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The human acetylcholinesterase 
C‑terminal T30 peptide activates 
neuronal growth through alpha 7 
nicotinic acetylcholine receptors 
and the mTOR pathway
Alexandru Graur 1, Patricia Sinclair 2, Amanda K. Schneeweis 3, Daniel T. Pak 3 & 
Nadine Kabbani 1*

Acetylcholinesterase (AChE) is a highly conserved enzyme responsible for the regulation of 
acetylcholine signaling within the brain and periphery. AChE has also been shown to participate in 
non‑enzymatic activity and contribute to cellular development and aging. In particular, enzymatic 
cleavage of the synaptic AChE isoform, AChE‑T, is shown to generate a bioactive T30 peptide that 
binds to the ⍺7 nicotinic acetylcholine receptor (nAChR) at synapses. Here, we explore intracellular 
mechanisms of T30 signaling within the human cholinergic neural cell line SH‑SY5Y using high 
performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry 
(ESI–MS/MS). Proteomic analysis of cells exposed to (100 nM) T30 for 3‑days reveals significant 
changes within proteins important for cell growth. Specifically, bioinformatic analysis identifies 
proteins that converge onto the mammalian target of rapamycin (mTOR) pathway signaling. 
Functional experiments confirm that T30 regulates neural cell growth via mTOR signaling and ⍺7 
nAChR activation. T30 was found promote mTORC1 pro‑growth signaling through an increase in 
phosphorylated elF4E and S6K1, and a decrease in the autophagy LC3B‑II protein. These findings 
are corroborated in hippocampal neurons and show that T30 promotes dendritic arborization. Taken 
together, our findings define mTOR as a novel pathway activated by T30 interaction with the nAChR 
and suggest a role for this process in human disease.

Acetylcholine (ACh) is an abundant neurotransmitter in the brain and periphery important for various physi-
ological functions including movement, memory, and immune system  regulation1. The cholinergic synapse 
is among the most well understood synapses within many organisms, serving as a prototype for classical 
 neurotransmission2,3. Amongst the primary molecular components of the cholinergic synapse are ACh bind-
ing receptors such as the ligand-gated nicotinic acetylcholine receptor channel (nAChR)4. In addition to their 
post-synaptic localization, nAChRs are also found presynaptically and can contribute to synaptic growth and 
neurotransmitter release in brain circuits for memory and cognitive  processing5. The α7 nAChR is a widespread 
homopentameric channel receptor that activates calcium within  cells6. Studies show that α7 nAChRs can signal 
through both ionotropic and metabotropic modes in neural and immune  cells7. In particular, α7 nAChR signal-
ing is important for neural cell development and synaptic  growth8–10.

The cholinergic synapse is marked by the presence of acetylcholinesterase (AChE), a powerful enzyme that 
regulates ACh levels within the synaptic  cleft11. AChE however is also a well-established signaling molecule 
with hydrolytic and non-hydrolytic functions including strong trophic  activity12–14. The mammalian AChE gene 
contains six exons which are spliced in several alternative forms that create three main AChE isoforms (AChE-
T,-R, -H)11,14. The synaptic tetrameric variant AChE-T is the dominant isoform in the  brain14. AChE-T is a cell 
membrane attached enzyme via its well characterized proline-rich membrane anchor (PRiMA)  domain11,11,14. 
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AChE-T also has an amphiphilic region within its c-terminus that contributes to  oligomerization15. Proteo-
lytic cleavage of the last 30 amino acids at the c-terminus generates in vitro, as well as in vivo a T30 bioactive 
 peptide16,17. Interestingly, since the c-terminal region of AChE-T contains some sequence homology with the 
amyloid precursor protein (APP), cleavage of AChE-T and APP appears to yield two peptides (T30 and Aβ42, 
respectively) with some sequence similarity (Fig. 1A) and neurotoxic  potential17.

