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Identifying oscillatory brain 
networks with hidden Gaussian 
graphical spectral models of MEEG
Deirel Paz‑Linares 1,2, Eduardo Gonzalez‑Moreira 1,3,6, Ariosky Areces‑Gonzalez 1,4, 
Ying Wang 1, Min Li 1, Eduardo Martinez‑Montes 2, Jorge Bosch‑Bayard 2,5, 
Maria L. Bringas‑Vega 1,2, Mitchell Valdes‑Sosa 1,2 & Pedro A. Valdes‑Sosa 1,2*

Identifying the functional networks underpinning indirectly observed processes poses an inverse 
problem for neurosciences or other fields. A solution of such inverse problems estimates as a first 
step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG 
estimates are a direct reflection of functional brain network activity with a temporal resolution that 
no other in vivo neuroimage may provide. A second step estimating functional connectivity from such 
activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition 
and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the 
functional connectivity determined by any of the state‑of‑the‑art inverse solutions. We disclose a 
significant cause of estimation errors originating from misspecification of the functional network 
model incorporated into either inverse solution steps. We introduce the Bayesian identification of a 
Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. 
In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do 
not surpass 2% in our HIGGS inverse solution and reach 20% in state‑of‑the‑art methods. Macaque 
simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times 
larger congruence according to Riemannian distances than state‑of‑the‑art methods.

In vivo identification of functional brain networks would greatly benefit from the inverse solutions for MEG/
EEG electromagnetic observation  modalities1,2. A direct relationship to the activity of postsynaptic potentials 
(PSPs) is attributed to the latent brain variables generating the MEG/EEG3–5. Where the actual latent brain vari-
ables are local currents, vector process ι(t) in time-domain t  with components representing locally summated 
PSP myriads within a spatial scale of  millimeters6. See Supplementary Information SI I. Notation for variables 
and mathematical operations and SI II. Nomenclature for theoretical quantities.

MEG/EEG observations v(t) with millisecond temporal resolution are due to these latent brain variables (or 
activity) ι(t) converted according to a linear and stationary forward-operator Lvι or Lead Field summarizing an 
Electromagnetic Forward Model (EFM)7–9. An inverse solution from data v(t) provides estimates ι̂(t) for this latent 
brain activity within a natural  timescale10. Estimates ι̂(t) could therefore help identify functional brain networks 
in association with the actual PSP activity and within very small timescales, avoiding time-domain  distortions11,12.

The target of all identification is estimating functional connectivity within a given functional network model 
interpreted as the set of parameters �ιι governing coactivation in ι(t) , which is without loss of generality rep-
resented by a multivariate probability p( ι(t)|�ιι)

13,14. Therefore, inverse solutions estimating ι̂(t) are only a 
first step to subsequently estimate latent functional connectivity �ιι (a multistep procedure). Estimation �̂ιι 
commonly requires a second-step inverse solution from such brain activity pseudodata ι̂(t) given the functional 
network model p

(
ι̂(t)

∣∣�ιι

)
15–17.
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Functional brain networks synchronized at specific frequencies or bands of frequency (Fig. 1a) are thought to 
underpin the periodic components or oscillations observed in the MEG/EEG18. These oscillations are a spectral 
vector process v

(
t, f

)
 at a frequency f  obtained from the narrow band filtered, or alternatively Hilbert transform 

of the narrow band filtered vector process v(t) . Oscillations v
(
t, f

)
 then reflect analogous latent brain oscillations 

ι
(
t, f

)
19–21 according to the forward operator Lvι of the EFM spectral equivalent. These so-called oscillatory brain 

networks are described by frequency-specific functional connectivity �ιι

(
f
)
 , which produces brain oscillations 

ι
(
t, f

)
 even within a millisecond timescale t22. Specific oscillatory network patterns exhibit a transient behavior 

which may be consider stationary in a timescale of approximately  seconds23–27.
Important properties of oscillatory brain networks are characterized by Gaussian Graphical Spectral (GGS) 

models. A GGS model defines the multivariate probabilities governing such latent brain oscillations ι
(
t, f

)
 under 

specific stationarity and mixing conditions in the frequency  domain28. Details on such conditions and limits 
for the applicability of GGS models are provided in Materials and methods section "Gaussian graphical spectral 
(GGS) model and MAP1 inverse solution with Hermitian graphical LASSO (hgLASSO)". The GGS model prob-
abilities p

(
ι
(
t, f

)∣∣�ιι

(
f
))

 are based upon a frequency-specific Hermitian precision-matrix �ιι

(
f
)
 or inverse of 

the covariance-matrix denominated cross-spectrum �ιι

(
f
)
 ( �ιι

(
f
)
= �−1

ιι

(
f
)
 ): where the Hermitian precision-

matrix �ιι

(
f
)
 off-diagonal entries define functional connectivity parameters as Hermitian graph elements, known 

as undirected graph elements within similar real-valued functional network  models29–37. Identifying these net-
works may then be regarded as equivalent to estimating the Hermitian precision matrix �̂ιι

