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The synergetic effects 
of 4‑nonylphenol and polyethylene 
microplastics in Cyprinus carpio 
juveniles using blood biomarkers
Esraa Ammar 1, Mohamed Hamed 2, Mahmoud S. Mohamed 3 & Alaa El‑Din H. Sayed 1,3*

Microplastics are widely distributed in aquatic ecosystems along with other chemical pollutants. 
Therefore, it is vital to study the health‑hazardous effects of MPs in combination with 4‑nonylphenol 
(4‑NP), which is a highly abundant industrial waste and a critical alkylphenol endocrine disruptor. 
We investigated the effects of the exposure to polyethylene microplastics (PE‑MPs), 4‑NP, and their 
combination on blood biomarkers in Cyprinus carpio juveniles. Four study groups were treated for 15 
consecutive days: (1) control group, (2) 10 mg/L PE‑MP group, (3) 10 mg/L PE‑MPs + 200 µg/L 4‑NP 
group, and (4) 200 µg/L 4‑NP group, followed by 15 days of recovery. Biochemical analyses showed 
that creatine kinase, lactate dehydrogenase, glucose, liver enzymes, total protein, and A/G ratios 
were significantly increased after exposure to PE‑MPs, 4‑NP, and the combination. Hematological 
parameters (RBC’s, Hb, Ht, neutrophil percentage, and WBC’s) were significantly decreased in 
the three exposure groups, whereas mean corpuscular volume and lymphocyte percentages were 
significantly increased. The 15‑day recovery period improved most hematobiochemical parameters 
and PE‑MP accumulation indices. Taken together, we demonstrated the hazardous effects of PE‑MP 
and 4‑NP combinations on C. carpio blood parameters and highlighted their potential risk to human 
health.

Greater understanding of global pollution is warranted, especially in aquatic environments, and for animals, fish, 
and amphibians, where some industrial chemicals contaminate environments and cause serious damage during 
developmental and adult  stages1. Chemical pollution is due to increased industrialization. Microplastics (MPs) 
and nonylphenols (NPs) are considered emerging pollutants and have attracted considerable environmental 
and research attention, but their combined toxicity toward aquatic organisms remains poorly researched. These 
chemicals are toxic when they persist in the environment and accumulate in different biota. Aside from their 
use in packaging, construction, transportation, electrical power, and medical products. Plastics are low cost, 
lightweight, and easy to process, which has made them popular in many  industries2. Major MPs are categorized 
based on their monomer backbone structure and include polyethylenes (PEs), polypropylenes, polystyrenes, 
polyvinyl chlorides, and  polyamides3,4. One of the most commonly used plastics is PE, which has the chemical 
formula  (C2H4)  n5,6. Many products are made from PE, including films, storage containers, toys, and  packaging7. 
Plastics degrade during their life cycle via different mechanisms, including abrasion, mechanical wear, photooxi-
dation, and biological  destruction8. MPs are plastic pieces that vary across the size range from 5 to100 nm and 
are degraded from larger plastic  pieces9, and NPs are < 100 nm in  size10.

Despite differences in size, chemical content, and shape, MPs are heterogeneous groups of particles with 
varying  toxicity11,12. Studies have shown that aquatic organisms ingest and accumulate MPs, concomitant 
 contaminants13,14, and land  invertebrates15–17. Although MPs come in many forms, the toxicity of each type is 
widely  unknown18–20.

Certain species can be used to characterize the potential damage from MPs on aquatic health. Plastics may 
affect organisms in two ways: (i) physically by obstructing growth  processes21 and reducing food and energy 
 uptake22,23 and (ii) chemically by adsorbing contaminants such as polychlorinated biphenyls and polybrominated 
diphenyl ethers or releasing  additives9,24,25. Freshwater is often the main source of such plastics, transporting 
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medium, and the sink of  MPs26. Little research has been conducted on MPs in freshwater when compared with 
marine water, but freshwater may accumulate numerous  MPs27.

MPs also absorb other contaminants (organic and inorganic pollutants) from surrounding environments 
which is like the fact that these adhered pollutants are affected both spatially and  biologically24,28 and warrants 
further study. Recently, this vector effect was summarized by Syberg et al.29, on base of the  environment30, the 
 organism22, and the cell (von Moos et al., 2012).

