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Detecting SNP markers 
discriminating horse breeds 
by deep learning
Siavash Manzoori , Amir Hossein Khaltabadi Farahani *, Mohammad Hossein Moradi  & 
Mehdi Kazemi‑Bonchenari 

The assignment of an individual to the true population of origin using a low-panel of discriminant 
SNP markers is one of the most important applications of genomic data for practical use. The aim of 
this study was to evaluate the potential of different Artificial Neural Networks (ANNs) approaches 
consisting Deep Neural Networks (DNN), Garson and Olden methods for feature selection of 
informative SNP markers from high-throughput genotyping data, that would be able to trace the 
true breed of unknown samples. The total of 795 animals from 37 breeds, genotyped by using the 
Illumina SNP 50k Bead chip were used in the current study and principal component analysis (PCA), 
log-likelihood ratios (LLR) and Neighbor-Joining (NJ) were applied to assess the performance of 
different assignment methods. The results revealed that the DNN, Garson, and Olden methods are 
able to assign individuals to true populations with 4270, 4937, and 7999 SNP markers, respectively. 
The PCA was used to determine how the animals allocated to the groups using all genotyped markers 
available on 50k Bead chip and the subset of SNP markers identified with different methods. The 
results indicated that all SNP panels are able to assign individuals into their true breeds. The success 
percentage of genetic assignment for different methods assessed by different levels of LLR showed 
that the success rate of 70% in the analysis was obtained by three methods with the number of 
markers of 110, 208, and 178 tags for DNN, Garson, and Olden methods, respectively. Also the results 
showed that DNN performed better than other two approaches by achieving 93% accuracy at the 
most stringent threshold. Finally, the identified SNPs were successfully used in independent out-
group breeds consisting 120 individuals from eight breeds and the results indicated that these markers 
are able to correctly allocate all unknown samples to true population of origin. Furthermore, the NJ 
tree of allele-sharing distances on the validation dataset showed that the DNN has a high potential for 
feature selection. In general, the results of this study indicated that the DNN technique represents an 
efficient strategy for selecting a reduced pool of highly discriminant markers for assigning individuals 
to the true population of origin.

DNA probes and sequences are two important indices in gaining a deep understanding of the evolution pro-
cess, and the amount of DNA sequence data is rapidly increasing1. Single nucleotide polymorphism (SNP) is a 
new type of marker that includes many important characteristics for evaluating animals2, crops3, and human 
population structure4. At present, genomic data plays a critical role in a variety of biological contexts due to 
its numerous advantages. However, the curse of dimensionality (small n and large p) is a major limitation to 
their ability for practical applications. The lack of complete pedigrees and misidentification of parents affects 
the accuracy of genetic evaluations, and consequently, the efficiency of breeding programs. Identification of the 
discriminant SNP(s) process is one of the most appealing opportunities to exploit genomic data, for practical 
use, including determining the population of origin for unknown individuals2. Many researchers have widely 
investigated discriminant SNP(s) and genetic diversity5–8. Researchers can use such SNP markers for developing 
a cheap customized panel to trace the breeds. Furthermore, the SNP(s) can provide a reliable solution for the 
traceability of breed-specific branded products9.

In feature selection, researchers seek to identify key variables and eliminate annoying (or noisy) variables10. 
The same condition is true for biological data11, especially SNP markers. In various areas of breeding, we are 
always looking for SNP markers with enormous effects. Now, we import the issue to machine learning, especially 
the neural network approach. In genetics, this process is also known as Tag SNP Selection Problem (TSSP)12.
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Mimicking the behavior of the biological brain in the nerve system is the base of Artificial Neural Networks 
(ANNs), which are the information processing tools13. Researchers have argued the shortcomings of ANN, 
including the complexity of analysis, computational cost, and time consumption. However, we must mention 
that ANN’s high prediction accuracy compensates its drawbacks to a great extent. Deep Neural Networks (DNN) 
have been employed to analyze biological data14,15. They have many applications in feature abstraction and 
selection16,17. DNNs were able to construct many biological prediction models18, but their power of feature 
selection had been ignored for individual discrimination.

The ANNs have recently been applied as a powerful statistical modeling technique for many areas of different 
biological data, especially in the animal sciences19,20. Fernández, et al.21 have indicated that ANNs were suitable 
to be used in fields of time series data for weekly milk prediction and clustering individuals in goat flocks. Ince 
and Sofu22 modeled data with ANN for the prediction of the sheep milk yield by using the back-propagation 
algorithm.

For feature selection (FS) based on ANN, a comparison was made in this study to discriminate among dif-
ferent horse breeds as well as to assign new individuals to their breed. Statistically, in the analysis of GWAS, all 
SNPs act separately and conduct the research with significant results. The consequence of this analysis obtains 
the identification of significant SNP markers, but the relationships between them are ignored. While the net-
work approach is more reliable and logical monitoring all SNPs simultaneously leads to better results efficiently.