(
f
)
 , which would in 

turn provide all functional connectivity proxies under the same GGS model  assumption21,26,38.
The identification of oscillatory brain networks is potentially viable with multistep MEG/EEG inverse solu-

tions (Fig. 1b), obtaining functional connectivity proxies �̂ιι

(
f
)
 from brain-oscillation pseudodata ι̂

(
f , t

)
 with 

strong correlation to cognition and behavior in normal or abnormal brain  conditions20,21,23–27,39–51.
State-of-the-art practice targets the precision matrix �̂ιι

(
f
)
 by a second-step inverse  solution41,52,53. In addi-

tion to this second-step inverse solution, postprocessing may also target corrections to spatial distortions or 
leakage in �̂ιι

(
f
)

38,41,42,54. Leakage emerges in brain-oscillation pseudodata ι̂
(
f , t

)
 due to the first-step inverse 

 solutions55,56, which is regarded as a major cause of distortions in precision-matrix estimates �̂ιι

(
f
)
 or any 

functional connectivity proxy.
Nevertheless, either inverse solutions (first step for ι̂

(
f , t

)
 and second step for �̂ιι

(
f
)
 ) add estimation errors to 

these distortions in �̂ιι

(
f
)
 , which stems from miss specifying the actual GGS model p

(
ι
(
t, f

)∣∣�ιι

(
f
))

 governing 
the latent brain oscillations ι

(
t, f

)
 . It is therefore the purpose of this manuscript to explain such estimation errors 

and theoretically correct estimation in terms of Bayesian inverse solutions.

Bayesian inverse solution as a maximum a posteriori probability (MAP). An inverse solution 
(Eq. 1) estimating the latent variables (categories X  and Z ) from their data (category Y ) is without loss of gen-

Figure 1.  Illustration of the ontological levels involved and basic multistep identification of connectivity. (a) 
Generation by the electromagnetic forward model of the periodic components or oscillations in MEG/EEG 
observations v

(
t, f

)
 from brain oscillations ι

(
t, f

)
 emerging from functional graph-elements or functional 

connectivity �ιι

(
f
)
 defining a cortical oscillatory network at a given frequency f  . (b) Functional connectivity 

distortions due to multistep inverse-solutions of the optimal cortical oscillations ι̂
(
t, f

)
 explaining the 

observations and functional connectivity �̂ιι

(
f
)
 , from pseudodata ι̂

(
t, f

)
 . Even with with perfect spatial 

localization estimates ι̂
(
t, f

)
 by any first step inverse-solution produce however false positives and false negatives 

functional graph-elements in the second-step inverse-solution �̂ιι

(
f
)
.
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erality a Bayesian maximum a posteriori probability (MAP)57. A MAP X̂  is the optimum value or estimate for 
an a posteriori probability p(X |Y) computed for a given likelihood p(Y|X ) explaining Y upon X  and positing 
an a priori probability p(X ) upon X  . The nominal Bayesian  procedure58 is a first-type MAP (MAP1) involving 
only a given first-type likelihood p(Y|X ) . The full Bayesian  procedure59 is a second-type MAP (MAP2) involv-
ing a second-type likelihood p(Y|X ) , which must be determined by marginalizing a given first-type likelihood 
p(Y|Z) explaining Y upon (parameters) Z . An a priori probability p(Z|X ) explains these parameters upon 
(hyperparameters) X .

where such likelihood model p(Y|X ) (first-type or second-type) has an ill-conditioned nature and estimating X̂  
(Eq. 1) poses an inverse problem, standing for no unique entries for X  explain a given data in Y60. Then, an MAP 
posits an a priori probability p(X ) regularizing such ill conditioning and preferably pursuing sparse selection 
of those variables within X  , actually explaining the given data in Y . The term regularization by sparse variable 
selection is valid for the type of ill conditioning, such as that dealt with inverse solutions (Eq. 1) in the first step 
for latent vectors ι

(
t, f

)
61,62 and in the second step for latent precision matrices �ιι

(
f
)

35,63.

First step MAP1 inverse solution for brain oscillations and estimation errors. The first step 
MAP1 (Eq. 1) is for the brain oscillations (Fig. 1b) ι

(
f , t

)
 upon the MEG/EEG oscillations (data) v

(
t, f

)
 (Eq. 2): 

where the EFM spectral equivalent yields a Gaussian first-type likelihood p
(
v
(
t, f

)∣∣ι
(
f , t

))
 . Here, likelihood ill-

conditioning is most severe in the sense of  Hadamard64, caused by a large number of variables describing latent 
brain oscillations ι

(
f , t

)
 compared to the available data v

(
t, f

)
10.