Persistent organic pollutants (POPs) are highly attracted to the hydrophobic surface of plastics, which 
facilitates the concentration of  MPs21. However, it is highly unlikely that biota can absorb such chemicals from 
 plastics31. Even though some POPs bioaccumulate and biomagnify within MPs, the risk of MPs-ingesting is 
generally the same as ingesting contaminants from prey or dispersed water  contaminants32–34. The environmental 
endocrine disruptor nonylphenol (4-NP) is used in the manufacture of cleaning products, emulsifiers, and 
wetting agents and is found in paints, pesticides, and household  products35.

Common carps (Cyprinus carpio) are a widely cultivated freshwater fish species because of their ability to 
withstand environmental changes and stresses. The species is widely used as a model species in ecotoxicological 
studies, so it was selected because of its importance in  aquaculture36,37 using fish as biomarkers is vital for 
monitoring pollution. The hemato-biochemical parameters of fish are essential signs of water  quality38.

Whereas, no previous studies have explored the synergistic effects of PE-MPs and 4-NP, especially in fauna 
from aquatic environments, we investigated the hematological and biochemical parameters in juvenile carp to 
determine the synergistic effects of PE-MPs and 4-NP using cytotoxicity biomarkers.

Materials and methods
Chemicals. PE‑MP characterization. PE-MPs 5 mm > MPs > 100 nm were used in raw powdered form and 
were irregularly shaped particles (Toxemerge Pty Ltd., Australia). PE-MP particles were characterized using 
TEM (JEOL JEM-1200 EX II) at TEMU, Assiut University. PE-MPs were characterized using a protocol by 
Hamed et al.39.

4‑NP. 4-NP (99.3% purity) was supplied by Sigma–Aldrich (Schnelldorf, Germany).

Stock preparation. Approximately 1 g of PE-MPs and 6 mg of 4-NPs were individually dissolved into sepa-
rate containers containing 1 L of distilled water and maintained in dark at 4 °C (stocks were shaken before use).

PE‑MP detection. PE-MPs were observed in whole fish based on a method by Deng et al.40. A whole fish 
(5 ± 1 g) was put in 10 mL of hydrogen peroxide (30%, v: v) for 2 h at 70 °C, and 100 µL of the obtained mixture 
was microscopely-examined using 14 MP OMAX camera (A35140U3) according to Hamed et al.80.

Fish acclimation and exposure. Juveniles C. carpio (5 ± 1  g and 8.5 ± 1  cm) were acclimated in glass 
tanks (100 cm × 70 cm × 50 cm) under physicochemical conditions: Temperature 28.5 °C, pH 7.4, 6.9 mg/L DO, 
12:12 h (light:dark), and 260.8 mM/cm conductivity. Four groups (36 fish/ 3 triplicate) were treated as follows: 
1) control, 2) 10 mg/L PE-MPs, 3) 10 mg/L PE-MPs + 200 µg/L 4-NP, and 4) 200 µg/L 4-NP for 15 consecutive 
days and then 15 days of recovery. Doses were selected according to Hamed et al.39 and Sayed and  Soliman41. 
Fish were fed each day with commercial pellets at 3% of their body weight, and water changed every day (50%) 
and MPs-redosed in water (immersion method of exposure) every day to prevent waste accumulation. Study 
procedures terminated with six fish in each group numbed on ice to eliminate stress caused by  processing42 
and fish was euthanized MS-222 (Millipore-Sigma-Aldrich, Oakville, ON, Canada; 0.5 g/L). After cutting the 
tail, blood collected in heparinized and non-heparinized tubes for hematological and biochemical assessments, 
respectively.