To obtain the best results, allele dosage has been applied to ANNs, which is a completely unbiased estima-
tion. The Garson (weights) algorithm illustrates behavioral instability in the analysis, which can be considered 
a weakness23. Unlike most studies, Olden, et al.24 examined the performance of the Garson algorithm in the 
variable selection on simulated data, and have found that it has the lowest efficiency compared with other stud-
ied algorithms. Ibrahim25 showed that the Olden and Garson methods had the weakest results. The results of 
Fischer26 revealed that the Garson algorithm has a higher degree of stability in modeling non-linear relationships. 
Additionally, other studies have used the Garson and Olden algorithms, which are only applicable to ANN with 
a single hidden layer.

To the best of our knowledge, researchers had not investigated the potential of feature selection by ANN 
approaches for assigning individuals in horse breeds. We have analyzed the ANN’s potential to characterise, 
whether ANNs can be used as a tool for tackling the curse of dimensionality of SNP(s) data. We attempted to 
compare the DNN alongside a brief description of Garson and Olden methods to gain the relative importance 
of variables (SNP markers). While the DNN is a multiple hidden layer ANN, the two mentioned methods are 
compatible with a single hidden layer. This paper is one of the first studies to determine the discriminant SNP(s) 
on a large scale by using the sophisticated methods of ANN approaches. We have conducted this study intending 
to find distinct SNP markers to reduce the dimensions of the SNP panels as well as comparing different variable 
selection methods such as Garson and Olden through the ANN approach.

Results and discussion
Feature selection: comparison between three approaches.  In the current research, we have used 
the three feature selection (FS) methods namely Olden, Garson, and DNN. Neural networks are commonly 
referred to as powerful and efficient statistical modeling techniques by various researchers25. Many studies have 
compared different FS methods26–29. The selection criteria for the variables in the DNN structure were the abso-
lute value of the first hidden layer connection weights that they assumed as the regression coefficient. According 
to the DNN procedure, 4270 SNP markers had been selected for the rest of the analysis. The Garson and Olden 
algorithms led to a selection of 4937 and 7999 SNP markers for further analysis, respectively. The reason for 
choosing a more significant number of SNP tags for the Olden algorithm is the low transparency of the PCA 
plot. We must have mentioned that increasing the number of tags did not increase transparency anymore, this 
could be due to no linear relationship between SNPs number and PCA plot transparency. Moreover, the absolute 
increase of markers did not include a useful index for improvement unless the marker allele frequencies were 
different across subpopulations.

After the selection process of SNP markers, all SNP markers were sorted based on the calculated coefficient. 
The 460 top-rank SNP of each approach was selected, and all sub-SNP sets were compared to each other to find 
the common markers (Table 1). Table 1 represents the common SNP(s) in the prime 460 SNP markers. It indicates 
that all three methods had at least a 34% overlap (the average number of common SNPs is 158).

Regarding Table 1, we have found the lowest number of SNP markers between the DNN and Garson 
approaches. This phenomenon could be owing to the weights of the first layer in the two approaches. We have 
obtained the most significant number of SNP markers between Garson and Olden. This evidence shows that 
Garson and Olden had similar mechanisms for feature selection by using NN’s weights in the input-hidden and 

Table 1.   Comparison among three feature selection methods based on prime 460 selected SNP markers. The 
upper triangle represents the Spearman correlation among three methods for ranking markers. While the 
lower triangle represents the number of common tags between feature selection methods.

DNN Garson Olden

DNN – 0.4309 0.5577

Garson 120 – 0.9810

Olden 167 185 –
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hidden-output layers. The Spearman correlation for coefficients of common markers indicated a strong relation-
ship between Garson and Olden methods (98.10%). Also, the association obtained between DNN and Garson 
methods is 43.1%, which is confirmed by the number of common SNP markers.

In general, most of the studies have widely used the Olden and Garson approaches. The results of Olden, 
et al.24 revealed that the Olden method was the best overall methodology for processing and identifying the 
variable importance in the neural network, especially when the inputs had a weak or strong correlation with 
output. Fischer26 compared the Olden and Garson methods and reported that the results obtained by the Garson 
method are preferable and more stable than those obtained by the Olden method for nonlinear relationships. 
Findings from his study have shown that ranks obtained by the Garson approach may be more reliable than the 
Olden method, especially when those ranks are used for modeling nonlinear data such as positive and nega-
tive quadratics and interactive data. The results of these studies indicated that the Olden (Connection weights) 
method had an excellent performance for different assumptions and, Garson (Weights), as the ancestor of the 
weighted methods, had a various behavior in these studies.

All mentioned studies used the simulated or ecological data in which the maximum input variables were 
less than 20 variables. At first glance, both Olden and Garson’s algorithms used the input-hidden and hidden-
output connection weights for calculating the importance of variables. The linear regression modeling habe 
been used as a control method on the real datasets for evaluating the input’s significance in some studies23,25, 
and some others have used simulated data where the data have mostly contained the linear24,28 or semi-linear 
relationship27. However, the DNN approach could raise the performance and efficiency of the artificial neural 
network in circumstances where a large number of input variables (for example, genomic data of the globally 
equine breeds) have confronted the system.