An a priori probability p
(
ι
(
f , t

)∣∣�
(
f
))

 (Eq. 2) regularizes this ill-conditioning also incorporating some 
information �

(
f
)
 , preferably with a Gaussian model upon covariance-matrix �

(
f
)
 (sometimes a diagonal matrix) 

somehow specified from MEG/EEG data or structural  information62,65–71.
State-of-the-art practice choses this Gaussian leading to the type of linear and stationary inverse solution to 

avoid introducing time-domain distortions in brain oscillations pseudodata ι̂
(
f , t

)
 , which may further affect 

functional connectivity estimates �̂ιι

(
f
)

20,38,41,72. The most common examples are Exact Low Resolution Elec-
tromagnetic Tomographic Analysis (eLORETA)56 and Linearly Constrained Minimum Variance (LCMV)55. 
This MAP1 may include, in addition to �

(
f
)
 , a sensor noise covariance B

(
f
)
 within a Gaussian likelihood 

p
(
v
(
t, f

)∣∣ι
(
f , t

)
, B
(
f
))

 . Henceforth, it is not essential to the main exposition to specify likelihood or a priori 
probability model formulas for this MAP1 as well as �

(
f
)
 or B

(
f
)
 , which are determined by other methods.

This first-step MAP1 (Eq. 2) carries on estimation errors (Fig. 1b) when posits ad hoc any a priori model 
p
(
ι
(
f , t

)∣∣�
(
f
))

 and with covariance-matrix �
(
f
)
 having no relation whatsoever with the functional connec-

tivity, whereas a GGS model p
(
ι
(
f , t

)∣∣�ιι

(
f
))

 actually governs brain oscillations ι
(
f , t

)
 . Then, the multistep 

inverse solution causes errors from the first step MAP1 estimate ι̂
(
f , t

)
 (Eq. 2) to blow up in any second-step 

estimate �̂ιι

(
f
)
.

At the same time, a first step MAP1 faces an obvious circularity when posits the actual GGS model 
p
(
ι
(
f , t

)∣∣�ιι

(
f
))

 , where the precision-matrix �ιι

(
f
)
 is unknown and must be the target of the second step 

MAP1. A similar circularity is dealt with estimating a covariance-matrix in a Covariance Component Model 
(CCM)73–76 or autoregressive-coefficient in a State Space Model (SSM)48,77,78. Here, this circularity is caused by a 
Hidden GGS (HIGGS) model for latent brain oscillations ι

(
f , t

)
 , similar to a CCM, but upon precision matrices 

and with a graphical sparse a priori model. The inverse solution in onestep bypassing this circularity is a MAP2 
(Eq. 1)59.

Second step MAP1 inverse solution for functional connectivity of the GGS model and estima‑
tion errors. The second step MAP1 is for the GGS precision matrix (Fig. 1b) �ιι

(
f
)
 upon sampled covari-

ance matrix (pseudodata) �̂ιι

(
f
)
 (Eq. 3) obtained from brain oscillation estimates ι̂

(
f , t

)
 in the first step MAP1 

(Eq. 2). The GGS model p
(
ι̂
(
f , t

)∣∣�ιι

(
f
))

 yields a Wishart first-type likelihood p
(
�̂ιι

(
f
)∣∣∣�ιι

(
f
))

 for a sam-

pled covariance-matrix �̂ιι

(
f
)
 . Likelihood ill-conditioning is here in the sense of low condition order for any 

sampled covariance-matrix �̂ιι

(
f
)
 caused by a limited number of samples ι̂

(
f , t

)
 in time-domain t79. A graphical 

a priori probability p
(
�ιι

(
f
))

 regularizes this ill-conditioning with sparse selection of undirected graph ele-
ments and amplitude (Fig. 2a) of the Hermitian precision-matrix off-diagonal entries. The graphical a priori 
probability p

(
�ιι

(
f
))

 base sparse selection upon an extension of the Least Absolute Shrinkage and Selection 
Operator (LASSO)61 denominated graphical LASSO (gLASSO) in real-valued multivariate  statistics35.