Hematological parameters. Blood samples (6/ group) were taken from the caudal vein into heparinzed 
tubes to measure Hematological parameters including counts comprising erythrocytes (RBC’s), total white 
blood cells (WBC’s), differential WBC’s, hematocrit (Ht), hemoglobin concentrations (Hb) were performed 
using Auto Hematology Analyzer (Rayto RT-7600) according to Hamed et al.39 and Hamed et al.43. Mean cor-
puscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentra-
tion (MCHC) were calculated using the formulae mentioned by Dacie and  Lewis101

Biochemical parameters. Blood samples were taken from the caudal vein into non-heparinzed tubes to 
centrifugation at 5000 rpm for 5 min and then the serum was removed by subjecting the tubes, stored at − 20 °C 
until further analysis of the following blood parameters: albumin, globulin, total protein (TP), glucose, aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatine kinase (CK), 
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and lactate dehydrogenase (LDH) were determined by kits of (SGMitalia Company U.S.A) using a spectropho-
tometer (T80 + UV/VIS, Bioanalytic Diagnostic Industry, Co.) according to Hamed et al.43.

Erythrocyte analysis. Blood smears fixed, air-dried, and stained with hematoxylin & eosin. Slides were 
selected and observed under a 40 × objective lens under a light microscope (VE-T2) attached to a 14 MP OMAX 
camera (A35140U3) according to Hamed et al.43 and Sayed et al.44.

Statistical analysis. The mean and standard error of the mean values were estimated. Statistical differences 
between groups were analyzed by one-way analysis of variance in  SPSS45 at the 0.05 significance level (P < 0.05). 
Post hoc comparison was done using Tukey’s-b and Dunnett tests (SPSS V.16).

Ethics statement. Studies were approved by the Research Ethics Committee of the Molecular Biology 
Research and Studies Institute (MB-21–11-R), Assiut University, Assiut, Egypt. All methods were carried out 
following the relevant regulations and ARRIVE guidelines.

Results
PE‑MP characterization. Light microscope and TEM images showed that PE-MP particles were irregu-
larly shaped (Fig. 1).

PE‑MP detection. High PE-MP levels were observed in the PE-MP-exposed groups when compared with 
the control. After the recovery period, high PE-MP levels were still observed in the PE-MP-exposed groups 
compared with control (Fig. 2).

The effects of combinations on hematological parameters. RBC’s, Hb, and WBC’s after exposure 
to 10 mg/L PE-MPs, 200 µg/L 4-NP, and 10 mg/L PE-MPs + 200 µg/L 4-NP; Ht after exposure to 200 µg/L 4-NP 
and 10 mg/L PE-MPs + 200 µg/L 4-NP; and neutrophil percentages after exposure to 200 µg/L 4-NP for 15 days 
showed significant (P < 0.05) decreases when compared with those of controls. MCV levels and lymphocyte per-
centages showed significant (P < 0.05) increases after exposure to 10 mg/L PE-MPs + 200 µg/L 4-NP for 15 days 
(Figs. 3 and 4).

Neutrophil and monocyte percentages and Ht levels after exposure to 10 mg/L PE-MPs, and monocyte 
and lymphocyte percentages and MCH levels after exposure to 10 mg/L PE-MPs + 200 µg/L 4-NP for 15 days 
showed nonsignificant decreases. MCHC levels after exposure to 10 mg/L PE-MPs, 200 µg/L 4-NP, and 10 mg/L 
PE-MPs + 200 µg/L 4-NP; neutrophil percentages and MCV levels after exposure to 10 mg/L PE-MPs + 200 µg/L 
4-NP; monocyte percentages after exposure to 200 µg/L 4-NP; and MCH levels after exposure to 200 µg/L 4-NP 
and 10 mg/L PE-MPs for 15 days showed nonsignificant increases.

After the recovery period, the hematological parameters showed no change, except for the following: the RBC, 
MCV, and MCH levels in the PE-MP group, MCHC levels and neutrophil percentages in the PE-MPs + 4-NP 
group, and monocyte percentages in the 4-NP group; all showed nonsignificant decreases. The MCV levels in the 
4-NP group showed a nonsignificant increase. The Ht levels in the PE-MP group showed a significant decrease. 
The lymphocyte percentages in the PE-MP + 4-NP group showed a significant increase (Table 1).

