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Analysis of endoplasmic reticulum 
stress‑related gene signature 
for the prognosis and pattern 
in diffuse large B cell lymphoma
Chaofeng Zhang 1,2,7, Qi Lin 3,4,7, Chaoqi Li 4, Zhimin Chen 5, Mengmeng Deng 4, 
Huixin Weng 4 & Xiongpeng Zhu 2,6*

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. This study aimed to 
determine the prognostic significance of endoplasmic reticulum (ER) stress-related genes in DLBCL. 
ER stress-related genes were obtained from the molecular signatures database. Gene expression 
data and clinical outcomes from the gene expression omnibus and TCGA datasets were collected, 
and differentially expressed genes (DEGs) were screened out. Gene ontology enrichment analysis, 
the kyoto encyclopaedia of genes and genomes pathway analysis, and geneset enrichment analysis 
were used to analyse the possible biological function of ER stress-related DEGs in DLBCL. Protein–
protein interaction network construction using the STRING online and hub genes were identified by 
cytoHubba on Cytoscape software. The significant prognosis-related genes were screened, and the 
differential expression was validated. The immune microenvironment assessment of significant genes 
were evaluated. Next, the nomogram was built using univariate and multivariate Cox regression 
analysis. 26 ER stress-related DEGs were screened. Functional enrichment analysis showed them to 
be involved in the regulation of the endoplasmic reticulum mainly. NUPR1 and TRIB3 were identified 
as the most significant prognostic-related genes by comparison with the GSE10846, GSE11318, and 
TCGA datasets. NUPR1 was correlated with a good prognosis and immune infiltration in DLBCL; 
on the other hand, high expression of TRIB3 significantly correlated with a poor prognosis, which 
was an independent prognostic factor for DLBCL. In summary, we identified NUPR1 and TRIB3 as 
critical ER stress-related genes in DLBCL. NUPR1 might be involved in immune infiltration in DLBCL, 
and TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm, representing approximately 
30% of non-Hodgkin lymphoma (NHL)1,2, and it is a highly heterogeneous, aggressive disease2,3. Currently, 
R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) is the standard first-line 
treatment for DLBCL2,4, however, about 30–40% of DLBCL patients remain resistant to RCHOP and are refrac-
tory or develop relapsed5,6, and only 10% of patients with refractory or relapsed DLBCL could be treated using 
salvage immunochemotherapy followed by autologous stem cell transplantation3,7, implying a significant unmet 
medical need8,9. The cell-of-origin (COO) classifications9,10 and the International Prognostic Index (IPI) score 
have often been considered the two most commonly prognostic factors for patients with DLBCL3,11,12. However, 
these prognostic factors do not fully explain risk stratification, clinical outcomes in DLBCL patients13,14, and there 
is an urgent need for valuable biomarkers to guide prognostic factors and therapeutic approaches for DLBCL.

Endoplasmic reticulum (ER) stress, a state in which the unfolded and misfolded protein accumulation affects 
the normal physiological function of cells, refers to the excessive stress caused by dysfunction of ER stress15,16. 
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Notably, ER stress signaling is associated with the development of several cancers, including DLBCL15–17. The 
unfolded protein response (UPR), controlled general translation, misfolded protein degradation, and folding 
enzyme production are some of the adaptive responses that cells may initiate in response to ER stress. Protein 
kinase RNA (PKR)-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring 
enzyme 1 (IRE1) are the three types of signal transducers evolved to be involved in the regulation of UPR 
network18,19. Malignant and stromal cells have their ER homeostasis disrupted by the hostile milieu created 
by a confluence of oncogenic, transcriptional, and metabolic aberrations in numerous tumor forms18,20,21. The 
alterations induce a state of persistent ER stress, which has been shown to regulate several protumor charac-
teristics in cancer cells while dynamically altering the function of innate and adaptive immune cells. Gener-
ally, aberrant activation of ER stress sensors and their downstream signalling pathways have been identified as 
important regulators of cancer development, metastasis, and response to chemotherapy, targeted treatments, 
and immunotherapy19–23. But the significance of ER stress-related genes in the biological features and clinical 
prognosis of DLBCL has not been thoroughly investigated.

In our study, we aimed to better investigate and comprehend the predictive and prognostic value of ER stress-
related genes in DLBCL using public databases. First, differentially expressed genes (DEGs) were compared 
in DLBCL patients with normal tissues. Second, the biological activities and potential pathways of ER stress-
related DEGs were validated. Third, the prognostic model and immune infiltration assessment were performed. 
We explored and verified to illustrate the prognostic role and biological functions of ER stress-related genes in 
DLBCL at the bioinformatic and experimental levels.