(1)
X̂ = argmax

X

{
p(X |Y)

}

p(X |Y) = p(Y|X )p(X )/p(Y)

p(Y|X ) =
∫
p(Y|Z)p(Z|X )dZ

(2)
ι̂
(
f , t

)
= argmaxι(f ,t)

{
p
(
ι
(
f , t

)∣∣v
(
t, f

)
,�

(
f
))}

p
(
ι
(
f , t

)∣∣v
(
t, f

)
,�

(
f
))

∝ p
(
v
(
t, f

)∣∣ι
(
f , t

))
p
(
ι
(
f , t

)∣∣�
(
f
))
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The second step MAP1 (Eq. 3) carries on estimation errors when posits a GGS model p
(
ι
(
f , t

)∣∣�ιι

(
f
))

 adhoc 
defined as real-valued (Fig. 2b), whereas a complex-valued Hermitian actually governs brain oscillations in the 
frequency  domain20,44–46. Within such models functional connectivity parameters are Hermitian precision-matrix 
entries �ιι

(
f
)
 or Hermitian graph-elements encoding phase and  amplitude30,80,81. Indeed, estimation errors in 

the precision-matrix �̂ιι

(
f
)
 even reflect wrong sparse selection of the amplitudes for the real-valued compared 

to the Hermitian one. Furthermore, this MAP1 in either case may also carry on estimation errors due to sparse 
 bias82 or instability in large-scale  dimensions83.

We present a novel MAP1 algorithm determining the precision matrix �̂ιι

(
f
)
 (Eqs. 2, 5) with Bayesian 

hierarchical representation of the sparse Hermitian graphical a priori model or Hermitian Graphical LASSO 
(hgLASSO). We demonstrate in GGS model simulations with large-scale and Hermitian precision-matrices the 
unbiased performance of this hgLASSO algorithm, which provides estimates following the theoretical Rayleigh 
 distribution82.

Successive approximations to onestep MAP2 inverse solution for functional connectivity via 
multistep MAP1 inverse solution. A onestep MAP2 (Eq. 1) is for the HIGGS precision-matrix (Fig. 3a) 
�ιι

(
f
)
 upon the MEG/EEG oscillations sampled covariance-matrix (data) �̂vv

(
f
)
 . The second-type likelihood 

p
(
�̂vv

(
f
)∣∣∣�ιι

(
f
))

 (Eq. 4) is obtained marginalizing ι
(
f , t

)
 in a first-type likelihood p

(
v
(
t, f

)∣∣ι
(
f , t

))
 under an 

a priori HIGGS model p
(
ι
(
f , t

)∣∣�ιι

(
f
))

 . A MAP2 for similar models may be impractical and must commonly 
be approached by Approximated Bayesian Computation (ABC)84. ABC employs successive approximations to the 
second-type likelihood p

(
�̂vv

(
f
)∣∣∣�ιι

(
f
))

 (Eq.  4)85 with Gibbs sampling of the a posteriori probability 

p
(
�ιι

(
f
)∣∣�̂vv

(
f
))

86. Gibbs sampling algorithms might be impractical even for an a posteriori probability of the 

second-step MAP1 p
(
�ιι

(
f
)∣∣�̂ιι

(
f
))

 (Eq. 2)63 requiring alternative  approaches83,87.

These successive approximations to a second-type likelihood (Fig. 3b) may be implemented through the 
Expectation Maximization (EM) algorithm as in a  CCM73–76. EM is interpretable as first-step (Eq. 2) and second-
step (Eq. 3) MAP1 estimators obtaining a MAP2 local  optima88: where the EM maximization stage is a second-
step MAP1 in a loop (k) with p

(
�ιι

(
f
)∣∣�̂(k)

ιι

(
f
))

 (Eq. 5) computed from an equivalent first-type likelihood 

(3)
�̂ιι

(
f
)
= argmax�ιι(f )

{
p
(
�ιι

(
f
)∣∣�̂ιι

(
f
))}

p
(
�ιι

(
f
)∣∣�̂ιι

(
f
))

∝ p
(
�̂ιι

(
f
)∣∣∣�ιι

(
f
))

p
(
�ιι

(
f
))

(4)
�̂ιι

(
f
)
= argmax�ιι(f )

{
p
(
�ιι

(
f
)∣∣�̂vv

(
f
))}

p
(
�ιι

(
f
)∣∣�̂vv

(
f
))

∝ p
(
�̂vv

(
f
)∣∣∣�ιι

(
f
))

p
(
�ιι

(
f
))

Figure 2.  Connectivity distortions in the real-valued approximation of a Hermitian GGS model. (a) Undirected 
network as defined by the amplitude of Hermitian graph-elements or entries of the Hermitian GGS precision-
matrix. (b) Binary GGS-precision-matrix amplitudes �ιι

(
f
)
 are perfectly retrievd by estimation �̂ιι

(
f
)
 based 

on a Hermitian GGS model with Hermitian graphical LASSO prior and distorted by estimation based on a real-
valued GGS model with graphical LASSO prior.
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p
(
�̂

(k)

ιι

(
f
)∣∣∣�ιι

(
f
))

 (Eq. 3). This first-type likelihood is interpreted as a GGS model explaining an expected 

covariance-matrix �̂
(k)

ιι

(
f
)
 upon the latent precision-matrix �ιι

(
f
)
 and the a priori probability p

(
�ιι

(
f
))

.