The effects of combinations on biochemical parameters. AST, ALT, ALP, LDH, CK, glucose, and 
TP after exposure to 10 mg/L PE-MPs, 200 µg/L 4-NP, and 10 mg/L PE-MPs + 200 µg/L 4-NP, and globulin and 
albumin after exposure to 10 mg/L PE-MPs and 10 mg/L PE-MPs + 200 µg/L 4-NP showed significant (P < 0.05) 
increases. By contrast, albumin and the A/G ratio after exposure to 200 µg/L 4-NP showed a nonsignificant 
increase. The A/G ratio after exposure to 10 mg/L PE-MPs + 200 µg/L 4-NP showed a nonsignificant decrease.

Figure 1.  (a) Transmission electron microscope and (b) light microscope images of PE-MPs.
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After the recovery period, the biochemical parameters did not change, except for the following: TP and AST 
in the PE-MPs, 4-NP, and PE-MPs + 4-NP groups; LDH and glucose in the 4-NP-exposed group; and albumin 
in the PE-MP-exposed group showed nonsignificant increases.

Additionally, the A/G ratio in the 4-NP group and globulin in the PE-MP group showed a nonsignificant 
decrease. However, the A/G ratio in the PE-MPs + 4-NP group and albumin in the 4-NP group showed a 
significant decrease (P < 0.05) (Table 2).

Erythrocyte morphological alterations and nuclear abnormalities. The control group showed 
a standard RBC’s shape with a centrally located nucleus (Figs. 5a and 6a). Smears from the 10 mg/L PE-MP 
(Figs. 5b and 6b), 10 mg/L PE-MPs + 200 µg/L 4-NP (Figs. 5c and 6c), and 200 µg/L 4-NP groups displayed 
poikilocytosis in RBC’s (Figs. 5d and 6d) after exposure, whereas after recovery, cells showed varied morpholo-
gies, including eliboat shapes, teardrops, schistocytic, swollen cells, eccentric nuclei, kidney shapes, eliptocytes, 
crenated shapes, sickle cells, acanthocytes, hemolyzed cells, vacuolated cells, ameboied cells, and spinocytes. 

Figure 2.  Light microscope images showing PE-MPs in fish, (a, b) Control, (c, d) 10 mg/L PE-MPs, and (e, f) 
10 mg/L PE-MPs + 200 µg/L 4-NP.

Figure 3.  RBC’s percentage alterations in juveniles Cyprinus carpio after exposure to 10 mg/L PE-MPs, 10 mg/L 
PE-MPs + 200 µg/L 4-NP, and 200 µg/L 4-NP for 15 days each and after 15 days of recovery. Different letters 
indicate significant differences (P < 0.05).
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Figure 4.  RBC’s nuclear abnormality percentages in juveniles Cyprinus carpio after exposure to 10 mg/L 
PE-MPs, 10 mg/L PE-MPs + 200 µg/L 4-NP, and 200 µg/L 4-NP for 15 days each and after 15 days of recovery. 
Different letters indicate significant differences (P < 0.05).

Table 1.  The effects of PE-MPs, 4-NP, and PE-MPs + 4-NP on hematological parameters (mean ± standard 
error) of juveniles Cyprinus carpio after 15 days of exposure, followed by 15 days of recovery. Different 
superscript letters indicate significantly different (P < 0.05).

Exposure period Recovery period

Control PE-MPs PE-MPs + 4-NP 4-NP Control PE-MPs PE-MPs + 4-NP 4-NP

RBCs 
(million/µL) 1.46 ± 0.02c 1.37 ± 0.01b 1.29 ± 0.01a 1.34 ± 0.01b 1.47 ± 0.02b 1.43 ± 0.02b 1.32 ± 0.02a 1.33 ± 0.02a

Hemoglobin 
(Hb)(g/dL) 9.58 ± 0.08c 9.07 ± 0.06b 8.34 ± 0.17a 9.13 ± 0.01b 9.63 ± 0.08c 9.15 ± 0.10b 8.33 ± 0.21a 9.10 ± 0.00b

Ht (PCV) 
(%) 39.24 ± 0.24c 38.97 ± 0.30bc 35.57 ± 0.44a 37.88 ± 0.29b 39.38 ± 0.41c 37.13 ± 0.48b 35.55 ± 0.53a 37.52 ± 0.18b