Feature selection: a comparison based on PCA analysis.  In the first place to assess the degree of 
divergence among samples, the principal component analysis (PCA) was applied to determine how the animals 
were allocated to the groups30. The actual coefficients of SNP markers have been obtained step by step accord-
ing to the original PCA plot, which is according to the numerical analysis in mathematics. In other words, after 
choosing a new coefficient, the PCA plot was drawn, and the breed distinction was compared with the main PCA 
plot created by 50K SNP markers panel (Fig. 1). After marker selection and discovering the subsets of markers, 
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Figure 1.   Animals were clustered based on principal components analysis (PCA) using all 50K SNP markers. 
PC1 and PC2 are shown on the X-axis and the Y-axis respectively. The horse breeds are demarcated using 
unique and different symbols and colors.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11592  | https://doi.org/10.1038/s41598-023-38601-z

www.nature.com/scientificreports/

PCA analysis was performed using all three sub-SNP(s) and total 50k SNP(s) available on SNP chip (Figures S1 
(DNN), S2 (Garson), and S3 (Olden)).

The results indicated an excellent performance of PCA in distinct individuals into separated groups. PCA 
analysis has identified two subpopulations of Thoroughbred, (TB_UK & TB_US), as one breed, and a similar 
result was obtained for Standardbred (STBDNor & STBDUS) too. In Fig. 1, some breeds overlapped, but accord-
ing to the symbols of each breed, we can say that these breeds are properly distinct from each other. Some breeds 
like Clyd, Shire, Shet, Ice, Mini, and TB (UK-US), were located in corners of the PCA plot, and this fact is due 
to the geographic boundaries of their countries (Table 5). In other words, these breeds belong to countries that 
have common borders. As a result, they might have more genetic resource exchanges with each other. Although 
STBD (including Nor and US) overlapped with Paint and Quarter breeds, they were completely separated by 
likelihood assessment. Asian breeds (AKTK, ARR, and CSP) were located near the center of the PCA plot and 
overlapped with Central European Breeds (CEB). It is highlighting this point that Asian breeds have a lot of 
common characteristics with CEB. The PCA analysis was performed for each method by selected SNP markers 
(Figs. S1 (DNN), S2 (Garson), and S3 (Olden)). The breed distinction is in good agreement with the main PCA 
plot created by 50K SNP markers (Fig. 1).

Assessment of different methods and the number of SNP(s) to assignment.  We have estimated 
the likelihood of assigning 795 individual genotypes to their known origins (or breeds) by the Paetkau, et al.31 
approach. Although one particular breed (Shire) had at least one failure assignment by each method. In general, 
all three feature selection methods assigned most of the individuals to the right population. It resulted in a 9% 
reduction in the potential of the assignment procedure. Two individuals in the Shire breed failed in all subsets. 
Red arrows indicate these individuals in Fig. 2.

With the analysis of assignment and concerning values of LLR, obtained results showed that one failure 
was recognized as Belgian breed by three methods, and the other one was known as different breeds like Paint, 
Quarter, Swiss warmblood, and Thoroughbred-US. By using three methods, the first individual has 97.30% 
accuracy to be assigned to the correct race (Shire). By DNN, and Olden approaches, the second individual also 
had 91.89% accuracy for being appointed into the right breed. For further explanation, these failures might be 
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arrows) by LLR analysis.
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due to hybrid or crossbreeding parentage. There were two Shire individuals in the center of the PCA plot (Fig. 2); 
the assignment method indicated that they belong to their breed (Green arrows). In Fig. 3, we have demonstrated 
the correctness plots for three feature selection algorithms at various strict levels.

As shown in Fig. 3, all three methods revealed different behavior for the success percentage of genetic assign-
ment. In the DNN, the success rate in selecting the correct animal breed was more than in the other methods. The 
sufficient number of SNP markers required to correctly assign an unknown animal to its exact breed/origin at dif-
ferent threshold levels (90%, 95%, and 98%) have been shown for DNN, Garson, and Olden methods in Table 2.

We have accurately calculated the percentages of individuals and correct assignments for different numbers 
of SNP markers. Testing the performance of each approach has been done at four different levels of LLR analysis. 
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Figure 3.   The success percentage of genetic assignment for DNN (a), Garson (b), and Olden (c) methods in 
the three stringency levels. The levels LLR > 2, 3 and 4 show that the individuals 100, 1000 and 10000 times are 
more likely to be assigned to the right population than the other one. The success rate of 70% in the analysis was 
obtained by three methods with the number of markers of 110, 208, and 178 tags for DNN, Garson, and Olden 
methods, respectively.

Table 2.   The number of markers required in each method for assigning an animal to its breed at different 
threshold levels of the LLR analysis. To calculate these numbers, the sophisticated analysis of LLR was 
performed individually with a certain number of markers. Using 460 top-rank SNP markers selected by each 
method, in each step of the LLR analysis, one SNP marker was added to the rest of the markers used in the 
earlier step. *It requires more than 460 markers.