The expected covariance matrix �̂
(k)

ιι

(
f
)
 (Eq. 5) is determined from an ensemble covariance matrix �̂

(k)

ιι

(
f
)
 , 

and its sampled estimator �̂
(k)

ιι

(
f
)
 in the expectation stage  MAP189 is also common for a first-step  MAP162,65–71.

The EM expectation stage obtaining �̂
(k)

ιι

(
f
)
 is a first-step MAP1 in a loop (k) with p

(
ι
(
f , t

)∣∣v
(
t, f

)
, �̂

(k)

ιι

(
f
))

 
(Eq. 7) computed from an equivalent first-type likelihood p

(
v
(
t, f

)∣∣ι
(
f , t

))
 (Eq. 2) and positing an a priori GGS 

model p
(
ι
(
f , t

)∣∣�̂(k)

ιι

(
f
))

 upon the precision-matrix �̂
(k)

ιι

(
f
)
 , which is determined in the previous maximization 

stage. The MAP2 circularity is then solved by successive approximations in a multistep loop (k) with maximiza-
tion (Eq. 5) and expectation (Eq. 6) specifying the actual HIGGS model.

A proof of concept for the HIGGS model in EEG simulations reveals that multistep inverse solutions (Eqs. 2, 
3) may produce a very distorted precision matrix �̂ιι

(
f
)
 in a second step MAP1 (Eq. 3). When even no ill-

conditioning holds (ruling out leakage) in a first step MAP1 (Eq. 2) determining the brain oscillations ι̂
(
f , t

)
 . In 

the same situation, the onestep inverse solution (Eqs. 5, 6, 7) determines �̂ιι

(
f
)
 exactly. We employ the sparse 

Hermitian graphical a priori model to determine �̂ιι

(
f
)
 via the unbiased hgLASSO algorithm for both multistep 

(Eq. 3) and onestep (Eq. 5) inverse solutions. Implementations of onestep inverse solutions that violate such 
unbiasedness conditions with other Hermitian graphical a priori models also outperform multistep hgLASSO 
inverse solutions. The multistep procedure is then the systemic cause of distortions irremediable even with an 
exact second-step inverse solution for �̂ιι

(
f
)
 . This proof of concept also reveals that multistep inverse solutions 

(5)
�̂

(k+1)

ιι

(
f
)
= argmax�ιι(f )

{
p
(
�ιι

(
f
)∣∣�̂(k)

ιι

(
f
))}

p
(
�ιι

(
f
)∣∣�̂(k)

ιι

(
f
))

∝ p
(
�̂

(k)

ιι

(
f
)∣∣∣�ιι

(
f
))

p
(
�ιι

(
f
))

(6)�̂
(k)

ιι

(
f
)
= �̂

(k)

ιι

(
f
)
+ �̂

(k)

ιι

(
f
)

(7)
ι̂
(k)(f , t

)
= argmaxι(f ,t)

{
p
(
ι
(
f , t

)∣∣v
(
t, f

)
, �̂

(k)

ιι

(
f
))}

p
(
ι
(
f , t

)∣∣v
(
t, f

)
, �̂

(k)

ιι

(
f
))

∝ p
(
v
(
t, f

)∣∣ι
(
f , t

))
p
(
ι
(
f , t

)∣∣�̂(k)

ιι

(
f
))

Figure 3.  Theoretically correct procedure for the estimation of connectivity and to eliminate distortions. 
(a) The ideal but impractical solution is to bypass intermediate estimators ι̂

(
t, f

)
 onestep search of optimal 

connectivity �̂ιι

(
f
)
 explaining the observations. (b) Our implementation of efficient sequential approximations 

to the onestep procedure by means of Expectation Maximization iterations of ι̂(k)
(
t, f

)
 and �̂

(k)

ιι

(
f
)
 produces 

perfect functional graph-elements due to statistical guaranties.
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employing a sparse real-valued graphical a priori model or Graphical LASSO (gLASSO) that approximates the 
HIGGS model further distorts �̂ιι

(
f
)
 . We confirm this difference in performance between multistep and onestep 

procedures by comparing EEG inverse solutions against their fine-grained ECoG reference inverse solutions in 
macaque simultaneous recordings.