Interestingly Aβ42 and T30 are reported to both bind to the ⍺7 nAChR, and can impact calcium signaling 
and  neurotransmission18–21. The pharmacological targeting of T30 is a promising approach for neurodegenera-
tive and amyloid related  disease22. In this study we explore how T30 impacts signaling within the human neural 
cholinergic cell line SH-SY5Y, which is a model for Alzheimer’s Disease (AD) and known to endogenously 
express ⍺7  nAChRs23,24. Using quantitative whole cell proteomics and targeted functional cell assays, we identify 
a novel mechanism of T30 signaling via mTOR that leads to cell growth. T30 activation of mTOR may provide a 
mechanistic understanding of how non-enzymatic AChE-T can contribute to synaptic function.

Methods
Cell culture, transfection, and treatment. Human neuroblastoma cells SH-SY5Y cells (ATCC CRL-
2266) were cultured in T75 flasks for propagation and then plated onto 100  μg/ml polyD-lysine (Millipore, 
A-003-E) coated 96-well glass bottom plates for imaging. Cells were fed DMEM (Gibco 11995065) supple-
mented with 10% fetal bovine serum (FBS) and 1% pen/strep at 37 °C and 5%  CO2. Experiments were conducted 
in cells that did not exceed 19 passages. For treatment experiments, cells were grown to 70% confluence then 
treated with: 100 nM T30/T15/ NBP14, 50 nM α-bungarotoxin (bgtx) (Thermo Fisher B1601), 1 μM Rapamycin 
(Thermo Scientific AAJ62473MF). Treatment media was changed daily. T30, T15, and NBP14 peptides were 
provided by NeuroBio LTD (Oxford, UK) and have been characterized  elsewhere20,25,26. Sequences for these 
peptides are listed in Supplemental Table S1. Cells were transfected using Lipofectamine 2000 (Thermo Fisher 
11668030) with constructs encoding α7345–348A in pEYFP-C127 with the pEYFP-C1 plasmid used as a control. 
All cDNA constructs were propagated in DH5α cells (Thermo Fisher 18258012) and purified using a maxi prep 
kit (Xymo Research, Irvine, CA, USA). Cell proliferation was analyzed through live cell counting using phase 
contrast microscopy within a C-Chip hemocytometer (Bulldog Bio, Portsmouth, NH, USA).

For primary cultures, a total of 2 pregnant Sprague–Dawley rat mothers (8–10-week-old females, RRID: 
RGD_734476) were obtained from Charles River (Raleigh, NC) with all animal experimental procedures 
approved in accordance with guidelines and regulations of the Georgetown University Institutional Animal Care 
and Use Committee and ARRIVE guidelines. All efforts were made to minimize distress during euthanasia. At 
embryonic day 19 (E19), pregnant rats were euthanized using a flow-regulated carbon dioxide chamber, and death 
was verified by toe pinch and decapitation. Anesthetics were not used prior to euthanasia due to interference 
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Figure 1.  Proteomic analysis of T30 signaling. (A) Top: The T30 peptide sequence contains active (T14) and 
inactive (T15) portions as well as some homology to Aβ42. Bottom: Cells were treated with 100 nM T30 for 3 
DIV then analyzed by LC–ESI MS/MS and bioinformatics. (B) The distribution of detected proteins within T30 
treated cells. The threshold for statistical significance (p < 0.05). (C–E) Gene Ontology (GO) terms associated 
with significantly altered proteins (C biological process, D molecular function. E Cellular component).
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of proper neuronal growth in hippocampal neuronal cultures. Primary hippocampal neurons were obtained 
from E18 Sprague–Dawley rats and cultured onto poly-d-Lysine (Sigma cat# P0899-1G; 100 µg/m) and laminin 
(Sigma-Aldrich L2020; ~ 6.25 µg/mL) coated coverslips at 75,000 cells/well as previously  described28. Cells were 
grown in a Neurobasal media with SM1 (StemCell cat# 05711), 12.5 μM glutamate, 500 μM glutamine, and 
0.1 mg/mL Primocin (InvitroGen cat# ant-pm-1)] at 37 °C/5%  CO2. At 2 DIV (days in vitro) cells were treated 
with 1 nM, 100 nM, 1 μM T30 or the vehicle  (H2O) added to the culture media.