MCV (µm3) 268 ± 3.79a 284. ± 2.66b 276 ± 3.95ab 284 ± 3.06b 270 ± 4.27a 262 ± 3.54a 271 ± 5.96a 277 ± 3.74a

MCH (µm3) 65.47 ± 0.61a 66.18 ± 0.48a 64.80 ± 1.91a 68.37 ± 0.35a 65.90 ± 1.14a 64.53 ± 0.93a 63.48 ± 2.07a 67.25 ± 0.82a

MCHC (%) 20.75 ± 3.60a 23.27 ± 0.15a 23.47 ± 0.63a 24.10 ± 0.20a 24.47 ± 0.32a 24.68 ± 0.37a 23.45 ± 0.79a 24.30 ± 0.13a

WBCs 
(thousand/
µL)

53.67 ± 0.33c 51.67 ± 0.33b 49.83 ± 0.54a 52.09 ± 0.42b 54.33 ± 0.42c 51.50 ± 0.34ab 50.50 ± 0.43a 52.17 ± 0.17b

Neutrophils 
(%) 15.33 ± 0.21bc 14.50 ± 0.22ab 16 ± 0.26c 13.83 ± 0.31a 15.67 ± 0.21c 14.33 ± 0.21ab 15 ± 0.26bc 13.83 ± 0.17a

Lymphocytes 
(%) 83 ± 0.26a 84 ± 0.00b 82.67 ± 0.42a 84.33 ± 0.21b 82.83 ± 0.17a 84.17 ± 0.31b 83.83 ± 0.40b 84.83 ± 0.17b

Monocytes 
(%) 1.67 ± 0.21a 1.50 ± 0.22a 1.33 ± 0.21a 1.83 ± 0.17a 1.67 ± 0.21a 1.50 ± 0.22a 1.17 ± 0.17a 1.17 ± 0.17a

Table 2.  The effects of PE-MPs, 4-NP, and PE-MPs + 4-NP on biochemical parameters (mean ± standard error) 
of juveniles Cyprinus carpio after 15 days of exposure, followed by15 days of recovery. Different superscript 
letters indicate significantly different (P < 0.05).

Exposure period Recovery period

Control PE-MPs PE-MPs + 4-NP 4-NP Control PE-MPs PE-MPs + 4-NP 4-NP

LDH (U/L) 74.08 ± 0.66a 79.80 ± 1.59b 87.15 ± 0.76c 78.62 ± 0.42b 74.12 ± 0.56a 84.68 ± 2.52b 86.12 ± 0.69b 77.62 ± 0.69a

Creatine kinase 
(CK) (U/L) 82.85 ± 0.42a 86.37 ± 0.46b 86.75 ± 0.30b 85.28 ± 0.65b 81.80 ± 0.19a 85.72 ± 0.45b 85.82 ± 0.50b 84.28 ± 0.55b

ALP (U/L) 8.19 ± 0.02a 8.59 ± 0.04b 8.87 ± 0.05c 8.53 ± 0.05b 8.21 ± 0.05a 8.67 ± 0.04b 8.83 ± 0.04c 8.53 ± 0.03b

ALT (U/L) 48.42 ± 0.48a 51.23 ± 0.31b 53.05 ± 0.70b 51.40 ± 0.35b 48.35 ± 0.30a 51.28 ± 0.25b 52.90 ± 0.34c 51.42 ± 0.14b

AST (U/L) 82.83 ± 0.41a 85.25 ± 0.30b 86.30 ± 0.38b 85.75 ± 0.50b 84.30 ± 0.54a 85.62 ± 0.44a 85.30 ± 0.48a 85.65 ± 0.31a

Glucose (mg/dL) 55.73 ± 0.38a 58.12 ± 0.35b 58.68 ± 0.19b 57.40 ± 0.49b 55.27 ± 0.30a 57.33 ± 0.64bc 58.20 ± 0.36c 55.85 ± 0.34ab

Total protein (g/
dL) 2.73 ± 0.04a 2.93 ± 0.02b 2.94 ± 0.02b 2.88 ± 0.02b 2.78 ± 0.03a 2.87 ± 0.02a 4.03 ± 1.17a 2.83 ± 0.02a