Materials and methods
Data downloading and preprocessing.  DLBCL datasets (GSE5631524, GSE1084625, and GSE1131826) 
were obtained from the Gene Expression Omnibus (GEO) (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). All three data-
sets were based on the GPL570 platform and came from Homo sapiens. There were 55 DLBCL patients and 
33 noncancerous tissues (NCs) in the GSE56315 dataset, and all of them were included in this analysis. After 
removing patients with incomplete survival information, 414 DLBCL samples in the GSE10846 dataset and 200 
DLBCL samples in the GSE11318 dataset were enrolled. And 48 DLBCL samples (TCGA_DLBC) in The Cancer 
Genome Atlas (TCGA) were downloaded from The University of California Santa Cruz (UCSC) Xena browser. 
A total of 295 ER stress-related geneset were obtained from the Molecular Signature Database v7.0 (MSigDB)27 
after removing the overlapped genes (Supplementary Table S1).

DEGs screening and gene function analysis.  DEGs had been screened between DLBCL samples and 
lymphocytal data from normal human tonsils, which came from the GSE56315 dataset, and were explored using 
the limma package28. Two thresholds were set to determine the degree of DEGs: the adjusted p value < 0.05 and 
|log2FC|> 1. And these DEGs were intersected with the ER stress-related genesets to extract the differentially ER 
stress-related DEGs. For the exploration of the function of the extracted genes, the gene ontology (GO) enrich-
ment analysis29, and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis30 were conducted 
using the clusterProfiler package31. In order to evaluate the gene expression level of potential signaling pathways 
and biological functions, the gene set enrichment analysis (GSEA)32 was conducted using the “c2.cp.kegg.v6.2.-
symbols” geneset, and false discovery rate (FDR) q-value ≤ 0.25 was considered as statistically significant.

Protein–protein interaction network construction.  For searching for the relationship between pro-
teins of interest, a Protein–protein interaction (PPI) network was constructed through the Search Tool for the 
Retrieval of Interacting Genes (STRING; http://​string-​db.​org)33 online, and the combined score was greater than 
0.4 considered statistically significant. Cytoscape (version 3.7.2, http://​www.​cytos​cape.​org)34 was used to visual-
ize this PPI network, and the cytoHubba plug-in Cytoscape35 was used to calculate the hub nodes to select the 
top DEGs based on degree and the maximum correntropy criterion (MCC) algorithms.

Screening of prognosis‑related genes and clinical correlation analysis.  The GSE10846 dataset25, 
the GSE11318 dataset26, and the TCGA_DLBC databases were used to discover prognosis-related genes in 
DLBCL patients, and the clinical characteristics were extracted. For the investigation of the significant prog-
nostic genes of ER stress-related DEGs, the samples of above the three datasets were divided into two groups 
based on the median value of differential ER stress-related DEGs expression and the intersection of them. The 
Kaplan–Meier (KM) curves were employed for survival analysis, and the log-rank method was used to compare 
the two groups, P < 0.05 was considered as significant difference. Simultaneously, the expression of ER stress-
related DEGs in different COO and stages of DLBCL was analyzed by Kruskal Wallis test. In order to investigate 
the diagnostic role of ER stress-related DEGs in the GSE56315 dataset, the receiver operating characteristic 
(ROC) curve was drawn through the GSE56315 dataset using the pROC and plotROC packages36, and the area 
under the curve (AUC) was calculated. The experssion of ER stress-related DEGs in the TCGA_DLBC was also 
determined.

Gene expression quantification on cultured cell lines.  In this study, we detected gene expression 
in cultured cell lines, there are four cell lines including HBL-1 (A gift from Fujian Research Institute of Hae-
matology, China), SUDHL2 (A gift from School of Medcine, Southeast Universtiy, China), SUDHL4 (Meisen, 
China) and GM12878 (BeNa, China) enrolled, thess cell lines were cultured in Roswell Park Memorial Insti-
tute 1640 (RPMI‐1640) medium (Gibco, US), supplemented with 10% fetal bovine serum (FBS, Gibco, US) 
and 1% Penicillin/Streptomycin (Gibco, US), and incubated at 37℃ in a 5% CO2 incubator. Total RNA were 
isolated using TRIzol reagent (Invitrogen, US), then HiScript® Q RT SuperMix for qPCR (Vazyme, China) was 

