longer ICU stays compared to Non-SAD patients. 
We then developed an XGBoost-based machine learning predictive model that demonstrated commendable 
predictive performance in both internal and external validation, enabling early prediction of SAD on ICU admis-
sion. To our knowledge, this is the first study to establish a predictive model for SAD, as previous research has 
primarily focused on constructing predictive models for  delirium18–20 or sepsis-associated  encephalopathy21–25. 
Existing research on SAD has predominantly examined risk factors and typically included a limited number of 
study  patients4,5.

Currently, the CAM-ICU score is the most commonly used method for diagnosing delirium, but it requires 
multiple assessments of the patient before a positive result is  possible9,14. In contrast, our machine learning 
prediction model, based on data from the first 24 h of the patient’s ICU admission, is able to predict SAD much 
earlier, as confirmed by our study results. It is worth noting that the completion of the delirium assessment by 
ICU staff (mainly nurses) varies widely, from only 38% in usual care to 84–95% after rigorous  intervention26. 
Failure to complete has been attributed in part to patient-related factors such as age, language, sedation, and 
intubation, as well as staff-related issues such as inadequate training, difficulty using assessment tools, and heavy 
 workload27,28. Even when an assessment is completed, a proportion of CAM-ICU scores are recorded as “unable 
to assess” (UTA) due to sedation, neurological deficits, underlying dementia or speech/hearing impairment. Such 
unassessable cases have been reported to account for 19–30% of all score  records26,29. All of these factors can lead 
to underestimation of delirium in the ICU, and in our study we also found that many patients had no delirium 
assessment or were marked as UTA. Our predictive model revealed a SAD incidence of 27.7% in the cohort of 
unassessed patients, which was lower than the model’s predicted incidence of 36.9%, while the SAD incidence 
in patients marked as UTA increased to a substantial 44.5%. Thus, by applying our machine learning prediction 
model to clinical data, clinicians may be able to identify potential SAD patients more comprehensively. However, 
it should be noted that further independent validation with different datasets with confirmed SAD diagnoses is 
needed to assess the generalizability and accuracy of this machine learning model in different clinical settings.

Our study identified mechanical ventilation as the strongest risk factor for SAD, with 50.6% of 6597 mechani-
cally ventilated patients experiencing delirium, a finding consistent with many delirium-related  studies18,19. In a 
study of mechanically ventilated sepsis patients, the incidence of SAD reached 48%5. In some partial dependence 
plots, we observed that sedation within 24 h of ICU admission was a favorable factor for SAD, which differs 
from some research  findings18. Our sedatives included midazolam, dexmedetomidine, and propofol. Relevant 

Figure 5.  (A) Feature importance ranking plot of the XGBoost model (top 15 features). (B) SHAP summary 
plot of the XGBoost model (top 15 features). mv: mechanical ventilation, CVICU: cardiovascular ICU, wbc: 
white blood cell count, gcs: glasgow coma scale, aki: acute kidney injury.
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studies have shown that the use of benzodiazepines and propofol may increase the risk of  delirium30,31, whereas 
dexmedetomidine may decrease  it32. However, the role of sedatives in SAD remains controversial; research by 
Yu Kawazoe et al.33 found no significant differences in mortality, delirium-free days, and ventilator-free days 
between the dexmedetomidine group and other sedative groups (propofol, midazolam, fentanyl) in mechanically 
ventilated sepsis patients. A large randomized controlled trial showed similar  results34. We speculate that these 
results may be related to early sedation, as early sedation may reduce the duration of mechanical ventilation, 
which is the strongest risk factor for SAD, and its reduction would be conducive to reducing the incidence of SAD. 
Research by Stephens et al.35 found that the use of light sedation within the first 48 h of mechanical ventilation 
could reduce mortality, mechanical ventilation duration, and ICU length of stay. Shehabi et al.36 introduced the 
concept of early goal-directed sedation, implementing goal-directed sedation as soon as possible (12 h) after 
the initiation of mechanical ventilation, resulting in less benzodiazepine use, more delirium-free days, and less 
physical restraint in the early goal-directed therapy group. Notably, the impact of early sedation on patients is 
closely related to the depth of sedation; early deep sedation is associated with significantly increased rates of 
delirium, duration of mechanical ventilation, and mortality compared with early light  sedation35.

Stroke is also a risk factor for SAD. Some of the current predictive models associated with delirium tend to 
exclude stroke from their exclusion criteria, possibly due to the difficulty in distinguishing overlapping symp-
toms between delirium and stroke. However, in recent years, there has been an increasing number of studies 
on delirium in stroke patients. A systematic review of delirium in neuro ICU(NICU) patients suggests the need 
for delirium assessment in stroke patients, with current tools being applicable for monitoring delirium in both 
stroke and brain injury  patients37. The CAM-ICU score can accurately diagnose delirium after stroke, with a 
study by Mitasova et al. finding a sensitivity of 76%, specificity of 98%, and accuracy of 94% for the CAM-ICU 
in diagnosing delirium in stroke  patients38. In addition, stroke-related delirium may interfere with the diagnosis 
of SAD, so we excluded pre-sepsis delirium in our exclusion criteria. Studies have shown that the incidence of 
delirium in stroke patients ranges from 10.7 to 16%39,40, while the incidence of delirium in the NICU ranges 
from 12 to 43%37. Infection is one of the risk factors for delirium in stroke  patients41. The incidence of delirium 
is higher in sepsis patients with concomitant stroke; in our study, the incidence of delirium reached 50% in sepsis 
patients with stroke and 56.2% for SAD in the NICU.

Our results indicate that CVICU is a favorable factor for SAD, with an incidence rate of 19.9% in CVICU, 
similar to some  studies42. The initial 24-h GCS score is also an important predictor of SAD, consistent with the 
results of the two most recent delirium prediction  models18,19. Other predictive factors such as AKI, temperature, 
anion gap, blood sodium, vasopressors, respiratory rate, age, bicarbonate, platelets, and white blood cells have also 
been validated by similar studies or predictive  models19–25. PDPs suggest that some of these predictors have a non-
linear relationship with the occurrence of SAD. For example, GCS score, temperature, sodium, and bicarbonate.

Our study has several limitations. First, there is currently no definitive diagnostic criterion for SAD. Although 
we established several inclusion and exclusion criteria, misdiagnosis and missed diagnoses remain inevitable. 
Second, we used LASSO regression for feature selection due to its efficiency in handling large numbers of vari-
ables, which may not be optimal for all models and may miss complex, non-linear relationships within the data. 
Third, it’s important to note that the risk factor analysis based on PDPs may be subject to the assumption of 
feature independence. Finally, we did not further analyze the effects of sedative drug types, doses, and duration 
of use on SAD, which may complicate our predictive variables.

Conclusion
SAD is common in ICU sepsis patients, with higher mortality rates and longer ICU stays than sepsis alone. Using 
our machine learning-based early prediction model, we can predict the risk of SAD earlier than delirium can be 
detected by traditional tools such as CAM-ICU, and this model can be applied to patients who are difficult to 
assess conventionally. The establishment of this model facilitates early risk identification and the implementation 
of preventive measures, potentially reducing the incidence and mortality of SAD.

Data availability
Publicly available data sets were analyzed in this study. These data can be found here: https:// physi onet. org/ 
about/ datab ase/.
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