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Molecular‑enriched functional 
connectivity in the human brain 
using multiband multi‑echo 
simultaneous ASL/BOLD fMRI
Ottavia Dipasquale 1*, Alexander Cohen 2, Daniel Martins 1, Fernando Zelaya 1, 
Federico Turkheimer 1, Mattia Veronese 1,3, Mitul A. Mehta 1, Steven C. R. Williams 1, 
Baolian Yang 4, Suchandrima Banerjee 5 & Yang Wang 2*

Receptor‑enriched analysis of functional connectivity by targets (REACT) is a strategy to enrich 
functional MRI (fMRI) data with molecular information on the neurotransmitter distribution density 
in the human brain, providing a biological basis to the functional connectivity (FC) analysis. Although 
this approach has been used in BOLD fMRI studies only so far, extending its use to ASL imaging would 
provide many advantages, including the more direct link of ASL with neuronal activity compared 
to BOLD and its suitability for pharmacological MRI studies assessing drug effects on baseline brain 
function. Here, we applied REACT to simultaneous ASL/BOLD resting‑state fMRI data of 29 healthy 
subjects and estimated the ASL and BOLD FC maps related to six molecular systems. We then 
compared the ASL and BOLD FC maps in terms of spatial similarity, and evaluated and compared the 
test–retest reproducibility of each modality. We found robust spatial patterns of molecular‑enriched 
FC for both modalities, moderate similarity between BOLD and ASL FC maps and comparable 
reproducibility for all but one molecular‑enriched functional networks. Our findings showed that ASL 
is as informative as BOLD in detecting functional circuits associated with specific molecular pathways, 
and that the two modalities may provide complementary information related to these circuits.

Understanding the relationship between the microscale molecular processes of the human brain and its mac-
roscale functional architecture has attracted considerable attention in the neuroimaging community over the 
 years1–6. The use of multimodal approaches integrating outputs from different techniques and acquisition 
sequences can enrich the information that can be derived compared to single modalities when studying brain 
 function7. This integration has also been fuelled by recent advances in analytical  approaches2,3 and global data-
sharing initiatives (e.g. UK Biobank, ENIGMA Consortium, Human Connectome Project, etc.).

One of the most recent analytical strategies to integrate functional magnetic resonance imaging (fMRI) and 
molecular imaging is the Receptor-Enriched Analysis of functional connectivity by targets (REACT)2, a novel 
multimodal method that exploits the temporal dynamics of fMRI signal to identify functional circuits associ-
ated with specific molecular systems. By using neuroimaging templates of receptor density derived from Posi-
tron Emission Tomography (PET) or Single-Photon Emission Computerized Tomography (SPECT) imaging in 
healthy subjects, REACT maps fMRI data onto the space of specific molecular systems and recovers biologically 
informed networks of functional connectivity (FC).

The application of REACT to clinical and pharmacological blood oxygen level-dependent (BOLD) fMRI 
studies has demonstrated its ability to uncover new patterns of functional alterations in neurotransmission-
related circuits in patients with brain disorders and suggests potential drug-target mechanisms at the system 
level that could underlie the functional effects of pharmacological  treatment2,8–12. However, BOLD signal is an 
indirect measure of neuronal activity, resulting from the combination of changes in both oxygen consumption 
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and regional cerebral blood flow (CBF), as well as changes in regional blood volume (CBV)13. Thus, inferring 
neuronal dynamics directly from the BOLD signal is not straightforward.

Arterial Spin Labelling (ASL) offers an exciting alternative to BOLD since it allows for a more specific meas-
ure of global and regional CBF changes associated with  neuronal14–16 and neurotransmitter  activity17,18. CBF is 
also suitable for pharmacological MRI studies assessing drug effects on baseline brain  function19, it is acquired 
with pulse sequences that are resistant to magnetic field inhomogeneity  effects20, thus avoiding susceptibility 
artifacts and signal loss in the orbitofrontal, inferior temporal, and limbic regions that are linked to major neu-
rotransmitter  systems21, and its signal is typically well localized to the capillary  beds22,23. However, some of the 
classical technical limitations of the standard single-shot ASL acquisition techniques (e.g., long tagging time 
to label inflowing blood and post-labeling delay to allow tagged blood to flow into the brain, which inevitably 
result in a lower spatial and temporal resolution compared to BOLD imaging) have hampered the use of ASL as 
a reliable measure of brain FC.