http://www.ncbi.nlm.nih.gov/geo/
http://string-db.org
http://www.cytoscape.org


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13894  | https://doi.org/10.1038/s41598-023-38568-x

www.nature.com/scientificreports/

used to transcribe the RNA into cDNA. The Quantitative real‐time polymerase chain reaction (qRT-PCR) was 
performed on the CFX Connect Real-Time PCR Detection System (BioRad, US) with an HQ SYBR qPCR Mix 
(Without ROX) (Zomen, China). The mRNA expressions were quantified with the 2−ΔΔCt method, and β-actin 
expression was used as an endogenous reference. The primer sequences of identified ER stress-related DEGs 
were purchased from Sunya, China (Supplementary Table S2).

Immune microenvironment assessment.  For evaluating the amount and proportion of the expression 
of ER stress-related DEGs in immune cells, CIBERSORTx37,38, a suite of machine learning tools that used the 
deconvolution algorithm to evaluate the proportion of various immune cells from the expression profiles of 
tumor tissues, and leukocyte signature matrix (LM22) feature matrices were used to estimate the proportion of 
immune cell in the DLBCL samples in the GSE10846 and GSE11318 datasets using the ESTIMATE package39, 
which provides the algorithm to calculate the tumor purity, stromal score, immune score.

Construction and validation of the nomogram based on the prognostic model.  A nomogram 
integrating the expression of ER stress-related DEGs and clinical characteristics of DLBCL patients, including 
tumor-node-metastasis (TNM) stage, Eastern Cooperative Oncology Group (ECOG) score, lactate dehydroge-
nase (LDH) ratio, and others, was constructed for prediction of prognosis in the GSE10846 as a training datasets. 
Furthermore, the nomogram’s prognosis prediction performance was confirmed in the GSE11318 datasets (vali-
dation dataset) by comparing the fitting degree between the observed and optimized values.

Statistical analysis.  R programming (version 4.1) was used for all statistical analysis. We used the Student’s 
t-test or one-way analysis of variance (ANOVA) to compare normally distributed continuous variables between 
groups and Mann–Whitney test or Kruskal–Wallis test to examine non-normally distributed continuous vari-
ables. Two-sided P values less than 0.05 indicated statistical significance.

Results
Screening of ER stress‑related DEGs.  This study’s flowchart is depicted in Fig. 1. The clinical charac-
teristics and standardized gene data were extracted from the GSE56315 dataset using GEOquery package40, and 
there are significant differences between DLBCL and NCs based on the principal component analysis (PCA), as 
shown in Fig. 2A. A total of 2179 DEGs were obtained through difference analysis using the limma package28, 
among which 1367 genes were upregulated and 812 genes were downregulated (Fig. 2B,C). After determining 
the overlap between ER stress-related genesets and DEGs through a Venn diagram, 26 ER stress-related DEGs 
were found (Fig. 2D).

Functional enrichment analysis and PPI network construction.  In order to find the enriched func-
tions for the 26 ER stress-related DEGs, GO enrichment analysis were processed. The significantly enriched 
biological processes (BP) included response to ER stress, cellular response to stress, and response to stress. And 
the main top enrichment cellular component (CC) was ER (Fig. 3A). The KEGG pathway analysis showed that 
protein processing in ER, fluid shear stress, tumor necrosis factor (TNF) signaling pathway, atherosclerosis, and 
insulin resistance were enriched (Fig. 3B). More details of the top 50 significant items of GO enrichment analy-
sis and KEGG pathway analysis (Ref: 231,102) could be shown in Supplementary Tables S3 and S4. The above 
results suggested that the metabolism and immune system were critical for DLBCL. We carried out a GSEA 
analysis to explore the metabolism and immune-related pathways; there were some pathways, including amino 
sugar and nucleotide sugar metabolism, diseases of metabolism reactome fatty acid metabolism, arachidonic 
acid metabolism, vitamin B12 metabolism were positively enriched in DLBCL patients (Fig. 3C). More details of 
the GSEA enrichment can be seen in Supplementary Table S5. For validation of the relationships among 26 ER 
stress-related DEGs, the STRING tool was used to assess with confidence (value ≥ 0.40), and there were 26 nodes 
and 15 edges with PPI network enrichment (Fig. 4A). The top ER stress-related DEGs based on MCC score were 
identified based on the cytoHubba plugin in Cytoscape software. There are 9 hub genes, including TP53, CCL2, 
CEBPB, NUPR1, TRIB3, CAV1, UBE4B, NPLOC4, and NRIH3 (Fig. 4B), indicating they might play a significant 
role in DLBCL.