Materials and methods
Gaussian graphical spectral (GGS) model and MAP1 inverse solution with Hermitian graphical 
LASSO (hgLASSO). GGS model and interpretations of functional connectivity. The PSP processes myriad 
fulfills some frequency-domain mixing conditions and consequently Gaussianity in the complex-valued follows 
for brain oscillations ι

(
t, f

)
4,28,90,91. Then, without loss of generality, the Gaussian graphical spectral (GGS) model 

(Eq. 8) with complex-valued Hermitian precision matrix �ιι

(
f
)
 is the functional network model for brain oscil-

lations. This GGS model is valid at any frequency f  within the human spectrum ( f ∈ F ) from 0.5 to 140  Hz18,49,92 
and within a resting state or task transient ( ∀t ∈ T ) from a block design of approximately 2  s23–27.

where the complex-valued precision matrix �ιι

(
f
)
 , or inverse of the cross-spectrum �ιι

(
f
)
 ( �ιι

(
f
)
= �−1

ιι

(
f
)
 ), 

defines within off-diagonal functional connectivity parameters as Hermitian graph  elements30,80,81. Functional 
connectivity proxies are then a function of the Hermitian tensor 

{
�ιι

(
f
)
: ∀f ∈ F)

}
 at all  frequencies20,44–46,50. 

This matrix �ιι

(
f
)
 may also be representing a time–frequency connectivity behavior �ιι

(
t0, f

)
 for a transient 

T = (t0, t0 +�t) in a sliding in a slower timescale t0 . This timescale t0 is the domain for evolving network con-
figurations as represented across task or resting state transients.

A first interpretation of these Hermitian graph elements is amplitude 
{∣∣�ιι

(
g , g ′; f

)∣∣} encoding undirected 
edges 

{
g ↔ g ′

}
 at a given frequency ( f ∈ F ). This interpretation is also common for a real-valued and symmetric 

approximation for �ιι

(
f
)
 due to a GGS model describing ι

(
t, f

)
 as a narrow band filtered process.

A second interpretation is phase lag across frequencies in 
{
�ιι

(
g , g ′; f

)
: ∀f ∈ F)

}
 encoding directed edges {

. . . , g ← g ′, . . .
}

 , which are determined by other functional connectivity proxies such as coherences and the 
phase  slope93,94. A real-valued and symmetric approximation for �ιι

(
f
)
 misses this phase information and is lim-

ited interpreted to encode the degree of correlation or anticorrelation interpreted with the sign in 
{
�ιι

(
g , g ′; f

)}
21,40,95.

A third interpretation of the Hermitian graph elements ( �ιι

(
f
)
;∀f ∈ F ) employed here in GGS model simu-

lations here follows from transient second-order stochastic stationarity due to time-domain mixing conditions. 
The time domain ι(t) , as expressed by the stochastic integral (Eq. 9), is driven by the convolution kernel Kιι(τ ) 
( ∀τ , t ∈ T ) and the perturbative process ζ (t).

where the convolution kernel Kιι(τ ) encodes multiply time lagged causal relations ( ∀τ ∈ T ) that are physically 
interpreted as synaptic conductance values and axonal  delays46,51,78,96–99.

The relation between the precision-matrix �ιι

(
f
)
 in (Eq. 1) and the convolution kernel Kιι(τ ) follows from 

analogous GGS model conditions held by the frequency-domain perturbative process ζ
(
t, f

)
 with precision-

matrix �ζζ

(
f
)
 in (Eq. 10).

where the frequency-domain kernel Kιι

(
f
)
 and precision-matrix �ζζ

(
f
)
 are spectral factors for �ιι

(
f
)
 

(Eq. 11)100–103. Then, from the kernel or directed transfer function Kιι

(
f
)
 and precision-matrix �ζζ

(
f
)
 , other 

functional connectivity proxies such as directed partial coherence or granger causality index encode directed 
edges 

{
. . . , g ← g ′, . . .

}
13,48,104.

GGS model MAP1 inverse solution for functional connectivity and Hermitian graphical a priori probabili-
ties. Assume, for the moment, directly observed cortical oscillations ι

(
t, f

)
 explained by the GGS model 

(Eq. 8). Estimating the precision-matrix �ιι

(
f
)
 in this GGS model (Eq. 8) may be regarded as a pseudoinverse 

for the sampled covariance-matrix �̂ιι

(
f
)
 (Eq. 12) for several samples ( ∀t ∈ T ), where the sample size T = |T|.
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The first-type likelihood explaining the sampled covariance-matrix �̂ιι

(
f
)
 (Eq. 10) is a complex-valued 

Wishart (Eq. 13), with degree of freedom T and scale matrix T−1�−1
ιι

(
f
)
 . The a priori  probability35 is a Gibbs 

form (Eq. 13) upon a given scalar penalty function P for �ιι

(
f
)
 , a scale parameter αι and a selection matrix Aιι.

where Aιι shall be a matrix of ones that places priors only the off-diagonal elements �ιι(ν) , i.e., Aιι(i, i) = 0 for 
all i and Aιι

(
i, j
)
= 1 for i  = j . In subsequent work, this matrix will be used to reflect a priori connectivity infor-

mation, for example, from anatomical  data53. Then, with �̂ιι

(
f
)
 directly observed or determined from a first step 

(Eq. 2), MAP1 �̂ιι

(
f
)
 (Eq. 3) based on a posteriori probability p

(
�ιι

(
f
)∣∣�̂ιι

(
f
))

 from the GGS model likelihood 
and a priori probability (Eq. 13).