A novel multi-band and multi-echo (MB-ME) ASL/BOLD sequence has been recently developed to overcome 
some of those limitations and provide high-resolution, whole-brain simultaneous ASL/BOLD data to extend 
the study of functional connectivity in the human  brain24. This sequence exploits the advantages of MB and ME 
techniques to improve signal to noise ratio (SNR) and increase the temporal resolution of ASL data. The collec-
tion of more than two echoes also allows for the use of advanced data-driven de-noising strategies, including 
multi-echo independent component analysis (ME-ICA)25,26, resulting in the identification of reliable resting 
state networks, higher CBF/BOLD coupling, and increased signal stability and  reproducibility24,27. Data obtained 
with this MB-ME ASL/BOLD sequence have already been used to estimate and compare ASL- and BOLD-based 
resting state networks, and to evaluate the coupling of CBF and BOLD  signals24,27.

The above mentioned benefits of ASL, its usage as a quantitative surrogate marker of brain function and the 
latest technical developments of ASL fMRI offer the opportunity to integrate ASL data and molecular imaging 
with REACT, to gain further insights from underlying neurotransmitter density data and evaluate brain response 
to pharmacological intervention. If feasible, this application could pave the way to the integration of molecular 
and functional imaging in pharmacological and clinical studies where resting-state BOLD data were not—or are 
not intended to be—acquired, providing a biologically-informed tool to complement the evaluation of global 
and regional changes in CBF.

In this study, we determined the feasibility of using REACT with ASL fMRI data by estimating the ASL-based 
FC networks related to six molecular systems that have been used in previous BOLD-based REACT studies, 
and compared the resulting ASL-based molecular-enriched functional networks with those derived from BOLD 
fMRI data in terms of spatial configuration and test–retest reliability. By using ASL and BOLD data acquired 
simultaneously rather than sequentially, we were able to perform an unbiased comparison of the two modalities 
and identify the intrinsic differences between them, ruling out the possibility that any spatial differences in the 
ASL- and BOLD-derived networks might be induced by physiological confounds (e.g., different levels of alert-
ness could potentially affect the spatial pattern of the noradrenergic network).

Methods
Participants and MRI data acquisition. Twenty-nine right-handed healthy volunteers (mean 
age = 28.0 years, age range 20–46, males/females: 9/20) were recruited for this study. Nineteen of them returned 
within 2 weeks to repeat the study. Subjects were instructed to refrain from caffeine and tobacco for 6 h prior to 
the MRI exam.

All subjects provided written informed consent prior to participation in this study, which was approved by 
the Medical College of Wisconsin Institutional Review Board and conducted in accordance with the Declaration 
of Helsinki. All methods were carried out in accordance with the approved guidelines and regulations.

Imaging was performed on a 3 T MR scanner (Signa Premier, GE Healthcare, Waukesha, WI, United States) 
with a body transmit coil and a 32-channel NOVA (Nova Medical, Wilmington, MA, United States) receive head 
coil. Subjects underwent a resting state fMRI scan using a MB-ME PCASL/BOLD EPI  sequence24,27,28 with the 
following acquisition parameters: echo times (TEs)/repetition time (TR) = 11,30,48,67/3500 ms, FOV = 24 cm, 
matrix size = 80 × 80, slice thickness = 3 mm (3 × 3x3 mm voxel size), 11 excitations with multiband factor = 4 
(44 slices in total), FA = 90°, partial Fourier factor = 0.85, and in-plane acceleration (R) = 2, number of time 
points = 96, total scan duration = 5.6 min. PCASL parameters included labelling time = 1450 ms and post labelling 
delay time (PLD) = 1000 ms. One full label/control pair was acquired every 7000 ms. Subjects were instructed 
to lie still with their eyes closed and stay awake.