Identification of significant prognostic gene.  To identify the significant ER stress-related genes and 
survival data in DLBCL patients, we analyzed the prognostic value of ER stress-related genes using the GEO 
datasets (GSE10846 and GSE11318) and the TCGA-DLBC dataset, which the clinical characteristics are shown 
in Table 1. It was found that NUPR1 and TRIB3 had survival differences in the above 3 datasets (Fig. 5A) and 
were among 26 ER stress-related DEGs. Interestingly, according to the previous PPI results, NUPR1 and TRIB3 
genes might have a direct interaction, and the connection score was 0.439 (Fig. 5B). The KM curve showed 
that there was a significant difference between high and low expression of NUPR1 and TRIB3 (P < 0.01) in the 
GSE10846 and GSE11318 datasets (Fig. 5C,D). In the TCGA-DLBC dataset, we found that NUPR1 and TRIB3 
not only have survival differences in over survival (OS), but also have survival differences in progress free sur-
vival (PFS), disease specific survival (DSS), and disease free interval (DFI), as shown in Fig. 5E,F. These results 
showed that patients with high expression of NUPR1 and low expression of TRIB3 might have a better prognosis.

Validation of the differential expression of NUPR1, TRIB3.  We detected the expression of 
NUPR1 and TRIB3 in the GSE56315 dataset, the decreased expression of NUPR1 and increased expression of 
TRIB3 in DLBCL patients compared with NCs were showed, and the AUC was 0.791 and 0.807, respectively 
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(Fig. 6A,B,D,E). Meanwhile, pan-cancer analysis based on the TIMER2 database41 (http://​timer.​cistr​ome.​org) 
showed that NUPR1 had an inconsistent expression trend in different tumors, the expression of NUPR1 was 
decreased in bladder cancer, colon cancer, lung adenocarcinoma, prostate cancer, and other tumors. On the 
other hand, in breast cancer, renal clear cell carcinoma, and liver cancer, the expression of NUPR1 was increased 
(Fig. 6C). The upregulated TRIB3 might play an oncogenic role in tumors (Fig. 6F).

Next, the correlation of NUPR1 and TRIB3 with the clinical characteristics of the GSE10864 and GSE11318 
datasets was confirmed. The COO of DLBCL often identified three subgroups including activated B-cell-like 

Figure 1.   Workflow of this study.

http://timer.cistrome.org
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(ABC), germinal-center B-cell-like (GCB), and unclassified (UNC). As shown in Fig. 7, The expression of NUPR1 
in the ABC subtype was lower than in the GCB subtype both two GEO datasets (Fig. 7A,C), On the contrary, 
the expression of TRIB3 in the ABC subtype was higher than GCB subtype (Fig. 7E,G). However, the expres-
sion of NUPR1 and TRIB3 in differential stages was not significantly different based on the two GEO datasets 
(Fig. 7B,D,F,H). It showed that downregulated NUPR1 and upregulated TRIB3 might be identified as vital bio-
markers for DLBCL.

The expression of NUPR1 and TRIB3 in cultured cell lines.  We also detected the expression of 
NUPR1 and TRIB3 in different cell lines via qRT-PCR (Fig. 7I,J). The expression in TRIB3 of DLBCL cell lines, 
including ABC subtype cell lines (HBL-1, SUDHL2) and GCB subtype cell lines (SUDHL4), were higher than 
normal B cell lines (GM12878) (P < 0.05), and ABC subtype cell lines were higher than GCB subtype (P < 0.05). 
But the expression of NUPR1 of HBL-1 had no significant difference in comparison with GM12878 (P = 0.085), 

Figure 2.   Identification of ER stress-related DEGs. (A) PCA show the dimensionality reduction distribution of 
DLBCL samples and NCs in the GSE56315 dataset. (B)–(C) Heatmap plot and volcano plot of DEGs in DLBCL 
samples vs. NCs based on the GSE56315 dataset. (D) Venn diagram of ER stress-related genes and DEGs. 
DLBCL Diffuse Large B Cell Lymphoma, DEGs differentially expressed genes, ER endoplasmic reticulum, PCA 
principal component analysis.
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Figure 3.   The functional enrichment analysis of ER stress-related DEGs. (A) GO enrichment analysis of 
ER stress-related DEGs. (B) KEGG pathway analysis of ER stress-related DEGs. (C) The enriched metabolic 
related pathways in DLBCL patients analyzed by GSEA. DEGs differentially expressed genes, ER endoplasmic 
reticulum, GO gene ontology, GSEA gene set enrichment analysis, KEGG kyoto encyclopedia of genes and 
genomes.
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Figure 4.   PPI network plot and hub genes of ER stress-related DEGs. (A) The PPI network of ER stress-related 
DEGs was visualized by Cytoscape software. (B) The hub genes were identified with the MCC score using 
cytoHubba plugin in Cytoscape software. PPI protein–protein interaction, ER endoplasmic reticulum, DEGs 
differentially expressed genes.

