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Sea cucumbers bioturbation 
potential outcomes on marine 
benthic trophic status 
under different temperature 
regimes
Claudia Ennas 1,4, Viviana Pasquini 1,4, Hiba Abyaba 1,2, Pierantonio Addis 1, Gianluca Sarà 3 & 
Antonio Pusceddu 1*

Eutrophication affects coastal oceans worldwide, modifies primary production and sediment 
biogeochemistry and, overall, is progressively compromising marine ecosystems’ integrity. Because 
of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating 
benthic eutrophication. To provide insights on this, we investigated differences in organic matter 
quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces 
of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised 
between natural conditions (14–26 °C) and an extreme of 29 °C (representing the highest anomaly 
under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between 
sediments characterized by different trophic statuses and the holothuroid’s feces, though with some 
exceptions. Feces resulted almost always organically enriched when compared with the ambient 
sediments, though with variable differences in composition in sediments characterized by different 
initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at 
all experimental temperatures including the (anomalous) highest one, irrespectively of the available 
food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a 
warmer Mediterranean Sea.

Eutrophication is a typology of exacerbated anthropogenic disturbance which occurs locally in worldwide marine 
coastal ecosystems where the nutrients excess derives from a variety of anthropogenic  activities1–4. The main 
sources of eutrophication include coastal urbanization, agrozootechnical activities, aquaculture, industrialization, 
tourism development, and lack or malfunction of wastewaters treatment  systems5–8. Nowadays, eutrophication 
represents one of the greatest stressors for coastal marine ecosystems worldwide, contributing to increased fre-
quency, duration, and extent of algal blooms, and also affecting sediment biogeochemistry and benthic micro-, 
meio-, and macrofauna  communities5,9–11, ultimately worsen because of climate  change12.

In the last decades, several European seas have become progressively more prone to coastal  eutrophication13,14, 
and this applies particularly to the Mediterreanean  Sea15, a semi-enclosed miniature  ocean16, where the effects of 
eutrophication could therefore be exacerbated. Along with management plans put in place to limit the nutrient 
inputs into the  seas13,14, bioremediation and biomanipulation actions could represent useful tools to reduce or 
counteract the effects of eutrophication on marine  sediments17,18.

In this context, deposit-feeding sea cucumbers, important components of the marine benthic biodiversity, are 
able, thanks to their feeding behavior, to intercept and transform surplus organic matter derived from human 
activities such as  aquaculture19,20. They are among the most effective seafloor bioturbators, and their diges-
tive system can be considered a real bioreactor where nutrients from ingested organic matter can be quickly 
 assimilated19,21–24. Also, these animals can grow faster in mariculture-impacted sites where protein-enriched 
feed is  abundant25,26. They, indeed, have recently been tested and used as bioremediators in polycultures and 
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Integrated Multi-Trophic Aquaculture (IMTA) systems, with promising  results20,27–31. Despite warm tempera-
tures may negatively affect their metabolic machinery and other functional traits such as, for example, those 
traits involved in the immune  response32–34, sea cucumbers are ectothermic and osmo-conformers35. Besides 
this, some holothuroids (i.e., Holothuria scabra) have shown tolerance and adaptability to thermal stress after 
an initial disturbance in energy balance due to the increase in  temperature36,37, as well as to other environmental 
stressors such as chronic salinity  fluctuations38,39.

The Mediterranean sea cucumber Holothuria tubulosa (Gmelin, 1788) in particular, is among the most active 
deposit-feeders able to modify sedimentary organic  features40–46. This species can tolerate a wide array of physico-
chemical  stressors42, and juveniles easily survive under controlled thermal conditions, up to at least 30°C47. Their 
elevated functional plasticity makes them ideal candidates for benthic  remediation19 under increasing organic 
enrichment due to the eutrophication or direct influence of human activities under different temperature regimes.

Here, with the aim to improve our understanding of the effectiveness of using sea cucumbers as bioreactors 
to mitigate benthic eutrophication under different temperature regimes, we designed an experiment to test the 
null hypothesis by which, under different trophic status conditions, sedimentary organic matter content and 
biochemical composition (expressed as protein, carbohydrate and lipid concentrations), here used as proxies 
of benthic trophic  status48, should not vary between ambient sediments and feces of H. tubulosa specimens 
acclimated under different temperatures.