Log(10)

90% 95% 98%

DNN Garson Olden DNN Garson Olden DNN Garson Olden

1 144 264 205 202 298 242 348 358 363

2 179 291 236 287 327 293 386 419 394

3 230 315 264 330 368 342 * * *

4 276 357 287 378 427 380 * * *
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We found that DNN performed better than the other two approaches by achieving 93% accuracy at the most 
stringent threshold (LLR > 4) (Table 3). In this section, the Garson method did not perform well.

The results revealed that the DNN outperformed other methods with fewer SNP markers. Generally, about 
500 discriminant SNP markers enabled us to assign new individuals to the right groups using different ways. 
There are some issues related to the comparison of results in this study with other ones. First, many previous 
studies used another type of marker with only a limited number of tags32–35. Second, there were different meth-
ods in several studies36. Maudet, et al.32 found out that, by using 23 microsatellite loci, they could be assigned 
more than 90% of individuals to their breed. Negrini, et al.37 used the limited set of available SNP markers for 
an individual assignment. Aiming to determine the range of the minimum number of SNP markers (from 60 to 
140), Wilkinson, et al.38 worked for assigning individuals in 17 Bovine breeds.

Model validation
PCA and LLR analysis for validation data.  We have used a separate dataset to test the model. Firstly, we 
have applied the PCA analysis to find the relationship among the breeds like the training dataset (Fig. 4).

In Fig. 4, the Quarter and Warmblood have a small overlap. We identified and extracted the selective SNP 
markers of 3 feature selection methods (from panel 50K) in the evaluation dataset. Common extracted SNP mark-
ers were maintained for later analysis. We have isolated and extracted 839 (Fig. S4—DNN) from 4270 for DNN, 
370 (Fig. S5—Garson) from 4940 for Garson, and 1718 (Fig. S6—Olden) from 7999 for Olden approaches in the 
validation data-set, respectively. Then, we have found the 85 (DNN), 15 (Garson), and 49 (Olden) SNP markers 
in the evaluation set based on the 460 top-rank SNP markers in the training set, respectively. The LLR analysis 
was performed for two series of data extracted from the test data and the results have been presented in Table 4.

The results of this section revealed that all three artificial neural networks had an excellent performance. The 
Garson method with a minimum number of markers (fifteen) had a 60% accuracy, which may be due to the low 
number of animals and the distinction between the source in the test data, because there are significant differ-
ences between the countries of Switzerland, France, and England (the continent of Europe) and the countries of 
the Middle East and the Americas (Asian and American continents).

By using one dataset, there is a possibility to observe a negligible amount of kinship relationships. Because all 
individuals are sampled from one herd, kinship relationships are practically inevitable in the research. Therefore, 
using new data from other sources reduces the probability of kinship among individuals. If unknown or novel 
information is introduced to the desired network, the least errors will get. Previously obtained results of the 
network were reliable enough for DNN to infer the right class of novel information precisely. In this case (DNN), 
the system undoubtedly possesses much power and much success in correctly determining the essential features.

Neighbor‑Joining tree of allele‑sharing distances for validation data.  For a better understanding, 
we have used the Neighbor-Joining tree of allele-sharing distances on the validation dataset. Neighbor-Joining 
analysis performs better than PCA analysis on topics such as breed-level differentiation, the intermingling of 
breeds, outliers, genetic isolation, etc. First, we have analyzed whole genomic data (32419 SNP markers, 120 
horses) to show the breed-level differentiation in validation data (Fig. S7).

Then, the Neighbor-Joining analysis was done for each obtained dataset (Fig. S8 (DNN), S9 (Garson), S10 
(Olden)) to demonstrate the breed distinction in comparison to the whole data. In Fig. S7, except for two groups 
(Quarter Horse and Warmblood) and despite the low amount of SNP markers, the rest of the breeds were in 
their real groups. It is critical to consider that two breeds (Quarter Horse and Warmblood), may have an unusual 
overlap due to the low number of markers.

We have drawn Fig. S8 by using the markers selected by the DNN. It is noteworthy that the classification of 
individuals is mostly successful, and there is no significant overlap between breeds. The Neighbor-Joining plot 
(Fig. S9) drawn by the selected markers of the Garson method did not have a good quality in terms of the clas-
sification of individuals. In Fig. S9, there was a great deal of unusual overlap between the breeds, and only the 
Thoroughbred was identified as a pure breed due to the small number of individuals. The number of outsiders 
in the results of this dataset was very high (red arrows).

Table 3.   Correct assignment of an individual by three Methods. Number of individuals assigned correctly 
(percentage).