A 3D T1-weighted magnetization-prepared rapid acquisition with gradient echo (MPRAGE) anatomical 
image was also collected to aid with coregistration (TR/TE = 2200/2.8 ms, field of view (FOV) = 24 cm, matrix 
size = 512 × 512 × 256, slice thickness = 0.5 mm, voxel size = 0.47 × 0.47 × 0.5 mm, and flip angle (FA) = 8°).

Image pre‑processing. Data was analyzed using a combination of  AFNI29 and  FSL30. First, the anatomical 
MPRAGE image was coregistered to Montreal Neurological Institute (MNI) space. Each fMRI dataset was then 
volume registered to the first volume using mcflirt in FSL. Importantly, only the first-echo dataset was registered, 
and both label and control images were included. Subsequent echoes were registered using the transformation 
matrices from the first echo.

For the BOLD analysis, the four echoes were combined using the T∗
2-weighted  approach31. The data was then 

denoised using ME-ICA and the open source python script tedana.py version 0.0.10 (https:// tedana. readt hedocs. 
io/ en/ latest)25,26,32 to reduce mainly motion-related artefacts, but also other non-BOLD sources of  noise25,33. 
This technique, described in detail elsewhere, classifies independent components as BOLD or non-BOLD based 
on whether or not their amplitudes are linearly dependent on TE,  respectively25,26,34, and regresses non-BOLD 

https://tedana.readthedocs.io/en/latest
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components out of the combined ME data, returning a denoised MBME dataset. Because both label and control 
volumes were included as input into tedana, in all cases a label-control oscillation noise component was iden-
tified and regressed from the BOLD  data24. The denoised dataset was then registered to the MPRAGE image 
using epi_reg in FSL and then to MNI space using the anatomical transformations computed previously. The 
data was then smoothed using a 6 mm FWHM Gaussian kernel, and high-pass filtered with  fc = 0.01 Hz. Finally, 
to remove residual unspecific confounders (e.g., scanner instabilities, physiological drifts, cardiac fluctuations 
and respiration)35–38, we applied a standard denoising step for BOLD data based on the regression of the white 
matter (WM) and cerebrospinal fluid (CSF) signals. To perform this step, we first created group masks of the WM 
and CSF from the MNI152 standard template and used those masks to extract the mean WM and CSF signals 
from the BOLD fMRI data. WM and CSF signals were then regressed out of the BOLD data using fsl_glm in FSL.

For the ASL data analysis, the first-echo data was registered to the MPRAGE image and then to MNI space 
using the anatomical transformations computed previously. The data was then smoothed using a 6 mm FWHM 
Gaussian kernel, and a perfusion-weighted (PW) time series was computed by surround subtracting label and 
control  images14. In order to improve spatial specificity and increase SNR by reducing interindividual physi-
ological differences in ASL  data39, we regressed the global PW signal out of the ASL data. To perform this step, 
we estimated for each time point the mean PW value across the grey matter  voxels40,41 and regressed the signal 
out of the ASL dataset using the fsl_glm function in FSL.

Molecular‑enriched functional connectivity analysis with REACT . Six publicly available in  vivo 
molecular templates of the major neuromodulatory systems, including the transporters of dopamine (DAT)42, 
noradrenaline (NAT)43, serotonin (SERT)44 and vesicular acetylcholine (VAChT)45, and GABA-A and mGlu5 
 receptors46,47 were used as spatial priors to enrich the fMRI analysis of the BOLD and ASL data and estimate the 
corresponding functional circuits related to each molecular system. We selected these templates to provide illus-
trative examples of the methodology and its general usage with ASL and BOLD data, although different types of 
molecular templates can be used in REACT, according to the specific hypotheses of the study and the template 
availability (e.g., to explore the brain mechanisms underlying a certain disorder, neurotransmitter transporters 
might be more suited to capture the full architecture of a certain system, while in a drug challenge targeting 
specific neurotransmitters, the optimal approach would be to use the maps of those specific receptors, if drug 
binding is  known48). Every molecular template was previously normalized by scaling its image values between 0 
and 1 and masked using a standard grey matter mask. Of note, the regions used as references for quantification 
of the molecular data in the kinetic models for the radioligands were masked out of the corresponding template, 
namely the occipital areas in DAT and NAT and the cerebellum in SERT, VAChT, and mGluR5. The original 
templates can be found at https:// github. com/ netne urolab/ neuro maps 49,50. To examine collinearity between the 
receptor systems, we calculated the correlation coefficients between each pair of molecular templates as well as 
their Variance Inflation Factors (VIFs). Of note, VIF quantifies the severity of multicollinearity in an ordinary 
least squares regression analysis (VIF = 1