Results
Quantity and biochemical composition of sediment and holothuroid feces at different tem-
peratures. Protein, carbohydrate, lipid, and biopolymeric C (BPC) contents of sediment and feces are pro-
vided in Supplementary Table 1. Sedimentary contents of all classes of organic compounds were characterized 
by a significant effect of the Matrix × Site × Temperature interaction (Table 1).

In meso-eutrophic conditions feces were from 2 to 13 times significantly richer in BPC than the relative 
ambient sediment at all temperatures, except at 14 and 29 °C (Table 2; Fig. 1A). Protein and lipid contents were 
significantly higher in feces than in the sediment only at 20 °C (ca. 15 times for proteins, 58 times for lipids) and 
26 °C (3 times for proteins, 8 times for lipids) (Table 2; Supplementary Fig. 1A–C). Feces carbohydrate content 
was significantly higher than that in the sediment at all temperatures (from 3 to 26 times), except at 14 and 29 °C 
(Table 2, Supplementary Fig. 1B). Under meso-eutrophic conditions, the biochemical composition of organic 
matter differed significantly between feces and meso-eutrophic sediments at all temperatures, except at 14 and 
29 °C (Fig. 1B). Such differences varied across temperatures. More in details, at 17, 23 and 26 °C feces were char-
acterized by protein (by 20–77%) and carbohydrate (by 36–66%) contributions to BPC lower and higher, respec-
tively, than in the sediment. At 20 °C feces, when compared to the corresponding sediment, were characterized by 
higher protein (64 and 71% in sediment and feces, respectively), higher lipid (6 and 20%) and lower carbohydrate 
(30 and 9%) contributions to BPC (Fig. 1B). At the lowest temperatures (14 and 17 °C) feces and sediments were 
characterized by relatively similar biochemical composition, whereas the largest differences occurred at 20 °C. 
At 23–29 °C differences persisted but appeared relatively less marked than those at 20 °C (Fig. 1C).

In oligo-mesotrophic conditions, feces were from 2 to 5 times significantly richer in BPC than the relative 
ambient sediments at all temperatures (Fig. 1D). Feces protein content was from 2 to 4 times significantly higher 
than that in the sediment at all temperatures, except at 17 and 23 °C (Table 2; Supplementary Fig. 1D). Feces 
carbohydrate content was 2–3 times significantly higher than that in the sediment at all temperatures, except 
23 and 29 °C (Table 2; Supplementary Fig. 1E). Feces lipid content was from 4 to 15 times significantly higher 
than that in the sediment at all temperatures, except at 17 °C (Table 2; Supplementary Fig. 1F). Under oligo-
mesotrophic conditions, the organic matter biochemical composition differed significantly between feces and 
the corresponding sediment at all temperatures, except at 17 °C (Table 2). Such differences were due to lipid 
contributions to BPC in feces generally higher than those in the corresponding sediment at all temperatures, 
but at 29 °C, accompanied by lower carbohydrate contributions to BPC at 14 and 20 °C (Fig. 1E). Differences 
in the organic matter biochemical composition between feces and the corresponding sediment persisted at all 
temperatures, with differences at the lowest temperatures (14 and 17 °C) less marked than those at the higher 
ones (20–29 °C) (Fig. 1F).

Magnitude of feces organic enrichment. Under meso-eutrophic conditions, BPC enrichment of holo-
thuroid feces showed a quasi-unimodal distribution with a snap at 20  °C, whereas under oligo-mesotrophic 
conditions below 20 °C it was ca. 1.7 times higher than that at lower temperatures (14–17 °C) (Fig. 2A). BPC 
enrichment of feces in oligo-mesotrophic conditions was higher than that in meso-eutrophic conditions at 14 
and 29 °C, lower at 20 °C, and similar at all other temperatures (Fig. 2A).