A/G ratio (%) 0.34 ± 0.01a 0.34 ± 0.00a 0.33 ± 0.00a 0.35 ± 0.00a 0.35 ± 0.00a 0.35 ± 0.00a 0.27 ± 0.04a 0.32 ± 0.02a

Globulin (g/dL) 2.15 ± 0.01a 2.24 ± 0.03b 2.41 ± 0.02c 2.15 ± 0.02a 2.13 ± 0.01a 2.10 ± 0.03a 3.35 ± 0.63a 2.13 ± 0.03a

Albumin (g/dL) 0.74 ± 0.01a 0.77 ± 0.01a 0.81 ± 0.01b 0.76 ± 0.01a 0.76 ± 0.01b 0.77 ± 0.02b 0.80 ± 0.00b 0.70 ± 0.00a
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The percentages of RBC alterations and nuclear abnormalities were significantly increased (P < 0.00001) after 
exposure to 10 mg/L PE-MPs, 200 µg/L 4-NP, and 10 mg/L PE-MPs + 200 µg/L 4-NP for 15 days when compared 
with controls. RBC’s membrane and nuclei alterations remained significantly increased after the 15-day recovery 
period when compared with controls (Figs. 3 and 4). After both periods, percentage increments (for both types 
of alterations) followed the order: PE-MPs + 4-NP > 4-NP > PE-MPs.

Discussion
MP contamination in aquatic environments is a growing hazardous health problem as aquatic animals eat and 
digest MPs. Living organisms may be affected by MPs increasing their bioavailability and uptake of sorbed 
co-contaminates of different types. The combined effects of MPs and sorbed co-contaminants in aquatic 
organisms remain to be fully  verified46. Therefore, in this study, hemato-biochemical parameters were used to 
investigate the effects of C. carpio exposure to 10 mg/L PE-MPs, 200 µg/L 4-NP, and 10 mg/L PE-MPs + 200 µg/L 
4-NP for 15 days and then 15 days of recovery.

To assess fish health, hematological parameters must be  measured47. We observed considerable variations 
in hematological parameters between groups. Our results were similar to the data reported by Hamed et al.39 
and Hamed et al.43. Decreased RBC, Hb, Ht, and WBC levels with increased MCV levels and lymphocyte 
percentages were also reported by Hamed et al.39 in Oreochromis niloticus exposed to MPs and  by43 in C. carpio 
exposed to PE-MPs. Additionally, in fish exposed to  phosalone48, and copper oxide  nanoparticles49. The catfish 
(Clarias gariepinus) was also affected by UVA exposure with respect to hematology and cell  alterations50. Some 
of parameters with hydroxychloroquine in catfish (C. gariepinus), Sayed et al.44 and Mekkawy et al.51, and Abou 
Khalil et al.52 with African catfish (C. gariepinus) in the presence of 4-NP. The exposure of carp to PE-MPs, 4-NP, 
and PE-MPs + 4-NP caused anemia, which might have been attributed to hematopoietic tissue  alterations53  and54. 
This possibly occurred because of increased mechanical fragility in cell membranes, which we observed in our 
erythrocyte  morphology55. Under laboratory conditions and after exposure to different pollutants, peripheral 
RBCs, Hb, and Ht were  decreased56, which might have been due to the heme-dilution of blood which resulted 
from tissue  damage57. The negative effects of NPs on lymphoid tissues in exposed fish may reduce total WBC 
 counts58. The bioaccumulation of pollutants in tissues may decrease WBCs. As blood oxygen levels decrease, 
toxicity caused by plastics could be enhanced by decreased hemoglobin levels. Similar results were reported by 
Mukherjee and  Sinha59 as cadmium contamination  response39 as effect of MPs  and43 as an effect of PE-MPs. 
Damage to the immune system after MPs accordingly will cause damage to the defense system and animal 
 health60.