Protein extraction and western blot. Proteins were obtained from cultured cells as previously 
 described29. In brief, at 3 DIV cells were lysed using a 0.1% Triton X-100 lysis buffer (Triton X-100, 150 mM 
NaCl, 20 mM Tris HCl, 2 mM EDTA, and 10% glycerol) supplemented with protease (Complete Mini, Roche) 
and PhosSTOP (Sigma Aldrich 4906845001) inhibitors. Protein concentration was determined using the Brad-
ford assay. Proteins were separated on a NuPAGE 4–12% Bis–Tris gradient gel (Thermo Fisher NP0322BOX) 
and then transferred onto a nitrocellulose membrane (Thermo Fisher IB301002). Membranes were blocked with 
milk prior to application of a primary antibody: GAPDH (1:1000 Cell Signaling 5174), LC3B (1:1000 Cell Signal-
ing 2775), p-eIF4E (1:1000 Cell Signaling 9741), eIF4E (1:1000 Santa Cruz sc-271480), p-S6K1 (Thr389) (1:1000 
Cell Signaling 9205), S6K1 (1:1000 Santa Cruz sc-8418) and Cytochrome C (1:1000 AbCam ab90529). HRP 
secondary antibodies were purchased from Jackson Immunoresearch (West Grove PA, USA). A SeeBlue Plus2 
Ladder (Thermo Fisher LC5925) was used as molecular weight marker. Bands were visualized using SuperSignal 
West Pico or SuperSignal West Femto Chemiluminescent substrates (Thermo Fisher) via the G:BOX Imaging 
System and GeneSYS software (Syngene, Fredrick MD, USA). Band density was analyzed in Image J (NIH, 
Bethesda MD, USA). All measures were normalized to GAPDH unless otherwise stated. Average band intensity 
measures are based on three separate experiments.

Liquid‑chromatography electrospray ionization mass spectrometry. Whole cell proteomic anal-
ysis was performed based on an established  method19,30. Briefly, solubilized protein samples were incubated for 
5 min with acetone on ice followed by protein precipitation via centrifugation. The resulting protein pellet was 
denatured, reduced, and alkylated with 8 M urea, 1 M dithiothreitol, and 0.5 M iodoacetamide. Proteins were 
digested with trypsin (0.5 μg/μl) in 500 nM ammonium bicarbonate and incubated at 37 °C for 5 h. The samples 
were then desalted with C-18 ZipTips (Millipore), dehydrated in a SpeedVac for 18 min and reconstituted in 
0.1% formic acid before undergoing liquid-chromatography electrospray ionization mass spectrometry (LC-ESI 
MS/MS) with 5 technical replicates.

LC-ESI MS/MS was performed using an Exploris Orbitrap 480 equipped with an EASY-nLC 1200HPLC 
system (Thermo Fischer Scientific, Waltham, MA, USA). Peptides were separated using a reverse-phase PepMap 
RSLC 75 μm i.d by 15 cm long with a 2 μm particle size C18 LC column (Thermo Fisher Scientific, Waltham, 
MA, USA), and eluted with 80% acetonitrile and 0.1% formic acid at a flow rate of 300 nl/min. After a full scan 
at 60,000 resolving power from 300 to 1200 m/z, peptides were fragmented by high-energy collision dissociation 
(HCD) with a normalized collision energy of 28%. EASY-IC filters for monoisotopic precursor selection, internal 
mass calibration, and dynamic exclusions (20 s) were enabled. Data on peptide precursor ions with charge states 
from + 2 to + 4 was recorded.

Proteomic quantification and statistical analysis. The SEQUEST HT search engine within the Pro-
teome Discoverer v2.4 (Thermo Fisher Scientific, Waltham, MA, USA) was used to identify proteins by compar-
ing raw MS peptide spectra to the NCBI 2018 human protein database using the following search engine param-
eters: mass tolerance for precursor ions = 2 ppm; mass tolerance for fragment ions = 0.05 Da; and cut-off value 
for the false discovery rate (FDR) in reporting peptide spectrum matches (PSM) to the database = 1%. Peptide 
abundance ratios were determined by precursor ion quantification in Proteome Discoverer v2.4, with the vehicle 
control group used as the denominator. Statistically significant abundance ratios with adjusted p-values < 0.05 
were determined using a one-way analysis of variance (ANOVA) followed by Benjamini–Hochberg post-hoc 
analyses. Proteins with a quantifiable spectra signal profile seen in at least 3 of the 5 technical replicates were 
included in the analysis. Markov Cluster Algorithm (MCL) with an inflation parameter of 3 was used to perform 
clustering analysis on the data in the STRING database. Data was analyzed, organized, and presented using the 
R package (R Core Team, 2021):  ggplot231,  tidyverse32, Excel, the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, v11.5) 
 application33.