Under meso-eutrophic conditions protein, lipid and carbohydrate enrichment showed quasi-unimodal dis-
tributions across treatments, with the highest values at 20 °C for protein and lipid, and at 23 °C for carbohydrate 
(Fig. 2B–D). Protein and lipid enrichment of feces in oligo-mesotrophic conditions was higher than that in 
meso-eutrophic ones at 14, 23, and 29 °C, while the opposite was observed at 20 °C. Carbohydrate enrichment 
in oligo-mesotrophic conditions was generally lower than or equal to that in meso-eutrophic conditions at all 
temperatures. Under oligo-mesotrophic conditions protein enrichment of feces did not vary among treatments, 
the lipid one was lowest at 17 and 29 °C, and the carbohydrate one slightly increased with temperature, resulting 
at 29 °C ca. 3 times higher than that at 14 °C (Fig. 2B–D).
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Discussion
Eutrophication is among the most recurrent phenomena in coastal oceans  worldwide1–3. Eutrophication, mostly 
caused by increased inorganic nutrient inputs in the seawater generated by urban, inland agriculture and indus-
trial wastes, can also determine the accumulation, over sustainable thresholds, of organic matter produced by 
activities at  sea48, like  mariculture5,49. Integrated multi-trophic aquaculture (IMTA), by potentially transforming 
mariculture wastes (e.g., uneaten food and fish feces) into food sources for other reared  species27,50–53, could thus 
also help to mitigate the impacts of marine aquaculture on the benthic trophic status. In this regard, holothuroids 

Table 1.  Results of the PERMANOVA tests carried out to investigate differences in the quantity and 
biochemical composition of organic matter between the two matrices (M; sediments vs. feces) subjected to 
different temperatures (T; 14, 17, 20, 23, 26, 29 °C) in the two sites (S; meso-eutrophic vs. oligo-mesotrophic). 
df degrees of freedom, MS mean square, Pseudo-F F statistic, P (MC) probability level after Monte Carlo 
simulations (**p < 0.01; *p < 0.05; ns not significant), % EV percentage of explained variance.

Variable Source df MS Pseudo-F P(MC) % EV

Protein

Matrix (M) 1 6.814 39.389 ** 6.2

Site (S) 1 15.809 91.381 ** 14.5

Tempera-
ture (T) 5 2.606 15.064 ** 6.8

M × S 1 5.399 31.208 ** 9.7

S × T 5 2.651 15.324 ** 13.8

M × T 5 2.740 15.840 ** 14.3

M × S × T 5 2.756 15.930 ** 28.8

Residual 48 0.173 5.8

Carbohydrate

Matrix (M) 1 13.526 80.224 ** 18.1

Site (S) 1 24.514 145.400 ** 33.0

Tempera-
ture (T) 5 0.373 2.214 ns 0.8

M × S 1 9.660 57.294 ** 25.8

S × T 5 0.259 1.536 ns 0.7

M × T 5 0.843 4.997 ** 5.5

M × S × T 5 0.647 3.840 ** 7.8

Residual 48 0.169 8.2

Lipid

Matrix (M) 1 7.448 33.924 ** 6.6

Site (S) 1 10.878 49.547 ** 9.7

Tempera-
ture (T) 5 2.726 12.415 ** 6.8

M × S 1 4.968 22.630 ** 8.6

S × T 5 2.697 12.285 ** 13.5

M × T 5 3.210 14.621 ** 16.3

M × S × T 5 3.079 14.026 ** 31.2

Residual 48 0.220 7.2

Biopolymeric C

Matrix (M) 1 10.641 64.988 ** 10.1

Site S) 1 21.458 131.040 ** 20.6

Tempera-
ture (T) 5 1.882 11.493 ** 5.0

M × S 1 7.961 48.619 ** 15.1

S × T 5 1.857 11.342 ** 9.8

M × T 5 2.129 13.000 ** 11.4

M × S × T 5 2.073 12.658 ** 22.2

Residual 48 0.164 5.7

Biochemical composition

Matrix (M) 1 27.788 49.520 ** 9.4

Site (S) 1 51.201 91.244 ** 17.4

Tempera-
ture (T) 5 5.705 10.167 ** 5.3

M × S 1 20.027 35.690 ** 13.4

S × T 5 5.607 9.993 ** 10.4

M × T 5 6.793 12.105 ** 12.8

M × S × T 5 6.483 11.552 ** 24.4

Residual 48 0.561 6.9
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feeding on fish farm waste in integrated aquaculture, are potentially able to modify quantity and composition of 
sedimentary organic  matter31. Therfore, they could represent a reliable tool to modify benthic trophic  status19.