1−R2
 ). VIFs higher than 1 and up to 5 typically suggest that there is a 

moderate correlation between two variables, but it is not severe enough to warrant corrective measures, while 
values greater than 5 represent critical levels of multicollinearity and will result in a poor estimation of the coef-
ficients, meaning that alternative analytic approaches (e.g., dimensionality reduction) are  required51–53.

A detailed explanation of the REACT methodology and its applications can be found  elsewhere2,10. In brief, 
the functional circuits related to the six molecular systems were estimated using a two-step multiple regression 
analysis. In the first step, the fMRI volumes were masked using a binarized mask derived from the molecular 
templates to restrict the analysis to the voxels for which the density information of the neurotransmitters was 
available. Then, the molecular templates were used as a set of spatial regressors to weight the fMRI images and 
estimate the dominant fluctuation related to each molecular system at the subject level. The resulting subject-
specific time series were then used as temporal regressors in a second multiple regression analysis to estimate the 
subject-specific spatial map associated with each molecular template. The output consists of six maps per subject 
and fMRI dataset, each one reflecting the molecular-enriched FC associated with a specific neurotransmitter. 
This analysis was performed using the react-fmri package (https:// github. com/ ottav iadip asqua le/ react- fmri)54.

Comparison of BOLD and ASL‑based molecular‑enriched FC. To estimate population inferences 
for each neuroreceptor system and fMRI dataset (BOLD and ASL), we performed voxel-wise one-sample t-tests 
using randomise in  FSL55 (one test for positive FC and one for negative FC). Of note, t-tests in randomise are 
always one-tailed. To make them two-tailed, one needs to run the two contrasts separately and then correct for 
multiple comparisons across contrasts.

The resulting t-stat images of positive and negative FC were compared between fMRI datasets using the Dice 
Similarity Index as well as the voxel-wise spatial correlation, to assess the spatial similarity between ASL- and 
BOLD-derived molecular-enriched FC maps.

Dice similarity index (DSI). After thresholding the t-stat images at  pFWE < 0.05 (corrected for multiple compari-
sons across voxels using the threshold-free cluster enhancement (TFCE)  option56, and across contrasts using 
Bonferroni correction), and binarizing them, we measured the degree of overlap between the different fMRI 
datasets using the DSI, calculated as:

DSI =
2|X ∩ Y|

|X| + |Y|
,

https://github.com/netneurolab/neuromaps
https://github.com/ottaviadipasquale/react-fmri)
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where X are all active voxels in the BOLD-derived FC maps and Y are all active voxels in the ASL-derived FC 
map. To measure the total DSI, we first counted the voxels with concordant FC in the two modalities (i.e.,  X+ ∩  Y+ 
and  X− ∩  Y−), and then added them together to obtain a single |X ∩ Y| term. The DSI denominator was calculated 
considering the total (positive + negative) FC voxels for both modalities. The comparison between BOLD and 
ASL FC was also run separately for the positive and negative FC  (DSI+ and  DSI−, respectively).

Voxel‑wise spatial correlation. To investigate the linear relationship of the within-group FC patterns between 
modalities, for each molecular-enriched functional network we computed the Pearson’s correlation coefficient 
between the unthresholded BOLD and ASL t-stat maps resulting from the one-sample t-tests. This estima-
tion was performed using a parameterized generative method implemented in the brainSMASH  platform57 to 
account for the inherent spatial autocorrelation of the data. Of note, the t-stat maps were down-sampled at 4 
 mm3 to reduce the computational burden of the calculations.