# SNP

LLR > 1 LLR > 2 LLR > 3 LLR > 4

DNN Olden Garson DNN Olden Garson DNN Olden Garson DNN Olden Garson

50 353 (44.4) 50 (6.29) 100 (12.58) 191 (24.03) 38 (4.78) 64 (8.05) 93 (11.7) 31 (3.9) 39 (4.91) 35 (4.4) 17 (2.14) 27 (3.4)

75 524 (65.91) 130 (16.35) 177 (22.26) 377 (47.42) 92 (11.57) 119 (14.97) 272 (34.21) 73 (9.18) 93 (11.7) 171 (21.51) 44 (5.53) 74 (9.31)

100 624 (78.49) 274 (34.47) 256 (32.2) 510 (64.15) 190 (23.9) 190 (23.9) 395 (49.69) 151 (18.99) 152 (19.12) 298 (37.48) 110 (13.84) 123 (15.47)

125 681 (85.66) 451 (56.73) 358 (45.03) 613 (77.11) 319 (40.13) 269 (33.84) 518 (65.16) 256 (32.2) 219 (27.55) 433 (54.47) 187 (23.52) 181 (22.77)

150 722 (90.82) 550 (69.18) 483 (60.75) 668 (84.03) 434 (54.59) 381 (47.92) 600 (75.47) 354 (44.53) 311 (39.12) 531 (66.79) 282 (35.47) 258 (32.45)

200 755 (94.97) 705 (88.68) 629 (79.12) 740 (93.08) 641 (80.63) 546 (68.68) 706 (88.81) 568 (71.45) 483 (60.75) 668 (84.03) 492 (61.89) 426 (53.58)

250 760 (95.6) 761(95.72) 698 (87.8) 751 (94.47) 735 (92.45) 657 (82.64) 727 (91.45) 699 (87.92) 604 (75.97) 701 (88.18) 663 (83.4) 547 (68.81)

300 774 (97.36) 774 (97.36) 759 (95.47) 762 (95.85) 766 (96.35) 727 (91.45) 745 (93.71) 752 (94.59) 697 (87.67) 732 (92.08) 731 (91.95) 653 (82.14)

350 781 (98.24) 776 (97.61) 776 (97.61) 771 (96.98) 770 (96.86) 760 (95.6) 759 (95.47) 761 (95.72) 742 (93.33) 745 (93.71) 746 (93.84) 712 (89.56)
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The Olden method had the same performance similar to the DNN and whole data (Fig. S10). In a way, its plot 
was promising. Perhaps the only disadvantage of the Olden method compared to the other two is that despite 
the high number of SNP markers, two individuals (Arabian-3 and QuarterHorse-1) still have been identified 
as outsiders.

Conclusion
We have used the weights of the first hidden layer of the DNN, for selecting and ranking variables (SNPs). 
Artificial neural networks (ANNs) will receive a great deal of attention in the various scientific fields, given that 
they are powerful statistical modeling techniques. However, in an attempt to provide useful insights into the 
contributions of the input (independent) variables in the prediction process, they have been labeled as the “black 
box” technique. As mentioned earlier, many published studies had been conducted to clarify the interpretation 
of the connection between the neurons in ANN.

By comparing the results, the Garson and Olden procedures only work with a single hidden layer and single 
output unit, while multiple layer networks (DNN) do not suffer these limitations. Regarding log-likelihood ratio 
(LLR) for the individual assignment, the obtained results by this research revealed that ANN’s feature selection 
methods could be used for genomic data, especially for dimension reduction by DNNs. This finding solves the 
most critical issue for genetics researchers in dealing with the considerable dimension of data. Researchers can 
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Figure 4.   PCA analysis of all common SNP markers between training and validation data (14K SNP markers)

Table 4.   The selected SNP markers in the training dataset for each method and the number of common SNP 
markers were identified in the validation dataset. We have presented the estimated accuracy for each dataset in 
the parentheses.

Train set (50K SNP markers) Test set (14K SNP markers)

DNN Garson Olden DNN Garson Olden

Total selected SNP(s) 4270 (99.74) 4940 (99.87) 7999 (99.74) 839 (100) 370 (100) 1718 (100)

First Top rank 460 SNP(s) 460 (98.86) 460 (99.62) 460 (99.62) 85 (97.5) 15 (60) 49 (94.17)
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use DNN in the field of animal sciences because of the high performance of breed discriminants. Researchers 
in the field of genetics and breeding are seeking to reduce the number of biomarkers to find a link between the 
observed phenotype and these markers.

The result of this study showed that the DNN has a high potential for feature selection in genomic data along 
with more flexibility in the application of ANNs in the field of animal sciences. Results also showed that using 
the connection weight of the first hidden layer in a DN Network provides the possibility to reach a high optimum 
level of accuracy for ranking and selecting the variables (SNP(s)). Another conclusion of this research is that the 
most critical weights for output values of every variable in a DN Network are the weights in the first hidden layer 
because all connected loads of the next layers are functions of the first layer’s connected load. If three analyzes 
of PCA, LLR, and Neighbor-Joining achieve the desirable results, we will get the real discriminative features.

It is necessary to point out that the results of this study shed some lights on the using of DN Networks (espe-
cially pattern recognition) in genetics and breeding. Feature selection in the genetic field particularly on SNP 
markers is in the infancy period. The computation time will be reduced significantly. It should also be noted that 
the DNN network is increasing computing time but it was decreasing the error rate significantly. It can open a 
new opportunity to extend human insights.