Temperature can affect the nutritional physiology of marine  organisms54–59, including the holothuroid H. 
tubulosa, one of the most common sea cucumbers of the shallow Mediterranean  Sea46,60. Based on this assump-
tion, we investigated the potential capacity of H. tubulosa to influence sedimentary organic matter pools under 
different temperatures.

At all temperatures and in both trophic conditions (in terms of biopolymeric C loads), the feces produced by 
the acclimated H. tubulosa specimens were characterized by organic matter contents significantly higher than 
those of the corresponding sediments. Such enrichment is a well-known feature of this and other holothuroids. 
For example, Amon et al.41 and Mercier et al.61 reported that holothuroids, under natural temperature regimes, 
produce C- and N-enriched feces. Such organic enrichment of feces is, most likely, the result of organic matter 
concentration in the initial digestive tract (i.e., the esophagus)19 and of the selection of food particles from the 
original sediment (e.g., by chemo-selection46,62–64). Organic enrichment of holothuroids feces can also be due to 
the compression and packing of feces within an organic mucus before  excretion61,65. Moreover, during the feces 
transit in the intestine, the ingested sediment is mixed with the digestive fluids and the bacterial flora, which 
further enriches feces with additional organic C  pools19,40,66–69.

The magnitude of biopolymeric C enrichment of holothuroids’ feces varies between trophic conditions and 
across temperatures. Nevertheless, the general organic enrichment of holothuroids’ feces, irrespectively of trophic 
conditions and temperature, lead us to conclude, unexpectedly, that this species could act as a sort of flywheel 
of organic matter accumulation and, thus, of benthic eutrophication. Nonetheless, the overall trophic status of 
incoherent sediments is determined not only by the whole organic loads but also by their biochemical compo-
sition (nutritional quality)48. In this regard, previous studies reported that deep-sea holothuroids, preferably 

Table 2.  Results of the pairwise tests carried out to assess differences in contents of protein, carbohydrate, 
lipid, biopolymeric C, and biochemical composition between matrixes (sediments vs. feces) in meso-
eutrophic and oligo-mesotrophic conditions, at six temperatures (14, 17, 20, 23, 26, 29 °C). t = statistic t; 
p(MC) = probability level after Monte Carlo simulation; *p < 0.05; **p < 0.01; ***p < 0.001; ns not significant.

Variable Temperature °C

t P(MC) t P(MC)

Meso-Eutrophic Oligotrophic

Protein

14 1.862 ns 4.099 *

17 1.135 ns 0.764 ns

20 4.614 * 2.741 *

23 1.217 ns 2.603 ns

26 4.195 * 11.389 ***

29 1.401 ns 6.745 **

Carbohydrate

14 2.409 ns 4.28 *

17 3.632 * 7.28 **

20 19.215 *** 2.828 *

23 7.308 ** 2.773 ns

26 2.975 * 2.874 *

29 2.371 ns 2.705 ns

Lipid

14 0.668 ns 4.795 *

17 2.48 ns 1.194 ns

20 4.205 * 4.857 **

23 2.744 ns 4.778 **

26 3.158 * 4.705 *

29 0.431 ns 2.665 *

Biopolymeric C

14 2.243 ns 6.41 **

17 3.086 * 3.057 *

20 4.893 ** 24.477 **

23 4.306 * 3.333 *

26 3.766 * 5.495 **

29 1.908 ns 3.929 *

Biochemical composition

14 2.069 ns 4.641 **

17 2.746 * 1.636 ns

20 4.446 * 3.416 **

23 6.538 ** 3.006 *

26 3.12 * 3.63 **

29 2.243 ns 2.946 *



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11558  | https://doi.org/10.1038/s41598-023-38543-6