Test–retest analysis. The reproducibility of BOLD and ASL response in generating consistent molecular-
enriched functional networks was quantified using the regional intraclass correlation (ICC) between test and 
retest sessions. First, for each molecular-enriched functional network,  dataset (BOLD and ASL) and subject 
having test and retest data (n = 19), we parcellated the FC map using the Desikan-Killiany atlas and estimated 
the mean FC of each region. Then, we calculated the regional ICC between the test and retest sessions for each 
fMRI dataset, ROI and network:

where  MSB is the mean square variance between subjects and  MSE the mean square error between sessions.  MSB 
and  MSE were calculated from an n × k matrix with n = 19 observations and k = 2 measurements. This resulted 
in one ICC value per fMRI dataset and ROI of each network.

In order to compare the reproducibility of the two modalities, the resulting ICC values of each network were 
Fisher’s z transformed and compared between BOLD and ASL datasets using non-parametric Wilcoxon signed-
rank paired sample t-tests, after testing for normality.

Results
The VIF values for DAT, NAT, SERT, VAChT, GABA and mGlu5 maps were 1.8898, 1.6989, 3.3826, 3.4414, 
2.5160 and 2.9742 respectively, reflecting a low to moderate level of collinearity and confirming their suitability 
for inclusion together within the multiple linear regression analysis of REACT.

Figure 1 shows the normalized molecular templates of DAT, NAT, SERT, VAChT, and GABA-A and mGlu5 
receptors, and the corresponding significant t-stat BOLD- and ASL-derived FC maps resulting from the one 
sample t-tests, thresholded at  pFWE < 0.05 corrected for multiple comparisons across voxels using the TFCE 
 option56 and contrasts (one for positive FC and one for negative FC) using Bonferroni correction.

Overall, the two fMRI datasets show good consistency in terms of identification of the main hubs (i.e., 
regions with positive FC indicating their association with the functional network) of each molecular-enriched 
network, which align with the distribution of their molecular systems and related pathways. The main hub of 
the DAT-enriched network corresponds to the striatum (i.e., caudate and putamen), although it is also possible 
to identify other key cortical and subcortical regions as belonging to this network, including the thalamus, 
anterior cingulate gyrus, paracingulate gyrus, insula, superior frontal gyrus, opercular cortex, precentral gyrus, 
superior temporal gyrus and temporal pole. The key regions of the NAT-enriched network identified by both 
fMRI datasets are the brainstem, thalamus, pre- and postcentral gyri, supplementary motor cortex, insula and 
part of the anterior cingulate cortex, as previously reported in other  studies8,10. The SERT-enriched network is 
mainly localized in the thalamus, putamen, midbrain, insula, anterior cingulate gyrus, frontal orbital cortex, 
paracingulate gyrus, subcallosal cortex and frontal pole. Both datasets identified the striatum, insula, anterior 
cingulate gyrus, paracingulate gyrus and precentral gyrus as key regions of the VAChT-enriched network. The 
functional networks related to GABA-A and mGlu5 receptors emerged as more widespread across cortical 
regions, in line with their wider expression throughout the cortex. The areas belonging to the GABA-A-enriched 
network identified by both datasets are the occipital pole and lateral occipital cortex, lingual gyrus, intracalcarine 
cortex, cuneus and precuneous, pre- and postcentral gyri, occipital fusiform gyrus and superior parietal lobule, 
while the mGlu5-enriched network was mainly localized in the frontal pole, frontal orbital cortex, superior and 
middle frontal gyri, anterior cingulate gyrus, lateral occipital cortex, occipital pole, paracingulate gyrus, insular 
cortex, precuneous, angular gyrus, pre- and postcentral gyri and middle temporal gyrus. The complete list of 
regions with significant within-group positive FC in the molecular-enriched functional maps derived from each 
dataset can be found in Supplementary Fig. 1.

Spatial similarity between datasets. Results from the comparison between datasets estimated using the 
DSI are reported in Table 1 and visually represented in Fig. 2. Overall, the BOLD- and ASL-derived maps showed 
a low to moderate similarity when considering positive and negative FC together (total DSI range: 0.32–0.54). 
However, a higher spatial similarity was generally observed for positive FC than for negative FC  (DSI+ range: 
0.29–0.55;  DSI− range: 0.13–0.49), with the BOLD dataset showing more widespread inter-subject consistency 
(i.e., significant one-sample t-test for negative FC in more areas) than the ASL dataset in the regions showing a 
negative coupling with the main networks.