Finally, we think that this will be a fruitful approach to the study of existing domestic populations, such as 
inferior local breeds and strains in developing countries. In general, the present paper highlighted the importance 
of variable selection from the varying point of view, including the socio-economic perspective (for developing 
a low-cost customized assay for assigning the breeds or tracing the origin of animal products derived from 
diverse species).

Materials and methods
The data for training ANN.  A total of 795 animals from 37 breeds of horse populations were genotyped by 
using the Illumina SNP 50k Bead chip (Illumina, San Diego, CA, USA). Petersen et al.7 have already described 
the comprehensive description and necessary details of data mining. In summary, Table 5 has given the breed 
names, the ID of breeds, the geographic origin, minor allele frequency (MAF), Heterozygosity, and the number 
of animals. Genotype data are coded as the number of reference SNP allele carries, that is, 0 (for AA), 1 (for AB), 
and 2 (for BB). In the present study, a further filtration for the call rate (the proportion of SNP genotypes) less 
than 99% was used to discard the missing genotypes39,40.

Moreover, raw predictor variable data (SNP matrix) is used as the input variable in ANN. It is assumed that 
each of these markers represents a mathematical variable that can only hold 3 inputs (0, 1, and 2).

The data for testing and validation methods.  To assess the performance of the ANN methods, learn-
ing and evaluation were performed using two separate datasets, respectively. The testing dataset contains 120 
individuals from eight breeds (Table 6 includes the sample information). You can find all the details and infor-
mation about the validation data in the article by Schaefer, et al.41. Data preprocessing included extracting com-

Table 5.   The name, identification code, geographic origin, size of samples (N), minor allele frequency 
(MAF), and observed heterozygosity (HO) of different horse breeds (Training dataset). The MAF statistic 
shows the average minor allele frequency for the SNP(s) after data mining. The mean value of MAF over all 
samples was estimated 0.226704 and the minimum and maximum of MAF were observed in Clydesdale and 
Thoroughbred-UK/Ire breeds respectively (0.2047 & 0.2748).

Breeds ID Origin N MAF HO Breeds ID Origin N MAF HO

Akhal-Teke AKTK Turkmenistan 19 0.235 0.360 Morgan MOR United States 40 0.226 0.350

Andalusian AND Spain 18 0.229 0.353 New Forest Pont NFST England 15 0.217 0.340

Arabian ARR​ Middle East 24 0.240 0.365 North Swedish Horse NSWE Sweden 19 0.210 0.332

Belgian BEL Belgium 30 0.209 0.330 Norwegian Fjord NORF Norway 21 0.209 0.330

Caspian CSP Persia 18 0.223 0.347 Paint PT United States 25 0.244 0.369

Clydesdale CLYD Scotland 24 0.205 0.326 Percheron PERC France 23 0.209 0.330

Exmoor EXMR Great Britain 24 0.210 0.331 Peruvian Paso PERU Peru 21 0.222 0.345

Fell pony FELL England 21 0.212 0.334 Puerto Rican Paso Fino PRPF Puerto Rico 20 0.219 0.342

Finnhorse FIN Finland 27 0.209 0.331 Quarter Horse QH United States 40 0.245 0.369

Florida Cracker FLCR United States 7 0.229 0.353 Saddlebred SB United States 25 0.233 0.358

Franches-Montagnes FM Switzerland 19 0.221 0.344 Shetland SHET Scotland 27 0.208 0.329

French trotter FT France 17 0.242 0.367 Shire SHR England 23 0.211 0.333

Hanoverian HAN Germany 15 0.252 0.377 Standardbred—Norway STBDNor United States 25 0.238 0.363

Icelandic ICE Iceland 25 0.212 0.334 Standardbred—US STBDUS United States 15 0.241 0.366

Lusitano LUST Portugal 24 0.228 0.351 Swiss Warmblood SZWB Switzerland 14 0.252 0.377

Mangalarga paulista MNGP Brazil 15 0.224 0.348 Thoroughbred—UK/Ire TB_UK England 19 0.275 0.399

Maremmano MARM Italy 24 0.239 0.364 Thoroughbred—US TB_US England 17 0.275 0.399

Miniature MINI United 21 0.210 0.331 Tuva TUVA Siberia 15 0.216 0.339

Mongolian MON Mongolia 19 0.213 0.335 – – – – – –
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mon SNP markers between panels of 50K and 2M. This process resulted in the identification of 32K markers, and 
14K of these markers remained after quality control (call rate 99%) for further analysis.

ANN model and construction.  Artificial neural networks represent complex structures that are gener-
ated by fundamental units (elements) called neurons22. Neurons and their connections create a specific network 
architecture such as multilayer perceptron (MLP), self-organizing map (SOM), etc.13. In terms of genomic data 
analysis, we used two types of ANN architecture. The first one is a feed-forward multilayer perceptron (DNN) 
with two hidden layers, and the second one is a standard single hidden layer (ANN) with a back-propagation 
algorithm for the weight adjustments42,43. In Figure 5, The architecture of a single hidden layer ANN has been 
shown for better understanding. Neural net44 and Neural Net Tools45 packages were applied by R software (ver-
sion 3.4.0)46 to select informative and unique SNP markers that are within each breed. The mentioned algo-
rithms (Garson and Olden) have been utilized by ANN to detect the relative importance of variables for the 
breed diversity characterization.