www.nature.com/scientificreports/

ingesting large quantities of labile organic material, can influence the overall trophic conditions of deep-sea 
 sediments22,70. Based on the richer protein and lipid contents of holothuroids feces, since proteins are more rap-
idly digested than carbohydrates and lipids are energy-rich  compounds71, our results suggest that H. tubulosa can 
also enhance sedimentary organic matter nutritional quality. In this sense, holothuroids feces would represent 
a “fresh” source of organic matter available for benthic consumers and, as such, could foster and accelerate the 
energy transfer to higher trophic levels: this would partially help to mitigate organic C accumulation due to the 
sole release of feces. Overall, these results let us conclude that the eventual use of holothuroids to condition the 
benthic trophic status, whatever the temperature regime, should be accurately calibrated according to the initial 
trophic status of the sediments, with attention not only to the bulk of organic C but also to its nutritional quality 
for deposit-feeders. Our results pinpoint also that the role of holothuroids in influencing the organic loads of 
marine coastal sediments is not profoundly modified under extremely high temperatures (26–29 °C), like those 
possibly occurring under future marine heat waves. This result suggests that their potential capacity as bioreac-
tors could be similar also under warmer temperature regimes.

Nevertheless, we show here also that the organic enrichment of feces under meso-eutrophic conditions 
resulted larger than that under oligo-mesotrophic conditions only at 20 °C. At all other temperatures, especially at 
the warmest ones (26–29 °C), the enrichment resulted equal to or lower than that under oligo-mesotrophic condi-
tions. Such discrepancy is not easily explicable, but could be related with the seasonal variations in holothuroids’ 
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Figure 1.  Changes in biopolymeric C (BPC) contents (A,B) and protein, carbohydrate, and lipid percentage 
contributions to BPC (C,D) in sediment (Sed) and feces (Fec) at the six acclimation temperatures (14, 17, 20, 23, 
26, 29 °C) in meso-eutrophic (left panel) and oligo-mesotrophic (right panel) conditions. The error bars indicate 
the standard errors (n = 3). Reported are also the biplots obtained after CAP analysis illustrating differences in 
biochemical composition of organic matter in sediments and feces separately for meso-eutrophic (E) and oligo-
mesotrophic (F) conditions.
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metabolism. The range of temperatures used in our experiment with acclimated specimens also includes tempera-
tures that, with exception of 29 °C, H. tubulosa normally faces in the Mediterranean Sea during seasonal transi-
tions. Although H. tubulosa is a continuous deposit-feeder46,72, an increase in temperature dictated by seasonality 
can induce a variation of its feeding activity, metabolism and reproduction, and, consequently, of the organic 
content and biochemical composition of its  feces19,36,40,41,73. While during the transition from winter to spring, 
concurrently to the development of the gonads, holothuroids increase their metabolism, later in summer, when 
spawning  occurs74, and in fall-winter seasons their metabolism  decreases73,75,76. During spring (at temperatures 
close to 20 °C in the shallow Mediterranean  Sea77), H. tubulosa shows a typical gonads’ growing phase, during 
which it starts eating more food to store energy for the subsequent reproduction  period74. At 20 °C, holothuroids’ 
feces were more organically enriched when feeding on meso-eutrophic sediments (richer in organic content) 
than on poorer oligo-mesoeutrophic sediments and that most of the organic excess under the meso-eutrophic 
conditions was due to increased contributions of relatively more labile molecules (i.e., protein and  lipids71). This 
result would thus suggest that the spring phase of gonads’ growth, characterized by the release of more organi-
cally enriched feces, could vary with bioavailable sedimentary C loads. In meso-eutrophic sediments, the whole 
amount of organic C available for holothuroids could exceed the amount of storable substrates, whereas in oligo-
mesotrophic conditions, the lower amount of available organic loads could be more conservatively assimilated 
by the animals, thus leading holothuroids to produce less organically enriched feces. This hypothesis, however, 
must be considered with caution and, further, tested experimentally. Whatever the physiological trigger of the 
holothuroids’ metabolism, our results suggest that their use in the conditioning of the benthic trophic status 
should be accurately calibrated also to the season of the year and, thus, to their life stage.
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carbohydrate (C) and lipid (D) enrichment of holothuroid feces in meso-eutrophic and oligo-mesotrophic 
conditions. The error bars indicate the standard error (n = 3).
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The results of our study are not fully explicative of the mechanistic processes behind the observed changes 
in the composition of holothuroid feces under different temperatures. Thus, further experiments measuring 
also the actual rates of holothuroid organic matter utilization are needed to sustain and deepen our contentions. 
Nevertheless, our results allow us concluding that holothuroids, like H. tubulosa, are confirmed as a potential 
tool to naturally manipulate quantity and biochemical composition of marine sediments and, prospectically, to 
mitigate marine benthic eutrophication, even under extreme sea temperature regimes.