Table 1.   Clinical characteristics of GSE10846, GSE11318, and TCGA_DLBC.

Characteristic levels GSE10846 GSE11318 TCGA_DLBC

n 374 163 48

Event, n (%)
ALIVE 221 (59.1%) 67 (41.1%) 43 (89.58%)

DEAD 153 (40.9%) 96 (58.9%) 5 (10.42%)

Gender, n (%)
Female 164 (43.9%) 73 (44.8%) 26 (54.17%)

Male 210 (56.1%) 90 (55.2%) 22 (45.83%)

Age, n (%)
 < 60 168 (44.9%) 64 (39.3%) 26 (54.17%)

 >  = 60 206 (55.1%) 99 (60.7%) 22 (45.83%)

Fil microarray diagnosis, n (%)

ABC DLBCL 155 (41.4%) 70 (42.9%) –

GCB DLBCL 160 (42.8%) 66 (40.5%) –

Unclassified DLBCL 59 (15.8%) 27 (16.6%) –

ECOG performance, n (%)

0 72 (20.5%) 34 (21.1%) –

1 190 (54%) 88 (54.7%) –

2 59 (16.8%) 28 (17.4%) –

3 26 (7.4%) 10 (6.2%) –

4 5 (1.4%) 1 (0.6%) –

Stage, n (%)

I 60 (16.3%) 25 (15.4%) 8 (16.67%)

II 109 (29.6%) 50 (30.9%) 17 (35.42%)

III 85 (23.1%) 32 (19.8%) 5 (10.42%)

IV 114 (31%) 55 (34%) 12 (25%)

Number of extranodal sites, n (%)

0 210 (61%) 134 (82.7%) 13 (27.08%)

1 104 (30.2%) 28 (17.3%) 12 (25%)

2 19 (5.5%) – 6 (12.5%)

3 8 (2.3%) / 4 (8.33%)

4 2 (0.6%) – 1 (2.08%)

5 1 (0.3%) – –

LDH ratio, median (IQR) 1.01 (0.77, 1.68) 1.02 (0.76, 1.68) –
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the expression of NUPR1 in SUDHL2 and SUDHL4 was higher than GM12878 (P < 0.05). Both the expression 
of NUPR1 and TRIB3 in SUDHL2 than in SUDHL4 (P < 0.05).

Relationship between the expression of NUPR1, TRIB3 and immune infiltration.  Based on our 
previous analysis, we speculated that NUPR1 might inhibit the progress of DLBCL and TRIB3 might promote it. 
Subsequently, the relationship between the expression of NUPR1, TRIB3, and immune infiltration was analyzed. 
As shown in Fig. 8, in the GSE10846 and GSE11318 datasets, NUPR1 was positively correlated with the estimate 
score, immune score, and matrix score, simultaneously, the expression of NUPR1 was positively correlated with 
M0 macrophages (Fig. 8A–D). However, TRIB3 was significantly negatively correlated with the estimate score, 
immune score, and matrix score (Fig. 8E–H), and had no significance with all immune cells in both two GEO 
datasets. These results suggested that NUPR1 might inhibit the progress of DLBCL by involving the immune 
response. But TRIB3 had no close relationship with immune cells through correlation with tumor purity.

Construction and validation of prognosis model.  Based on the GSE10846 and GSE11318 datasets, 
a clinical prognosis model was developed using NUPR1 and TRIB3 as characteristic variables and its accuracy 
and generalizability assessed. By combining NUPR1 and TRIB3 with other clinical characteristics of DLBCL 
patients, such as gender, age, diagnosis type, stage, LDH ratio, number of extranodal lymph nodes, and ECOG 