The large dimension of the SNP-panel leads to a stack overflow error in the computing process. De Oña and 
Garrido29 have proposed the usage of a set of neural networks instead of a single one. In contrast to29 in the 
present work, the high-density SNP chip was partitioned into the sub-datasets with the same dimension and 
were used as input to identify the discriminant SNP(s).

Table 6.   The name, identification code, geographic origin, size of samples (N), minor allele frequency (MAF), 
and observed heterozygosity (HO) of different horse breeds (Validation dataset). The mean value of MAF 
statistic over all samples was estimated 0.2585 and the minimum and maximum of MAF were observed in 
Franches Montagnes and Thoroughbred breeds, respectively (0.2195 and 0.3758).

Breed ID Origins Continents N Percent MAF HO

1 Arabian ARR​ Middle East Asia 15 12.50 0.2419 0.3667

2 Fr-Mont FM Switzerland Europe 29 24.17 0.2195 0.3426

3 French-Trotter FT France Europe 10 8.33 0.2371 0.3618

4 Morgan MOR United States America 18 15.00 0.2268 0.3507

5 Quarter horse QH United States America 14 11.67 0.2477 0.3727

6 Standard breed STBD United States America 17 14.17 0.2503 0.3753

7 Thoroughbred TB England Europe 4 3.33 0.3758 0.4692

8 Warmblood SZWB Switzerland Europe 13 10.83 0.2477 0.3727

Total 120 100 – –

Figure 5.   Single hidden layer network structure that has been used in most studies. Most of the elements of the 
network, like the particular bias for each neuron, are ignored in this figure for better understanding.
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Feature selection: Garson and Olden.  Weights (Garson approach), had been described by Garson47 
and has also been modified by Goh48. It was used to identify the relative importance of input variables by the 
calculated weights within connections in a supervised neural network. The Garson approach indicates relative 
importance values as the absolute magnitude ranging from zero to one (0-1). Olden and Jackson49 had proposed 
connection weights, also known as the Olden approach that has been used in this research.

Feature selection: DNN approach and its architecture.  For the DNN approach, the ANN with two 
hidden layers was used to identify the discriminant SNP(s) within breeds. Many combinations exist for selecting 
the number of nodes in the hidden layer50. The optimal number of nodes in the first and second hidden layers 
detected 40 and 38 nodes after testing a range of combinations. Finally, ANN with Garson and Olden algorithms 
contained 40 nodes in the hidden layer.

We have used the final fitted weights of the neural network for selecting the genetic markers. In the DNN 
approach, we assumed there was a linear relationship between the variable and the response12. We considered 
the SNP markers to retain a direct relationship with the horse breeds. (Eq. 1).

where Y is the matrix of observed values for the desired breeds, g is a vector of weights of SNP markers, and e is 
the vector of residual terms. X is known as the design matrix that relates the elements of g to its corresponding 
element in Y. Assuming that higher coefficient values in this (regression) equation have a significant effect on 
the output variable, the absolute maximum weight obtained by DNN led to the selection of SNP markers that 
caused the diversity of the breeds.

DNN Approach

Input:

1. Convert group labels to numbers to present to the neural network (creating the 

output matrix - dimensional of the matrix: 795*48000)

2. Delete (columns) markers with unknown value

3. Dividing the marker matrix into smaller matrices

4. Network design with the following layers:

Input layer

The first hidden layer

The second hidden layer

Output layer

Output:

The small set of the estimated coefficients from the first hidden layer to find the 

effective markers.

Steps:

1. For each data set, the network was executed and the weights of the first hidden layer 

were stored.

2. In the end, all the estimated weights for each variable, which were equal to 40, were 

obtained and a matrix with specific dimensions was made (48000*40).

3. The absolute value of all entries of the weight matrix was calculated, so that the 

negative sign of some of them would not cause future problems.

4. The maximum value was obtained for each marker from the obtained weights.

5. If the number obtained value from the formula mentioned in the text was greater 

than the threshold, then that marker is selected as the effective variable.

6. A small set of markers, that are more effective than the rest, are extracted from the 

original data.

Figure 6 shows the whole analysis process. The researchers must determine the features according to Eq. 
(2), after the convergence of the neural network (Fig. 6). Feature selection is based on the absolute value of the 
weights of the first hidden layer. It should be noted that 40 weights have been calculated for each variable. In this 
step, the maximum value is obtained for each variable. If the obtained value was greater than the coefficient of 
Eq. (2), then that variable was selected as the effective SNP marker.