The equivalent problem of maximizing this a posteriori probability in MAP1 (Eq. 14) is commonly expressed 
in the literature as minimizing the −log  transformation (Eq.  15) as a penalized cost function 
L
(
�
(
f
))

= −logp
(
�ιι

(
f
)
|�̂ιι

(
f
))

.

The Hermitian Graphical Naïve (hgNaïve) estimator (a priori free P = 0 in Eq. 15) is the inverse of the sample 
cross-spectral matrix �̂ιι

(
f
)
← �̂

−1

ιι

(
f
)
 and usually yields a quite dense matrix with many spurious connec-

tivities, which suggests the use of different penalizations. Then, we introduce (Eq. 15) the L2 norm P = � • �22 , 
the Hermitian Graphical Ridge (hgRidge)105,106, the L1 norm P = � • �1 , the Hermitian Graphical LASSO (hgL-
ASSO)81, known as Graphical LASSO (gLASSO), in the real  variable35.

In this paper, we shall emphasize that hgLASSO is the a priori model proposed to produce unbiased sparse 
estimates with the optimum of the target function (Eq. 12), where hgNaïve and hgRidge as well as gLASSO 
are hereinafter model violations. The critical issues are stable and scalable hgLASSO calculations in ultrahigh 
matrix dimensions preserving unbiasedness. We introduce a novel algorithm reformulating MAP1 (Eq. 14) with 
Bayesian hierarchical hgLASSO. This algorithm is plugged into multistep, and onestep methods are deferred to 
avoid interrupting the flow of exposition 2.3 Hermitian graphical LASSO (hgLASSO).

Hidden Gaussian graphical spectral (HIGGS) model and inverse solutions via multistep MAP1 
and onestep MAP2. HIGGS model underneath the Gaussian EFM spectral equivalent.. As with latent 
brain activity ι(t) , the conversion of brain oscillations ι

(
t, f

)
 is given according to the same Electromagnetic 

Forward Model (EFM)7–9. The EFM forward operator Lvι (Eq. 18) describes in the time domain ( ∀t ∈ T ) and 
spectral domain ( ∀f ∈ F ) a purely linear and stationary measurement process. These measurements possess no 
relation whatsoever with any other biological mechanism and are only perturbed by a spectral noise process 
ξ
(
t, f

)
 at the sensors. Note the alternative, fMRI observations, suffer from temporal/spectral (also spatial) defor-

mations due to the nonlinear metabolic-hemodynamic forward model of the Blood Oxygenation Level Depend 
(BOLD) signal which is acquired with a very poor temporal resolution.

Hereinafter, EFM represents cortical activity due to the high sensitivity of MEG/EEG to the activity of pyrami-
dal layers within the cortical columnar  organization6,107. Estimating activity for noncortical structures encounters 
another  problem108 that must be addressed by some compensation measures for their bias to  zero109.

Due to similar mixing conditions, the spectral noise process ξ
(
t, f

)
 is asymptotically Gaussian with precision 

matrix �ξξ

(
f
)
 , which is valid at any frequency ( f ∈ F ) and time-domain ( ∀t ∈ T)20,28. This is not accurate for 

the time-domain noise process ξ(t) commonly assumed in an equivalent EFM of MEG/EEG data v(t) (Eq. 16).
Then, this EFM Gaussian spectral equivalent represents the first-type likelihood explaining MEG/EEG oscil-

lations (data) v
(
t, f

)
 upon the latent brain oscillation parameters ι

(
t, f

)
 (Eq. 17). The a priori probability for 

parameters ι
(
t, f

)
 (Eq. 8) specifies the Hidden GGS (HIGGS) explaining ι

(
t, f

)
 upon the precision-matrix �ιι

(
f
)
 . 