Immunocytochemistry and cell imaging. SH-SY5Y cells were fixed in a solution consisting of 1 × PEM 
(80 mM PIPES, 5 mM EGTA, and 1 mM MgCl2, pH 6.8) and 0.3% glutaraldehyde then quenched with sodium 
borohydride (2 mg/ml). Cells were permeabilized using 0.05% Triton X-100 (Sigma Aldrich). Quantification 
of structural change (i.e., neurite shape and growth) was performed using rhodamine phalloidin (Cytoskel-
eton PHDG1-A). All morphometric measures were conducted and quantified using ImageJ (NIH, Bethesda, 
MD, USA) as  described8. α7 nAChRs were detected at the cell surface and within the cytoplasm using Alexa 
Fluor 488 conjugated α-bungarotoxin (Alexa-488 bgtx) (Thermo Fisher B13422) as  described27. Images were 
captured using an inverted Zeiss LSM800 confocal microscope and the Zen software package (Carl Zeiss AG, 
Oberkochen, Germany).

Primary culture coverslips were fixed at 7 DIV with 1% paraformaldehyde and 4% sucrose at room tempera-
ture for 7 min then submerged in methanol for 7 min at − 20 °C. Cells were immunolabeled with antibodies to 
MAP2 (PhosphoSolutions, cat# 110-MAP2) in a GDB solution consisting of 30 mM phosphate buffer (pH 7.4) 
containing 0.1% gelatin, 0.3% Triton X-100, and 450 mM NaCl at 4 °C overnight. Species specific secondary 
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antibodies (AlexaFluor 488 (Invitrogen) were applied in GDB for 2 h at 25 °C, then washed, and coverslips 
mounted in NPG (glycerol, 1 M Tris pH 8, 0.05 g n-propyl gallate). Analysis of dendritic branching by Sholl 
analysis was performed on ImageJ v1.53t (https:// imagej. net/ softw are/ fiji/ downl oads) via the Neuroanatomy 
 plugin34,35.

Results
Identification of a T30 reactive proteome within neural cells. The human neuroblastoma SH-SY5Y 
cell line is a well-established model for the study of neural cell development and  neurodegeneration24,36. SH-
SY5Y cells maintain the ability to model cholinergic neurons with endogenous expression of various cholin-
ergic  receptors23,37. We used SH-SY5Y cells to examine proteomic responses to treatment with the bioactive 
c-terminal peptide of the AChE-T enzyme  T3025. Cells were treated with 100 nM T30 for 3 DIV then processed 
for proteomic analysis. T30 has been identified as an endogenous ligand of the ⍺7 nAChR, and at 100 nM it is 
shown to activate ⍺7 nAChR calcium signaling in various cell  lines25,38. In these experiments, we used the vehicle 
treatment condition as the control group in protein comparison.

We have optimized a shotgun LC/ESI–MS/MS approach to identify cellular proteins, for SH-SY5Y and other 
cell lines, in response to various  stimuli19,30. In this study, LC/ESI–MS/MS peptide detection was used to quan-
tify protein changes based on label-free precursor ion abundance ratio measures between T30 treated cells and 
control samples (Fig. 1A). Our proteomic analysis identified 4331 soluble cellular proteins in the sample. A 
volcano plot distribution (Fig. 1B) shows that 121 of these proteins were significantly increased while 40 were 
significantly decreased and 4170 did not statistically change between the two experimental conditions (p < 0.05). 
Using Proteome Discoverer, we annotated the significantly altered proteins according to the three main GO 
domains: biological processes, molecular function, and cellular components. GO domain terms matching the 
greatest number of altered proteins in response to T30 treatment are presented in Fig. 1C–E. A full list of the 
significantly altered proteins and their corresponding peptide scores is provided Supplemental Table S2.