Materials and methods
Sediment sampling. Sediments were collected in two sites (5–10 m depth; Mediterranean Sea): one located 
near a mariculture plant in the Gulf of Oristano (Western Sardinia, Mediterranean Sea), characterized by muddy 
sediments, and one, located in the Gulf of Teulada (Southern Sardinia, Mediterranean Sea), characterized by 
sandy-mud sediments and nearby meadows of the endemic seagrass Posidonia oceanica (Delile, 1813). These 
two sites were previously ranked as meso-eutrophic (Oristano) and oligo-mesotrophic (Teulada)19, based on 
mean biopolymeric carbon C  contents10,48. The upper layer (2 cm) of surface sediments from both sites were 
scraped by scuba divers in December 2020 with 50-mL Falcon-type tubes. Sediments collected from each site 
were mixed, homogenized, and stored into sterile 250-mL jars at − 20 °C until mesocosms preparation.

Sea cucumbers’ sampling and holding tanks. Specimens of H. tubulosa (mean wet weight 
108.8 ± 35.3 g) were collected in the same sites from which sediments were sampled. All holothuroid specimens 
were kept, under in situ temperature (14 °C) and running seawater, in two 350-L tanks (one per sediment type, 
each with 1 cm-thick layer of the original sediment) till the initiation of the acclimation phase (see below). The 
trials were carried out at the experimental aquaculture facility of the University of Cagliari (SW Sardinia, Italy).

Experimental set‑up. Thermally isolated 350-L tanks were filled with seawater and equipped with heaters, 
thermostats, and thermometers to control and maintain temperature at the desired values. Each of these tanks 
contained smaller 150-L tanks in which sea cucumbers were acclimated (see below for details) and then starved 
prior to the feeding and feces production experiments. The large thermally stable 350-L tanks were also used to 
host the small 6-L tanks used during the feeding and feces collection phases.

Sea cucumbers, before the feeding and feces production phases, were gradually (0.5 °C per day till the chosen 
temperature) acclimated to 14, 17, 20, 23, 26, 29 °C, with 14 °C representing the minimum temperature faced 
by H. tubulosa specimens in  winter73 as well as the minimum average sea surface winter temperature in the 
Mediterranean Sea between 2003 and  201977,78. The temperature of 29 °C was chosen to represent the potentially 
exacerbated warmest condition, even above that observed in the Mediterranean Sea during several marine heat 
 waves79–81.

For both sediment types (n = 2; meso-eutrophic vs. oligo-mesotrophic), 6-L tanks (n = 3) with one sea cucum-
ber each, were prepared per each temperature. During acclimation, sediment and sea cucumbers were maintained 
at salinity and dissolved oxygen constant levels (36.5 and above 6 mg/L, respectively). During acclimation, ½ of 
the tank volume was replaced every 3 days, using seawater with a temperature equal to that reached at the day 
of water exchange. Once all established temperatures were achieved, 3 sea cucumbers per each experimental 
temperature and sediment type were translocated in thermally preconditioned 150-L tanks and starved without 
sediments for 72 h (time required to completely empty the sea cucumbers  intestine82). During starvation, sea 
cucumbers were placed on a 1-cm mesh net to let feces sinking on the tank bottom and, thus, avoid coprophagia. 
During the feeding phase, replicate (n = 3) 6-L mesocosms per each experimental temperature and sediment 
typology were filled with a 1-cm thick layer of original sediment and thermally preconditioned sea water (1:20 
v/v). One sea cucumber was then placed in each 6-L tank (gently aerated to avoid water stratification and ensure 
adequate oxygenation) and left to feed on sediment for 12 h. At the end of the feeding phase, sediments were 
collected and immediately stored at − 20 °C till the analyses. After the feeding phase, all sea cucumbers were 
translocated in separate thermally stable, empty (i.e., without sediment) 6-L tanks and feces were collected every 
6–8 h for the subsequent 72 h. Feces produced by each specimen were stored in 10-mL PPE tubes at − 20 °C, 
until analysis.