ICC(3, 1) =
MSB −MSE

MSB + (K − 1)MSE
,
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In terms of voxel-wise spatial correlation between datasets, we found significant positive correlations between 
the BOLD- and ASL-derived molecular-enriched FC maps (range of Pearson’s r: 0.50–0.66,  pcorr < 0.001). All 
Pearson’s correlations are reported in Table 1 and visually represented in Fig. 3.

Results of the test–retest analysis. Overall, both BOLD and ASL datasets showed heterogeneity in 
the regional distribution of ICC across the whole brain, spanning from very low to moderate ICC (Fig.  4). 

Figure 1.  Molecular templates and corresponding molecular-enriched FC maps derived from BOLD and ASL 
datasets. The distribution density of the molecular templates was rescaled between 0 and 1 and the regions 
used as references in the kinetic models were set at 0. The molecular-enriched FC maps are obtained from the 
significant t-stat maps resulting from the one sample t-tests performed on the positive FC (in red) and negative 
FC (in blue)  (pFWE < 0.05, corrected for multiple comparisons across voxels using the TFCE option and contrasts 
with Bonferroni correction).

Table 1.  Spatial similarity of the molecular-enriched functional networks between datasets (BOLD and 
ASL) expressed in terms of Dice Similarity Index (DSI, range 0–1) and voxel-wise Pearson’s correlation. The 
DSI was estimated considering positive and negative FC together (Total DSI) and separately  (DSI+ and  DSI−, 
respectively). In terms of voxel-wise Pearson’s correlation, all networks showed significant correlations between 
datasets  (pcorr < 0.001).

Total DSI DSI+ DSI− Spatial correlation

DAT 0.33 0.29 0.35 0.62

NAT 0.45 0.48 0.39 0.57

SERT 0.32 0.45 0.23 0.50

VAChT 0.34 0.49 0.13 0.58

GABA-A 0.49 0.51 0.37 0.66

mGlu5 0.54 0.55 0.49 0.65
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As resulted from the Wilcoxon signed-rank t-tests comparing the network reliability between ASL and BOLD 
datasets, significant differences were found only in the regional ICCs of the GABA-A-enriched functional 
network (ASL < BOLD, z-score = 2.121, p < 0.034), while the other networks showed comparable reliability 
between modalities (ASL < BOLD, DAT: z-score = 1.253; NAT: z-score = − 0.507; SERT: z-score = 0.222; VAChT: 
z-score = 1.003; mGlu5: z-score = 0.503). Of note, since the statistical tests were simply applied to help quantify 
the comparisons between modalities without doing any further statistical inference on the difference of ICC, the 
results did not need correction for multiple comparisons.

Discussion
In this study, we tested the feasibility of using ASL fMRI data to estimate molecular-enriched functional net-
works using REACT, a novel analytical method used to project fMRI data onto selected molecular spaces and 
characterize the functional coactivation of brain regions in terms of their relationship with molecular targets. 
Specifically, we estimated the functional networks related to six molecular systems (DAT, NAT, SERT, VAChT, 
GABA-A and mGlu5) using high-resolution, whole-brain resting-state ASL and BOLD fMRI data of healthy 
subjects acquired with a simultaneous MB-ME ASL/BOLD EPI sequence, and compared the networks resulting 
from the two modalities in terms of spatial similarity and test–retest reproducibility.