Whole cell proteomics enables an analysis of functional changes within cells that can be supported by fur-
ther examining protein–protein interaction (PPI)  networks39. Modifications to PPI networks can reveal impor-
tant information on functional adaptive responses to an extracellular signal. We used a Markov cluster (MCL) 
analysis to define PPI networks within the T30 proteome (consisting of all significantly upregulated and down-
regulated proteins)41. MCL analysis shows a relatively integrated PPI network based on the identity of the sig-
nificantly altered proteins (Fig. 2). Within this PPI network we identified several altered protein clusters and 
impacted cell pathways. The largest PPI cluster was found to contain 19 proteins with 53 connections yielding 
a significant PPI enrichment (p < 1.11 ×  10–16). This cluster (Cluster 1) consisted of an average local clustering 
coefficient (ALCC) of 0.697. Enrichment analysis of Cluster 1 confirms ribosome enrichment in KEGG Pathways 
with a false discovery rate (FDR) of 8.49 ×  10–7. MCL analysis revealed 11 clusters within the T30-associated 
PPI network (Fig. 2 and Table 1). Many of the identified clusters were involved in pathways for cell growth 
and protein regulation.

T30 activates an mTOR pathway for cell growth. Studies have shown a role for non-hydrolytic 
AChE function in neuronal growth and synaptic  maturation13,42. In particular, the c-terminal fragment T30 
that is  produced by AChE-T cleavage has been shown to activate intracellular signaling important for neu-
ral  development43,44. Our proteomic analysis reveals new intracellular proteins and signaling pathways that are 
altered in response to a 3-day T30 presentation within the SH-SY5Y cell line. Bioinformatic KEGG Pathway 
analysis in DAVID further revealed enrichment of proteins involved in mTOR signaling. Our analysis indicates 
that mTOR may serve as a point of convergence between PPI networks and several of the identified clusters 
within the dataset (Fig. 3A). In Fig. 3B, a mechanistic model  summarizing the hypothesized involvement of 
mTOR in T30 mediated growth is presented. In this model, differentially altered (increased and decreased) 
proteins identified within the proteome are important components of mTOR signaling. The proteomic data also 
suggests that T30 promotes mTORC1 signaling through the regulation of downstream proteins.

To test this model, we examined SH-SY5Y cell growth in the presence of the 100 nM T30 for 3 DIV. As shown 
in Fig. 4A, T30 treatment increased cell proliferation but this effect was not found to be statistically significant 
(p = 0.287). Protruding from the membrane of developing neural cells are motile structures that consist of actin 
projecting lamellipodia as well as cytoplasmic  filopodia45,46. In previous studies we have shown a role for ⍺7 
nAChRs in regulating actin-mediated cytoskeletal growth in neurites and growth  cones8,29. T30 presentation 
showed a significant increase in neurite growth as measured by neurite number, increased presence of filipodia/
lamellipodia structures, and total measured surface area (n = 40, p < 0.001). This effect was not seen in response 
to the application of a cyclic variant of the T30 peptide termed NBP14 that is shown to be biologically  inert47 
(n = 40, p = 0.369) (Fig. 4B–D).

A requirement for ⍺7 nAChR signaling in T30‑mediated growth. Studies show that T30 binds 
to ⍺7 nAChRs in neural cells activating intracellular calcium signaling and increasing nAChR  expression48. 
We confirmed the role of ⍺7 nAChRs in T30-mediated neurite growth using the selective ⍺7 nAChR blocker 
⍺-bungarotoxin (bgtx). As shown in Fig. 5A, co-treatment of cells with 50 nM bgtx and T30 did not produce an 
effect on growth (n = 40, p = 0.136). We examined the impact of T30 treatment on the expression and localization 
of the ⍺7 nAChR within SH-SY5Y cells. Fluorescence imaging was performed using Alexa 488-bgtx to assess ⍺7 
nAChR expression as previously  shown27. We first compared cell surface to intracellular expression by labeling 
cells with Alexa 488-bgtx in  non-permeabilized and permeabilized fixation protocols, respectively. Data shows 
that T30 increases the Alexa 488-bgtx signal within the cell (n = 40, p < 0.05) but not at the cell surface (n = 40, 
p = 0.139) (Fig. 5B). We examined the effect of T30 on ⍺7 nAChR expression at subcellular sites of growth. Our 