By considering Eq. (2), it is assumed that all variables are doing their job with maximum potential. Then, 
a selection threshold was defined to choose a small set of variables. As previously described, in this status, the 
effects of all variables are not estimated equally and we see the minimum and maximum values among them. The 
reason for assuming maximum potential is that we do not know what is the actual effect of each variable in bio-
logical data. Therefore, we considered every marker on the same level and allowed them to make their inferences 

(1)Y = Xg+ e
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and results. Regarding stages Turn 1 and Turn 2, it can be explained that sometimes the result of feature selection 
in subsequent analyzes is not desirable. Finally, further analysis to evaluate the individual assignment accuracy 
and qualify all three sub-SNP sets was done by a manual script in R software version (3.4.0).

Individual assignment analysis.  There are several available approaches for genetic assignment31,51,52. 
The method of Paetkau, et al.31 has been used for the assignment analysis (as had been described by38), and it 
had high effectiveness on individual assignment when high levels of genetic differentiation between reference 

Figure 6.   Flowchart of research used in the present study
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populations existed52. It is noteworthy that the SNP markers were applied instead of the microsatellites. We have 
calculated the log-likelihood ratios (LLR) to accurately assess the performance of the assignment procedure. The 
log-likelihood ratios (LLR) will be calculated by comparing the probability of an individual assigned to its real 
population to the probability of it assigned to another population (Eqs. 3 and 4).

where,

Different stringency thresholds are applied as confidence levels of assignment precision. Four stringency levels 
were used: LLR > 1, 2, 3 & 4, which means a multi-locus genotype should be 10, 100, 1000 & 10000 times more 
similar to the true population rather than the other one. If a calculated LLR value was lower than the selected 
stringency levels, the individual genotype would fail to assign to its unique origin. In other words, it would 
assign to the pseudo reference population. The correct assignment of an individual genotype to its known origin 
occurred when the calculated LLR was greater than the selected stringency levels.

The aim of evaluating a classification model is to evaluate and understand its flexibility, behavior, and predic-
tion ability in dealing with new or unknown samples.

Ethics statement.  Training Data-set: DNA sampling was limited to the collection of blood by jugular veni-
puncture performed by a licensed veterinarian or from hairs pulled from the mane or tail by the horse owner or 
researcher. All animal work was conducted in accordance with and approval from the international and national 
governing bodies at the institutions in which samples were collected (the University of Minnesota Institutional 
Animal Care and Use Committee (IACUC); the University of Kentucky IACUC; the University College Dublin, 
Animal Research Ethics Committee; Swiss Law on Animal Protection and Welfare; the Ethical Board of the Uni-
versity of Helsinki; the Animal Health Trust Clinical Research Ethics Committee; Norwegian Animal Research 
Authority; UK Home Office License; and the Lower Saxon state veterinary office).

Testing Data-set: DNA samples were previously collected with approval from the Animal Care and Use 
Committees at the respective institutions. All animal work was performed in accordance and with approval 
from international and national governing bodies at the institutions where the samples were collected (Uni-
versity of Minnesota Institutional Animal Care and Use Committee (IACUC); University of California, Davis 
Institutional Animal Care and Use Committee (protocol #17491); University of Kentucky Institutional Animal 
Care and Use Committee (IACUC); Ethics Committee for Animal Experiments in Uppsala, Sweden (Number 
C121/14); Institutional animal care and use committee at Cornell University (protocol 2008-0121); University of 
California, Davis IACUC 19205; Hebrew University’s approval number AG-23476-07; Institutional Animal Care 
and Use Committee (IACUC), the Lower Saxony state veterinary office- registration number 11A 160/7221.3-
2.1-015/11, 8.84-02.05.20.12.066; University of Sydney Animal Ethics Committee: AEC APPROVAL NUMBER: 
N00/9-2009/3/5109; permit no. BE75/16, veterinary service of the Canton of Bern; Institutional ethics committee 
of the University of Veterinary Medicine Vienna Good Scientific Practice guidelines and national legislation; 
Italian Ministry of Agricultural, Food and Forestry Policies (Mipaaf); Ethical Committee of the Canton of Bern 
(BE33/07, BE58/10 and BE10/13)) No commercial animals were used in this study. Written informed client 
consent describing the purpose and duration of the study, procedures, potential risks and benefits and contain-
ing study contact information were obtained from private owners.

Data availability
Training Data-set: All SNP genotype data are available at the NAGPR Community Data Repository (animal-
genome.org) for the purpose of reconstructing the analyses. The only exception is the data collected from the 
Tennessee Walking Horse, which, under agreement from the granting agency (to the University of Minnesota 
from the Foundation for the Advancement of the Tennessee Walking Show Horse (FAST) and the Tennessee 
Walking Horse Foundation (TWHF)), is only available under a Material Transfer Agreement (MTA) between 
interested individuals and the University of Minnesota. Testing Data-set: Whole genome sequences are avail-
able in the following NCBI BioProjects: PRJEB14779, PRJNA273402, and PRJEB10098. Additional sequences 
are restricted in availability due to pre-existing material transfer agreements and can be requested by contacting 
the contributing investigator in Additional file 1: Table S1. Genotypes for horses on the MNec2M array will be 
released upon publication. Genome positions for all 23 million discovered SNPs have been submitted to dbSNP 
as well as the European Variation Archive.
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