Figure 5.   Prognosis-related genes and survival plot. (A) Venn diagram showed that 2 overlapped co-expressed 
prognosis-related genes were screened based on Log-rank test in the GSE10846, GSE11318, and TCGA_DLBC 
datasets. (B) Protein Interaction of NUPR1 and TRIB3 Genes. (C) The KM curves showed the OS of patients 
in the high-risk and low-risk groups in GSE10846 dataset. (D) The KM curves showed the OS of patients in 
the high-risk and low-risk groups in GSE11318 dataset. (E) The up-regulation NUPR1 might be associated 
with better OS, PFS, DSS and DFI in TCGA_DLBC dataset. (F) The up-regulation TRIB3 might be associated 
with poor OS, PFS, DSS in TCGA_DLBC dataset. DSS disease specific survival; DFI disease free interval; KM 
Kaplan–Meier, OS over survival, PFS progression free survival, TCGA​ the cancer genome atlas.
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score. We found that the above risk factors were statistically different in univariate analysis except for gender. 
Subsequently, multivariate Cox analysis found that age (≥ 60 years old), stage, LDH ratio, and the expression of 
TRIB3 were independent prognostic factors (Fig. 9A). Next, the nomogram for accurate patient prognosis and 
prediction was constructed based on the clinical characteristics of DLBCL patients and the expression of TRIB3 
(Fig. 9B). In order to evaluate the accuracy of the model, the time-dependent ROC curve was drawn using the 
GSE10846 dataset as the training cohort and the GSE11318 dataset as the test cohort. The AUC corresponding 
to 1, 3, and 5 years of both the training cohort and test cohort were all above 0.75 (Fig. 9C–D), indicating the 
nomogram model provided a good predictive accuracy of DLBCL. Furthermore, the calibration curve suggested 
that the consistency of the model is good at 1-, 3-, and 5-year intervals (Fig. 9E). These above results indicated 
that combining the clinical characteristics of DLBCL with the expression of TRIB3 could predict the prognosis 
of patients with DLBCL in 1-, 3-, and 5-year intervals, which was expected to provide a more effective reference 
for clinicians and formulate effective intervention measures.

Discussion
Due to differences in gene expression profiles and genetic alterations, DLBCL is a highly diverse lymphoid neo-
plasm that exhibits a wide range of clinical outcomes and therapeutic responses2,3,9. There has been significant 
development in targeted treatment and immunotherapy for DLBCL in recent years3,5, however, innovative treat-
ment approaches and targets are urgently required. ER stress has emerged as a focal-point and forward position 
field in a variety of human malignancies during the last decade22,23, and is involved in many biological processes, 
such as apoptosis, autophagy42, ferroptosis43, and hypoxia44. But there is a lack of in-depth knowledge about the 
role of ER stress in the clinical progress of DLBCL.

Figure 6.   The identification of NUPR1 and TRIB3 in DLBCL. (A) Comparison of NUPR1 expression level of 
DLBCL and NCs in GSE56315 dataset. (B) The ROC curves of NUPR1 in GSE56315 dataset. (C) Pan-cancer 
analysis of NUPR1 in cancer tissues and normal counterparts from TCGA-DLBC databases. D. Comparison of 
TRIB3 expression level of DLBCL and NCs in GSE56315 dataset. (E) The ROC curves of TRIB3 in GSE56315 
dataset. (F) Pan-cancer analysis of TRIB3 in TCGA databases. DLBCL diffuse large B cell lymphoma; 
ROC receiver operating characteristic; TCGA​ the cancer genome atlas.
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So far as we know, our study is the first research on the relationship between the ER stress-related gene and 
DLBCL. These findings should help researchers in the future learn more about how to predict prognosis and treat 
DLBCL patients individually in the clinic. Based on the outcomes of previous bioinformatic analysis, we have 
found nine genes may play essential roles in DLBCL. As previously described45–47, it had been proven that TP53, 
CCL2, and CEBPB were involved in the carcinogenesis and development of DLBCL. TP53 has been identified 
as one of the most frequently mutated genes and could be a valuable prognostic biomarker in both ABC and 
GCB DLBCL patients45,46. It was found that CEBPB and BCL2A1 can induce cell transformation and increase 
the survival of anaplastic large cell lymphomas cells47. However, no research has been reported about the role of 
NUPR1, TRIB3, CAV1, UBE4B, NPLOC4, and NRIH3 in DLBCL. After identifying the prognostic value of ER 
stress-related genes using three datasets, NUPR1 and TRIB3 may play important roles in DLBCL carcinogenesis 
and development. NUPR1 is located in the nucleus of various cells, including cancer cells48,49. Borrello et al. dem-
onstrated the essential role of NUPR1 which participated in the regulation of UPR and more broadly in the 
integrated stress response by interacting with eIF2α, and protected the liver from metabolic distress by controlling 
lipid homeostasis50. Howerer, Liu et al. found that NUPR1 was upregulated in the bone marrow of patients with 
multiple myeloma (MM)51, downregulation of NUPR1 might significantly inhibit cell proliferation and promote 
autophagy-mediated apoptosis in MM52. NUPR1 could also active autophagy and bind to the promoter regions 
of some autophagy-related genes, such as BECN1, GREB1, RAB31, PGR, CYP1B1, thereby regulating breast 
cancer metastasis and transcription49,53. Histone methyltransferase Dot1L might inhibit pancreatic cancer cell 
apoptosis by targeting NUPR1, and overexpressed NUPR1 also inhibited pancreatic cancer cell apoptosis54. In 
summary, NUPR1 can play an important role in cell stress and stress‑related apoptosis48,55. We found the level 