https://imagej.net/software/fiji/downloads
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Figure 2.  STRING network and cluster analysis of the T30 proteome. STRING analysis of the T30 proteome 
(consisting of all significantly altered proteins) showing networks for interacting proteins. Line thickness 
reflects the confidence between node associations, and node color indicates whether the protein is increased or 
decreased. A Markov cluster algorithm (MCL) was used to identify 11 functional clusters within the proteome 
network.

Table 1.  Top clusters identified using MCL in STRING.

Cluster # Node # Edge # ALCC PPIE Cluster enrichment

1 19 53 0.697 1.11E−16 Ribosome

2 6 6 0.75 6.95E−09 Electron transport chain/mitochondria

3 6 11 0.933 5.99E−13 Microtubule binding

4 5 4 0.8 2.71E−07 Protein transport

5 5 9 0.9 5.71E−10 Ribosome biogenesis in eukaryotes

6 4 4 0.833 1.26E−07 Chaperone

7 4 3 0.5 1.78E−05 Spliceosome

8 3 2 0.667 8.47E−03 mTOR signaling pathway

9 3 3 1 1.16E−06 MTORC1 regulation

10 3 2 0.667 4.33E−05 RNA binding

11 3 2 0.667 8.58E−05 Mitochondrial calcium ion transmembrane transport
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previous findings show that this nAChR is targeted to the growth cone and can regulate neurite motility through 
the  cytoskeleton8,49. As shown in Fig. 5C, treatment with T30 was found to significantly increase the Alexa 488-
bgtx signal at growth sites relative to both the control condition (n = 30, p = 0.0002) as well as the cyclic NBP14 
peptide (n = 30, p = 0.005).

The activation of the α7 nAChR can regulate neurite development within hippocampal neurons through the 
ability of the α7 nAChR to bind and activate heterotrimeric GTP-binding proteins (G proteins)27. Expression of a 
mutant α7 subunit (α7345–348A) that lacks the G protein-binding site has been established as a method for blocking 
α7 nAChR-mediated G protein signaling and diminishing the receptor’s metabotropic effect on  growth27. We 
tested the ability of T30 to promote growth in SH-SY5Y cells transfected with α7345–348A (pcDNA3-YFP). In this 
assay, control cells were transfected with the vector pcDNA3-YFP alone. Morphological analysis shows that T30 
treatment does not increase neurite growth in cells expressing α7345–348A (n = 40, p = 0.09) (Fig. 5D).
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T30 activates the mTOR1 pathway. Our proteomic analysis reveals an enrichment of intracellular pro-
teins involved in mTOR signaling (Fig. 3 and Table 1). Activation of mTOR is a conserved evolutionary signaling 
strategy for balancing cell growth and metabolic demand in various  context50–52. Previous work indicates that 
α7 nAChRs engage mTOR during development, inflammation, and cancer  progression53. We directly confirmed 
the involvement of mTOR signaling in T30-mediated neurite growth using the mTOR inhibitor rapamycin. As 
shown in Fig. 6A, pre-treatment of neural cells with 1uM rapamycin, for 24 h, was found sufficient to abolish 
the effect of T30 on neurite growth (n = 40, p = 0.161). The activation of mTORC1 is shown to promote the phos-
phorylation of the translation regulating factor eIF4E (serine 209) and the ribosomal protein S6 kinase (S6K) 
(threonine 389) during mTOR-mediated translational regulation and cell  growth54,55 (Fig. 3B). We assessed the 
effect of T30 on eIF4E and S6K expression and phosphorylation at 3 DIV. As shown in Fig. 6B,C, T30 treatment 
did not increase the expression of eIF4E nor S6K but increased their phosphorylation (p = 0.011and p = 0.03, 
respectively).