During the experiment, no specimen died, and, after the experiment, all individuals were relocated at the 
original sampling site, so to be compliant with the ARRIVE  guidelines83. The experiment, being carried out with 
not-cephalopode invertebrate animals, was not subjected to the rules of the EU Directive 2010/63/EU.

Quantity and biochemical composition of organic matter in sediments and feces. Protein, 
carbohydrate and lipid contents of sediments and holothuroid feces were determined spectrophotometrically 
according to the protocols detailed in  Danovaro84. More in details, protein contents were determined according 
to Lowry et al.85, as modified by  Hartree86 and  Rice87, using the Folin‐Ciocalteau reagent in a basic environment 
and expressed as bovine serum albumin equivalents. The  procedure88, based on the phenol and concentrated 
sulfuric acid reaction with saccharides, was used to determine carbohydrates, then expressed as D (+) Glucose 
equivalents. Lipids, after extraction in chloroform: methanol (1:1, vol:vol89, and evaporation in a dry hot bath at 
100 °C for 20 min, were determined after the sulfuric acid carbonization  procedure90 and expressed as tripalmi-
tin equivalents. For each biochemical assay, blanks were obtained using pre‐calcinated (450 °C for 4 h) sediments 
or feces. All the analyses were performed in triplicate, with about 1 g of sediment or feces per replicate. Protein, 
carbohydrate, and lipid concentrations were converted into C equivalents using the conversion factors 0.49, 0.40, 
and 0.75 mgC mg -1, respectively, obtained from the C contents of the respective standard molecules (albumin, 
glucose and tripalmitin, respectively), and their sum was reported as biopolymeric C (BPC)91.
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Effects magnitude. To compare the magnitude of the organic matter enrichment of holothuroids feces at 
different temperatures, in both meso-eutrophic and oligo-mesotrophic conditions, forest plot representations 
were drawn based on the ln–response ratio metric calculated as follows:

where,  Fi and  Si are organic matter contents of feces and sediments, respectively, per each specimen at the dif-
ferent experimental temperature (i.e., 14, 17, 20, 23, 26, 29 °C).

Statistical analyses. Non-parametric permutational analyses of variance  (PERMANOVA92,93) were per-
formed to test for differences in organic matter quantity and biochemical composition (in terms of protein, 
carbohydrate, and lipid contents) between sediment and feces across sites and temperatures, followed by post-
hoc tests in the case of significant effects (p < 0.05). The design included three fixed orthogonal factors: Site (S; 
meso-eutrophic vs. oligo-mesotrophic), Matrix (M; sediments vs. feces) and Temperature (T; 14, 17, 20, 23, 26, 
29 °C), with n = 3 for the combination of factors. PERMANOVA tests were conducted on Euclidean distance-
based resemblance matrices obtained from previously normalized data, using 999 random permutations of the 
appropriate units and the p-values were obtained after Monte Carlo simulation. PERMANOVA on one response 
variable using Euclidean distance yields the classical univariate F statistic and can be used, as in this study, to do 
univariate ANOVA where p values are obtained by  permutation94, thus avoiding the assumption of  normality95. 
Multivariate differences in organic matter biochemical composition (in terms of protein, carbohydrate, lipid) 
between sediment and feces under different experimental assets (separately for the two trophic status condi-
tions) were visualized with biplots obtained after a canonical analysis of the principal coordinates (CAP)94. CAP 
allows identifying an axis through the multivariate cloud of points that is best at separating a priori  groups95. All 
the statistical analyses were performed using the routines included in the PRIMER 6 +  software95.

Data availability
All data generated or analyzed during this study are included in this article and its supplementary information 
files.
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