Figure 7.   Differential expression of NUPR1 and TRIB3. (A)–(B). The expression of NUPR1 among different 
subtypes and stages in GSE10846 dataset; (C)–(D). The expression of NUPR1 among different subtypes and 
stages in GSE11318 dataset; (E)–(F). The expression of TRIB3 among different subtypes and stages in GSE10846 
dataset; (G)–(H). The expression of TRIB3 among different subtypes and stages in GSE11318 dataset; The qRT-
PCR validation, (I) The expression of NUPR1 of GM12878, HBL-1, SUDHL2 and SUDHL4; (J) The expression 
of TRIB3 of GM12878, HBL-1, SUDHL2 and SUDHL4. * P < 0.05; ** P < 0.01; *** P < 0.001. qRT-PCR: 
quantitative real‐time polymerase chain reaction.
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of NUPR1 in DLBCL patients to be downregulated, and that in the GCB subtype was significantly higher than 
the ABC subtype in our study. We also found NUPR1 could involve in the immune response.

Compared with noncancerous tissues, TRIB3 expression was markedly increased in DLBCL patients, par-
ticularly in the ABC subtype and later stages, suggesting that TRIB3 may play a carcinogenic role in DLBCL56–59. 
As a member of the mammalian pseudokinase tribbles family, TRIB3 can interfere with a lot of proteins, such 
as kinase-dependent proteins, transcription factors, and ubiquitin ligases60,61. Evidences show that TRIB3 can 
regulate the downstream biological process of ER stress, alleviate cell stress, and promote cell survival58,62,63. 
Ohoka et al. demonstrated that certain ER stress inducers, including low glucose and hypoxia, may increase 
TRIB3 expression62–64. Twist Family BHLH Transcription Factor 1 (TWIST1) is stabilized in part by TRIB3 
binding to its WR domain and blocking its ubiquitination, depletion of TRIB3 can boost TWIST1 degradation 
and increase sensitivity to all-trans retinoic acid (ATRA), consistent with its role in regulating carcinogenesis 
and progression63. TRIB3 overexpression in human gastric cancer was related to tumor angiogenesis and a 
poor prognosis65. Through analysis of lymphoma specimens, TRIB3 expression was positively correlated with 
MYC expression66, MYC is a transcription factor, and its alterations have been considered to be associated with 

Figure 8.   The correlation of prognostic genes with immune infiltration. (A) The relationship between the 
expression of NUPR1 with ESTIMATE score, immune score and matrix score in the GSE10846 dataset. (B) 
The relationship between the expression of NUPR1 and the different subsets of immune cell infiltrates in the 
GSE10846 dataset. (C) The relationship between the expression of TRIB3 with ESTIMATE score, immune 
score and matrix score in the GSE10846 dataset. (D) The relationship between the expression of TRIB3 and the 
different subsets of immune cell infiltrates in the GSE10846 dataset. (E) The relationship between the expression 
of NUPR1 with ESTIMATE score, immune score and matrix score in the GSE11318 dataset. (F) The relationship 
between the expression of NUPR1 and the different subsets of immune cell infiltrates in the GSE11318 dataset. 
(G) The relationship between the expression of TRIB3 with ESTIMATE score, immune score and matrix score 
in the GSE11318 dataset. (H) The relationship between the expression of TRIB3 and the different subsets of 
immune cell infiltrates in the GSE11318 dataset. |rho|> 0.4 and P < 0.05 were considered to be significantly 
correlated.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13894  | https://doi.org/10.1038/s41598-023-38568-x

www.nature.com/scientificreports/

aggressive clinical behavior in DLBCL67. Mechanistically, E3 ubiquitin ligase UBE3B-mediated MYC ubiqui-
tination and degradation can be inhibited by TRIB3 bind to MYC66. These results are in agreement with our 
studies and imply that TRIB3 may be a critical regulatory factor in driving cancer cell proliferation, migration, 
and invasion57,58,68. Furthermore, our bioinformatic analysis indicated that TRIB3 could be a significant survival 
predictor and a potential therapeutic target for DLBCL.