The mTOR pathway plays a critical role in maintaining cellular balance between anabolic and catabolic states 
through the regulation of degradation-mediated autophagy  processes56. Isoforms of the cytosolic light chain 
(LC3) protein undergo modifications during autophagy and thus serve as autophagy  markers57. We examined 
autophagy-associated  LC3I to II conversion within LC3B as previously  shown57. LC3B was detected through-
out the cell, including sites of growth, consistent with the role of the autophagosome in modulating struc-
tural  growth58 (Fig. 7A). Treatment of cells with T30 (for 3 DIV) was found to significantly reduce LC3B-II 
levels consistent with mTORC1-mediated autophagy inhibition (Fig. 7B). The ability of T30 to reduce LC3B-II 
was blocked by co-application of bgtx (p = 0.428) consistent our model of α7 nAChR regulation of autophagy 
during growth.

 The mTOR pathway coordinates mitochondrial energy production and can regulate the synthesis of various 
mitochondrial  proteins59. Our proteomic analysis indicates an effect of T30 on the expression of mitochondrial 
proteins (Fig. 2 and Table 1). Indeed, AChE and α7 nAChR are individually  reported to regulate mitochondrial 
activity and contribute to apoptotic signaling in  neurons60,61. We examined the effect of T30 on cytochrome C 
levels within SH-SY5Y cells. Immunofluorescence analysis using an anti-cytochrome C antibody shows that T30 
treatment reduces cytochrome C expression in cells relative to controls (n = 40, p = 0.009). In these experiments, 
the inactive portion of T30 (T15) did not have an effect on cytochrome C levels  (Fig. 7C) (n = 40, p = 0.459).

T30 promotes dendritic growth in hippocampal neurons. We confirmed the effect of T30 in pri-
mary hippocampal neurons. Previous studies have described acute pharmacological responses of neural cells to 
T30 along a varied concentration range (2.5 nM to 40 μM)35. We tested the impact of T30 on neuronal growth  at 
1 nM, 100 nM, and 1 μM corresponding to low, medium, and high non-toxic  levels35. In these experiments, neu-
rons were treated with various T30 concentrations for 5 DIV and then immunostained with anti-MAP2 antibod-
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ies to visualize dendritic arbors (Fig. 8A). A quantitative measure of dendritic length and branching was obtained 
using a Scholl  analysis34. As shown in Fig. 8B and Supplemental Table S3, T30 treatment clearly increased den-
dritic growth relative to controls. A comparison of concentrically defined intersection points at specific distances 
from the soma, indicates that T30 promotes significant dendritic growth at 1 nM and 100 nM but shows a dimin-
ished  growth effect at 1  μM concentration. This observation  was robust across two forms of morphometric 
analyses of dendritic growth and underscore dose-related actions of T30 in growth.

Discussion
AChE is an enzyme vital for mammalian synaptic transmission through its ability to hydrolyze  ACh62,63. It is 
also widely expressed outside of the nervous system and is sometimes found in non-cholinergic  cells64. A large 
body of work has demonstrated non-hydrolytic properties for AChE within various cell  types12–14. Amongst its 
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non-hydrolytic activity is its role as a trophic factor during normal development and  cancer65. Studies show that 
synaptic AChE-T is especially abundant during brain development and can regulate axonal growth, cell adhe-
sion, as well as pathfinding during  synaptogenesis66,67. The loss of AChE-T in mice is associated with disruption 
to synaptic connectivity within the retina and  cortex68. Our study supports the involvement of non-hydrolytic 
AChE-T in growth demonstrating an important role for the T30 peptide in human neural  cells69,70. We add to this 
body of evidence by showing that T30 can signal growth in human SHY-SY5Y cells and primary hippocampal 
neurons. In neurons, we find that T30 activates dendritic growth within a specific concentration range, consistent 
with the idea that T30 allosteric ligand site within the ⍺7  nAChR35.