Figure 5.  Blood smears from juveniles Cyprinus carpio after a 15-day exposure showing normal erythrocytes in 
the control group (a) and deformed erythrocytes in the 10 mg/L PE-MPs (b), 10 mg/L PE-MPs + 200 µg/L 4-NP 
(c), and 200 µg/L 4-NP groups (d). Eliboat shapes (Eli), teardrops (Tr), schistocytics (Sch), swollen cells (Sc), 
eccentric nucleus (Ecn), kidney shapes (Kn), crenated cells (Cr), sickle cells (Sk), acanthocytes (Ac), vacuolated 
cells (Vc), elliptocytes (Elip), spinocytes (Spc), and hemolyzed cells (Hc) (hematoxylin & eosin staining).
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Biochemical parameters are invaluable  bioindicators41,56. Most biochemical parameters were significantly 
increased after exposure to PE-MPs, 4-NP, and PE-MPs + 4-NP when compared with controls and were consistent 
with Hamed et al.43. The rise in CK, LDH, ALP, ALT, AST, TP, glucose with variation by increase and decrease 
in albumin and globulin observed in our study were similarly studied by Hamed et al.39 with O. niloticus in the 
presence of MPs. Some parameters with hydroxychloroquine in catfish (C. gariepinus)44, 61  and41 with African 
catfish in the presence of 4-NP,  and43 with common carp (C. carpio) in the presence of PE-MPs. Banaee et al.62 
and Nematdoost Haghi and  Banaee63 state that the higher levels of the enzymes (CK, AST, ALT, LDH, and ALP) 
in serum are regarded as biomarker for cell membranes damage and as a tool for diagnosing changes in the 
environment in ecotoxicological studies, these enzymes are indicative of lesions in the tissues. Furthermore, 
elevated glucose levels indicated that glycogen had disintegrated or that its absorption was restricted in the 
liver. By contrast, increased blood glucose levels may have been due to hepatic tissue glycogen disintegration or 
impaired glucose  absorption64. Previously, damage to different organ membranes in fish was observed following 
increased enzyme activity (ALT, AST, and ALP) caused by paraquat and plastic  particles65, and in Pomatoschistus 
microps, biochemical parameters were changed when exposed to MPs and pyrene or to MPs and/or  nickel66. Body 
homeostasis is maintained by proteins that prevent fluid leakage throughout the  body60.

Immune system diseases and other kidney and hepatic issues are assessed using TP, albumin, and globulin 
 tests67. Stoyanova et al.68 reported that the intensification of anaerobic metabolism could be measured by LDH 
activity due to environmental changes, pollution, and energy depletion. Changes in LDH, AST, ALT, CK, and 
ALP activities were shown to indicate tissue lesions and to reflect environmental changes in  ecotoxicology69. ALT 
and AST levels were increased following hepatocyte damage (Komatsu et al., 2002) or impaired carbohydrate and 
protein  metabolism70. Peralta et al.71 and Ramos-Barron et al.72 reported that increased albumin levels indicated 
hepatorenal tissue alterations. Wiegertjes et al.73 demonstrated that increased globulin levels were viable immune 
responses. In Nile tilapia (O. niloticus) exposed to MPs, albumin, globulin, and TP levels were higher, potentially 
indicating a damaged  liver39 and in C. carpio induced by PE-MPs43. Osman et al.50 showed that fish underwent 
hyperglycemia when exposed to UVA stress or heavy metals and other  contaminants74.

High PE-MPs levels were observed in PE-MP-exposed fish when compared with controls. This may have 
been due to the entrance of plastic particles with the water flow to the fish’s body. A significant concentration 
of MPs was reported in different zebrafish  organs75. Additionally, significantly higher MPs were observed in O. 
niloticus after MP exposure for 15  days39. MP accumulation in zebrafish yolk sac and migration to other organs 
were observed during  embryogenesis76. Furthermore, in mussels, MPs absorbed through the gut mucosa were 

Figure 6.  Blood smears from juveniles Cyprinus carpio after a recovery period of 15 days showing normal 
erythrocytes in the control group (a) and deformed erythrocytes in the 10 mg/L PE-MPs (b), 10 mg/L 
PE-MPs + 200 µg/L 4-NP (c), and 200 µg/L 4-NP groups (d). Schistocytic (Sch), swollen cells (Sc), eccentric 
nucleus (Ecn), crenated cells (Cr), acanthocytes (Ac), vacuolated cells (Vc), ameboied cells (Amc), spinocytes 
(Spc), and hemolyzed cells (Hc) (hematoxylin & eosin staining).
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transported through the bloodstream to different  tissues77. Moreover, PS-MP bioaccumulation was dose- and 
time-dependent in O. niloticus78.