Similarly to the networks derived from BOLD data, the networks resulting from the ASL dataset were able 
to highlight, for each molecular system, both the areas of high distribution density of the neurotransmitters and 
their functional links with other brain areas. For example, the main regions belonging to the DAT-enriched 
functional network estimated from both datasets include the striatal areas, which are the most enriched in dopa-
minergic innervation, but also specific cortical areas implicated in dopamine modulation of reward, learning, 
and motivation, such as the anterior cingulate  cortex58,59, which are functionally and anatomically connected 
with the  striatum60–62. The NAT-enriched functional network shows high positive FC partly in the brainstem, 
which is the major site of noradrenergic neurons (mainly the locus coeruleus), but also in the thalamus and sen-
sorimotor regions, in line with the modulatory effect of noradrenergic pathways on processing of salient sensory 
information via actions on sensory, attentional and motor  processes63. Importantly, the spatial configuration of 
such functional networks is also comparable with the functional networks reported in previous REACT-based 
studies using BOLD fMRI  data2,8–10.

ASL versus BOLD: same but different molecular‑enriched networks. Despite the lower SNR of 
ASL compared to BOLD imaging, our findings show that the spatial patterns of the molecular-enriched func-

Figure 2.  Binary representation of the spatial distribution of the molecular-enriched functional networks 
derived from BOLD and ASL images and their overlap. The overlap of regions with positive FC and regions with 
negative FC are represented in two separate panels (on the left and right, respectively).
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tional networks estimated from BOLD and ASL datasets overlap in many areas, as indicated by the moderate 
network similarity in terms of DSI and voxel-wise spatial correlation between them. These results confirm the 
feasibility of using ASL for the molecular-enriched fMRI analysis, but they also show that the networks identified 
with ASL data do not fully match the BOLD-derived ones. This finding suggests that the two modalities might 
capture slightly different characteristics of the functional interaction between brain regions within the molec-
ular-enriched networks (e.g. biological differences in the dynamics of spontaneous fluctuations in CBF and 
BOLD), and could hence be complementary. However, we cannot fully exclude that these differences might also 
reflect, to some extent, intrinsic differences between modalities, such as SNR or others. For instance, since the 
BOLD signal originates primarily from the differences in intravascular deoxyhaemoglobin concentration, the 
spatial correlation to the actual site of neural activity is relatively poor with considerable spatial spreading onto 
the venous  structures64,65. This phenomenon might, at least theoretically, inflate the amount of shared variance 
in BOLD signal fluctuations across voxels from the same venous territory. Conversely, ASL typically yields better 
spatial correlations with the actual site of regional involvement compared to BOLD because the signal originates 
from smaller calibre  vessels23. An interesting detail that emerges from the  DSI- (see also the right panel of Fig. 2), 
is that the BOLD-derived maps have a more widespread inter-subject consistency (i.e., significant one-sample 
t-test in more brain regions) than the ASL ones in the regions with a negative coupling with the main networks. 
It must be noted that a larger extent of negative FC in BOLD networks as compared to the ASL ones has already 
been described in the  literature66. These converging findings suggest that the spatial patterns of positive connec-
tivity are more consistent across techniques than those of negative FC, which could be more dependent on the 
type of data (BOLD or ASL fMRI) and de-noising steps applied, if  any67. Furthermore, it is worth noting that a 
widely adopted strategy to address the well-known difficulty of providing a biological meaning to negative FC, 
especially in graph-based studies and in works comparing BOLD- and ASL-derived  FC68,69, is to set a FC thresh-
old at 0 and focus on positive connectivity only.

Overall, further studies will be essential to clarify these between-modality differences and provide additional 
information on the spatial configuration of the BOLD and ASL networks in other contexts, such as in task fMRI 
or drug studies.