Earlier findings demonstrate that T30 binds the ⍺7  nAChR48. Sequence similarity between T30 and Aβ42 
has been shown yet it is not yet clear if the two peptides share common binding partners in cells. Studies have 
shown that brain AChE complexes with Aβ peptide  fragments71, and that AChE and butyrylcholinesterase are 
present within Aβ deposits such as senile  plaque72. Interestingly, in ex vivo rat brain slices, the application of T30 
results in an increase in the expression of Aβ4273, suggesting that T14 interferes with amyloid protein turnover. 
Interactions between AChE and nAChR have also been explored in other  contexts74. Thus, while the two mol-
ecules are co-expressed at the mature cholinergic synapse, AChE-T and the ⍺7 nAChR appear highly coupled 
in expression during brain  development75. In early post-natal synaptic development, α7 nAChR is at its highest 
within rodent brain and shown to regulate neural cell proliferation and synaptic maturation within regions such 
as the  hippocampus10. Our earlier studies have shown an important role for α7 nAChR metabotropic signaling 
through G proteins in axonal calcium signaling and growth cone  motility29. In this study, T30 activation of the α7 
nAChR is also able to support neurite growth through a process that appears dependent on G protein signaling 
since expression of the α7345–348A mutant did not support  T30 mediated growth.

Our proteomic analysis reveals several important intracellular pathways engaged by the presentation of 
T30 in vitro. These pathways all appear to promote cell growth and protein synthesis. In fact, when looking 
at statistically altered proteins within the T30 proteome, ~ 75% of the change was due to an increase in the 
expression of proteins. Bioinformatic analysis using MCL and DAVID KEGG pathway indicates that these 
protein changes reflect an mTOR pro-growth state within treated cells. mTOR is an evolutionarily conserved 
serine/threonine kinase that regulates many cellular responses (from autophagy to translation) and organizes 
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molecular responses to incoming signals by modulating energy and metabolic  substrates76,77. It functions via 
two distinct complexes: mTORC1 and mTORC2 with the activation mTORC1 resulting in protein synthesis via 
p70 S6 kinase (S6K1 and S6K2) and phosphorylation of eukaryotic initiation factor 4-binding protein (4EBP1 
and 4EBP2). mTORC1 also suppresses autophagy mediated protein degradation and can contribute to  growth56. 
Our findings show that T30 promotes neural cell growth by activating α7 nAChRs leading to mTOR pathway 
signaling. This process is supported by recently published evidence on the ability of α7 nAChRs to direct AKT/
mTOR autophagy within  neurons78,79.

Our experiments show that T30 acts via mTOR at several points, first by decreasing the expression of the 
autophagy marker LC3B and second by increasing the phosphorylation of both eIF4E and S6K. These pro-
cesses appear to promote neurite growth and explain the actions of T30 on growth within our cells as well as 
 elsewhere54,56. Interestingly, the effects of T30 appear accompanied by overall reduction in cellular cytochrome c, 
which is a driver of  apoptosis80. The effects of T30 are found specific since antagonism of the α7 nAChR with bgtx 
abolished T30-associated growth, and application of the mTOR inhibitor rapamycin and non-bioactive peptide 
variants of T30 (T15 and NBP14) did not promote growth signaling. Studies have shown interactions between 
nAChRs and intracellular organelle including the ER and  mitochondria9,19. In future studies, it will be important 
to examine subcellular compartment specific proteomic changes that accompany T30 activation of the nAChR.

Disruption to mTOR signaling is implicated in many human disease including auto-immune disorder, neu-
rodegeneration, and various  cancers50. In the brain stimulation of mTOR has been suggested to promote hyper-
phosphorylation of synaptic tau and can drive amyloid protein  accumulation81. A growing body of evidence 
demonstrates a link between mTOR signaling and AD. For example, an alteration in the autophagy-lysosome 
pathway has been shown to drive Aβ42  neurotoxicity82,83, and a loss in mTORC1 regulation appears to contribute 
to protein aggregation within neural  cells84. It has been suggested that interactions between T30 and nAChRs 
can participate in early cholinergic cell death within the  brain85. This study provides novel evidence on a con-
nection between the mTOR pathway and ⍺7 nAChR signaling. How this may contribute to neural development 
and disease is an important question for the future studies.

Data availability
Proteomic data generated during this study is deposited in the online open access Figshare repository (https:// 
doi. org/ 10. 6084/ m9. figsh are. 22637 611. v1).
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