The percentage of erythrocytes with morphological alterations and nuclear abnormalities, when exposed 
to treatments, was significantly increased when compared with controls. Poikilocytosis may be affected by 
several factors, e.g., increased RBC membrane fluidity, declined ATP levels, and inhibited membrane-bound 
 enzymes79. Our results were similar to other fish pollutant studies: Hamed et al.43, who studied C. carpio exposed 
to PE-MPs; Sayed et al.44, who studied C. gariepinus exposed to hydroxychloroquine; Hamed et al.80, who studied 
the protective role of Spirulina platensis against cytotoxicity and genotoxicity induced by lead nitrates in C. 
gariepinus; Soliman et al.49, who studied the damage caused by copper sulfate and copper oxide nanoparticles 
in O. niloticus; and Sayed et al.81, who investigated Oryzias latipes exposed to 4-NP. Several studies reported 
that morphological and nuclear abnormalities in erythrocytes and MN were genotoxicity biomarkers following 
exposure to radiation and  chemicals51,82–89. These biomarkers are powerful assessment tools for genetic and 
cellular damage in eukaryotes as they reflect DNA damage, and are simple, reliable, and sensitive measurement 
 tools51,84,86,87,90.

Our blood parameter data indicated that the damage caused by combined PE-MPs and 4-NP was higher than 
the damage caused by 4-NP alone, which may be due to MPs facilitating entrance of other contaminants into 
aquatic  organisms24,29,91. Previous laboratory studies reported that MPs were ingested by aquatic  organisms77,92. 
Besseling et al.22, Koelmans et al.93, and Chua et al.94 reported that MPs may carry other contaminants, including 
plasticizers and POPs, such as polychlorinated biphenyls and polycyclic aromatic  hydrocarbons65,93,95,96, 
and could facilitate interactions with metals, such as PE-MP-mediated silver uptake in Danio rerio97. Some 
ecotoxicological studies have provided evidence of metal ion adsorption by plastic  containers98,99. HOCs strongly 
and chemically sorb onto MPs than natural sediments according to a study comparing sorption rates onto natural 
and manufactured  particulates30. Oliveira et al.65 reported that PE bead exposure significantly increased toxicant 
bioavailability in juveniles exposed to lethal pyrene concentrations.

After the 15-day recovery period, erythrocyte morphological alterations, nuclear abnormalities, PE-MPs, 
and hematobiochemical changes were apparent in all treated groups when compared with controls. Our results 
were supported by Martins and  Guilhermino100, who reported that despite the depuration phase, MPs persisted 
in D. magna for many generations, whereas Hamed et al.39 indicated that MPs were detected and generated 
hematobiochemical effects in Nile tilapia after the recovery period. Notably, after recovery, a faint improvement 
in some parameters was observed but was not similar to controls. A possible reason for this could be that a 15-day 
recovery was not enough for fish to eliminate the toxic effects of pollutants or the tissue has bo ability to restore 
their functions as normal after MPs-exposure46.

Conclusions
The synergistic effect of PE-MPs and 4-NP induced a high degree of increase in creatine kinase, lactate 
dehydrogenase, glucose, liver enzymes, total protein, and A/G ratios after exposure to PE-MPs, 4-NP, and 
the combination. Also, hematological parameters (RBC’s, Hb, Ht, neutrophil percentage, and WBC’s) 
were significantly decreased in the three exposure groups. The 15-day recovery period improved most 
hematobiochemical parameters and PE-MP accumulation indices. Hematological and biochemical issues in 
carp when compared with individual exposures, our data showed that the synergistic effect of PE-MP and 4-NP 
caused more serious damage than each single chemical in dose dependent manner.

Data availability
All data generated or analyzed during this study are included in the research article.
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