Figure 3.  Voxel-wise spatial correlation of the molecular-enriched FC maps derived from the BOLD and ASL 
datasets. The 2D histograms show the relationships between the unthresholded BOLD and ASL t-stat maps 
resulting from the one-sample t-tests in terms of their spatial distributions across the brain. The marginal 
histograms on top and on the right of each 2D histogram show the modality-specific distributions of the t-stat 
maps.
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Reproducibility. In terms of test–retest reproducibility, both datasets showed large variability in regional 
ICC across brain regions, spanning from low to good ICC (i.e., around 0.75), similarly to what has been reported 
in other fMRI  studies70–72. The ASL dataset showed a significantly lower ICC than BOLD in the GABA-A-
enriched network, in line with a previous study indicating that BOLD data produce more reliable spatial net-
work patterns than ASL  data69. On the other hand, our results showed generally lower BOLD ICC values than 
those reported in Ref.69, and comparable ICCs between ASL and BOLD in the other five molecular-enriched 
functional networks. This finding is in line with another study reporting comparable averaged ICCs of within-
network connectivity between the two fMRI  modalities73 and might be explained, at least in part, by the fact that 
the processing pipeline of our BOLD dataset, as well as the one of the just mentioned  study73, included a step of 
WM and CSF signal regression to reduce the contribution of physiological noise (i.e., respiration and cardiac 
pulsation). This type of noise is known to generate highly reproducible, but spurious, connectivity patterns in rs-
fMRI36, which we might have reduced by regressing WM and CSF signals from our BOLD data. Further studies 
expanding our approach to task-based fMRI data, where specific brain regions are expected to be engaged, could 
offer a more comprehensive overview of the reproducibility of these modalities in different contexts.

Limitations. Our study has some limitations worth mentioning. First, the number of subjects was relatively 
small. However, the purpose of this study was to determine the feasibility of using ASL data to identify molecu-
lar-enriched networks comparable to those obtained with BOLD fMRI. Hence, the sample size was appropriate 
to answer our research question. Second, we explored the spatial configuration of molecular-enriched functional 
networks of healthy subjects at rest. Although this is the first essential step to define the feasibility of this analysis 
and pave the way for future works integrating molecular and ASL fMRI imaging, it is important to mention that 
further studies are needed in order to characterize in detail the similarities and differences between BOLD- and 
ASL-based molecular-enriched functional networks and investigate whether these might capture distinct aspects 
of the biology of the brain or simply reflect methodological differences between modalities. This could be tested 

Figure 4.  Regional Intraclass correlations (ICCs) of the test–retest sessions for each molecular-enriched 
functional network derived from the BOLD and ASL datasets and corresponding histograms of their 
distributions.
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using pharmacological MRI data to investigate the brain response to a drug acting on selective  targets74, or fMRI 
data with simple tasks that trigger functional changes modulated by specific neurotransmitters (e.g., attentional 
tasks requiring modulation of the functional network related to the noradrenergic circuit). This would provide 
better opportunities to explore the specific characteristics of BOLD and ASL functional networks and how they 
respond to predictable interventions. Ongoing work is already validating this approach in pharmacological MRI, 
assessing the drug-target mechanisms behind CBF-based functional changes induced by selective serotonin 
reuptake inhibitors (SSRIs), and in clinical cohorts where a known deficit such as dopamine loss in Parkinson’s 
Disease likely affects the normal functioning of networks related to specific molecular pathways. Finally, a rela-
tively short PLD (1.0 s) compared to the recommended PLD of 1.8 s for  pCASL16 was employed for this study. 
Shorter PLDs can lead to intravascular artifacts if blood does not have adequate time to reach capillary-feeding 
small arteries. Despite this, this dataset has been used in another study to estimate and compare ASL- and 
BOLD-based resting state  networks24, showing that they can be consistently detected using the CBF data. Other 
studies have also employed short  PLDs75 and analyzed FC with a 3D pCASL sequence with PLD = 1.0 s and a 
BOLD EPI  sequence69, finding robust ASL-based connectivity and considerable overlap between ASL and BOLD 
networks. However, future studies should specifically examine the effect of PLD on resting state FC.

Conclusion. This study shows that the molecular enrichment of ASL fMRI timeseries is feasible and pro-
duces molecular-enriched FC maps that share features with those produced from BOLD fMRI, but also show 
particularities which origins we cannot ascertain yet but will need to be explored in future studies. Given the 
more direct link between ASL perfusion signal and neuronal activity, our integrative approach is likely to become 
a valuable asset in neuropharmacological studies investigating the effects of new or existent compounds on the 
brain or in clinical studies investigating functional alterations in brain disorders, particularly when the use of 
BOLD fMRI might fall short.

Data availability
Data is available at https:// openf mri. org/ datas et/ ds000 216/.

Code availability
The react-fmri package can be found at https:// github. com/ ottav iadip asqua le/ react- fmri.
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