Our bioinformatic analysis suggested a direct connection between NUPR1 and TRIB3. Methamphetamine 
(METH) exposed to rat and PC12 cell lines could increase the expression of NUPR1 accompanied by CHOP 
and TRIB3 upregulation and promote apoptosis and autophagy69, suggesting the NUPR1/CHOP/TRIB3 signal 
pathway plays a crucial function in the regulation of apoptosis and autophagy via ER stress69,70. There were 
shown the expression of NUPR1 and TRIB3 concurrently. Unfortunately, our study suggested that both the lower 
expression of NUPR1 and the higher expression of TRIB3 meant a worse clinical prognosis for DLBCL patients. 
Furthermore, the qRT-PCR test showed the expression of TRIB3 in HBL-1, SUDHL2, and SUDHL4 was higher 
than GM12878, and these results were consistent with our bioinformatic analysis, However, the expression of 
NUPR1 was not compatible with these analysis.

Figure 9.   Construction and validation of prognosis model. (A) Forest plot summary of the univariate and 
multivariable analyses of NUPR1, TRIB3 and other clinical characteristics. (B) Nomogram for predicting the 
probability of patient mortality at 1-, 3- and 5-year of OS. (C) The ROC for 1-, 2- and 3-year survival rate in the 
GSE10846 dataset, and the AUC was 0.785, 0.786 and 0.792, respectively. (D) The ROC for 1-, 2- and 3-year 
survival rate in the GSE11318 dataset, and the AUC was 0.754, 0.781 and 0.808, respectively. (E) 1-, 3-, and 
5-year calibration curves of clinical prediction models for DLBCL patients, the model is validated by resampling 
with the bootstrap method, and the number of times was 1000. AUC​ area under curve, DLBCL diffuse large B 
cell lymphoma, OS overall survival.
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The clinical prognostic model was built based on the GSE10846 and GSE11318 datasets, using NUPR1 and 
TRIB3 as feature variables, and evaluated for accuracy and generalizability. There are some authors71,72 who have 
built the prognosis model that is similar to ours. Lv et al. showed that carcinoembryonic antigen, N stage, and 
surgical method were independent prognostic factors for overall survival in patients with obstructive colorectal 
cancer using a nomogram model71. For researching the role of ACK1-associated immunomodulators in non-
small cell lung cancer (NSCLC), Zhu J et al. Established a multiple-gene risk prediction model, and the results 
showed the risk scores were an independent prognosis predictor in the TCGA lung cohorts72. It was suggested 
that ACK1 may be a potential immunotherapeutic target72. Numerous types of tumors may share similar genetic 
or molecular features, there are a lot of studies48,55,57,60,61 showed that NUPR1 and TRIB3 are involved in cancer 
biology, and we think this prognosis model that includes these genes may be applied to more types of tumors. 
However, due to the specificity and complexity of different types of cancer, further studies should verify and 
adjust the accuracy and reliability of these identical markers and explore the relationship between their biological 
functions and clinical applications in numerous types of tumors.

Some limitations existed in this study. First, the prognostic model was built and validated using publicly 
available data; hence, more prospective studies are needed to confirm its accuracy and utility. Second, by nar-
rowing our focus to only two ER stress-related genes, NUPR1 and TRIB3, we may have missed other noteworthy 
prognostic genes for DLBCL. Third, only four cell lines were used to verify the expression of NUPR1 and TRIB3, 
and we will carry out more cell lines for research if the experimental conditions are confirmed.

Conclusion
In summary, our study clarified that downregulation the expression of NUPR1 and upregulation of TRIB3 in 
DLBCL patients. Further study has shown NUPR1 may inhibit the progress of DLBCL by involving the immune 
response, and TRIB3 should be a carcinogenic gene in DLBCL through regulating ER stress. Moreover, we found 
that combining the clinical characteristics of DLBCL by TRIB3 expression could better predict the prognosis of 
DLBCL patients, suggesting TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.

Data availability
All of datasets used in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found in the article/Supplementary Material.
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