In addition, the hyperparameters �
(
f
)
 specified as precision matrices �

(
f
)
=

{
�ιι

(
f
)
,�ξξ

(
f
)}

 within this 
HIGGS model require some a priori probability model p

(
�
(
f
))

.
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HIGGS model MAP1 inverse solution for brain oscillations. We introduce the first step MAP1 based on the 
HIGGS model (Eq.  17), with first-type likelihood NC

(
v
(
t, f

)
|Lvιι

(
t, f

)
,�−1

ξξ

(
f
))

 and a priori probability 
NC

(
ι
(
t, f

)
|0,�−1

ιι

(
f
))

 , upon hyperparameters �
(
f
)
=

{
�ιι

(
f
)
,�ξξ

(
f
)}

 (Eq. 18). Here, �
(
f
)
 incorporates in 

�−1
ιι

(
f
)
 similar information to the covariance-matrix �

(
f
)
 in a first step MAP1 (Eq. 2). In addition, �

(
f
)
 is 

incorporated into �−1
ξξ

(
f
)
 information about the sensor noise covariance-matrix B

(
f
)
 . This MAP1 represents a 

large class of inverse solutions distinguished by the methods determining �
(
f
)
 and B

(
f
)
 in the Bayesian 

 literature62,65–71.

A HIGGS MAP1 estimate ι̂
(
f , t

)
 (Eq. 18) is from a Gaussian a posteriori probability for ι

(
t, f

)
 with mean 

value ι̂
(
f , t

)
 and covariance-matrix �ιι

(
f
)
 (Eq. 19). This MAP1 is a consequence of conjugated Gaussian relations 

between likelihood and a priori probability (Eq. 18), where estimate or mean value ι̂
(
f , t

)
 is obtained through a 

quasilinear inverse operator Tιv

(
f
)
 from data v

(
t, f

)
.

A quasilinear inverse operator Tιv

(
f
)
 (Eq. 17) is the pseudoinverse for Lvι (forward-operator), as expressed in 

relation to a well-conditioned inverse or covariance-matrix �ιι

(
f
)
 . This pseudoinverse Tιv

(
f
)
 is then a compact 

and efficient representation for estimating ι̂
(
f , t

)
 (Eq. 16) from the data v

(
t, f

)
 , which requires only a definition 

for parameters �
(
f
)
.

This practice based on Tιv

(
f
)
 (Eqs. 19 and 20) renders linear and stationary a whole process targeting brain 

oscillations ι
(
f , t

)
 , which avoids time-domain  distortions20,38,41,72. While a theoretical ι

(
f , t

)
 is converted by the 

forward-operator Lvι into data v
(
t, f

)
 , these data are in turn converted by the pseudoinverse Tιv

(
f
)
 into estimates 

ι̂
(
f , t

)
 . In other words, a MAP1 estimate (Eq. 19) is equivalent to estimating the sampled covariance matrix 

of brain oscillations �̂ιι

(
f
)
 directly by a linear matrix transformation Tιv

(
f
)
 (Eq. 21) upon the data sampled 

covariance matrix �̂vv

(
f
)
 : where �̂vv

(
f
)
 is determined for the oscillation data v

(
t, f

)
 at a specific frequency f  

and within a transient ∀t ∈ T with sample size T = |T|.

In state-of-the-art practice, such a definition for �
(
f
)
 is most commonly through two methods: Exact Low 

Resolution Electromagnetic Tomographic Analysis (ELORETA)56 and Linearly Constrained Minimum Variance 
(LCMV)55. These methods then determine �

(
f
)
 by some optimal criteria for brain oscillations ι̂

(
f , t

)
 explaining 

the sampled covariance matrix �̂vv

(
f
)
 (Eq. 21)20,44.

Elsewhere, this type of inverse operator Tvι

(
f
)
 may also impose sparsity to identify nonzero components in 

the vector ι
(
t, f

)
 and be obtained iteratively along with �

(
f
)
 through Bayesian hierarchical  methods62,65–71 or 

proximal projection  methods109–116. Additionally, elsewhere, an inverse operator that is nonlinear Tιv

(
v
(
t, f

))
 , 

quasilinear nonstationary Tιv

(
t, f

)
 , or both nonlinear and nonstationary Tιv

(
t, f , v

(
t, f

))
 is preferable to identify 

the type of latent brain activity causing evoked potentials in MEG/EEG117,118.

HIGGS model MAP2 inverse solution for functional connectivity via successive approximations of MAP1 inverse 
solution. Assume a HIGGS model (Eq. 17) explaining the MEG/EEG oscillation data v

(
t, f

)
 upon ι

(
t, f

)
 . Then, 

marginalizing brain-oscillations ι
(
t, f

)
 for the likelihood p

(
v
(
t, f

)∣∣ι
(
t, f

)
,�ξξ

(
f
))

 and under the a priori GGS 
model p

(
ι
(
t, f

)∣∣�ιι

(
f
))

 translates into another GGS model (Eq. 22). This GGS model explains oscillations data 
v
(
t, f

)
 upon a precision-matrix �vv dependent on hyperparameters �

(
f
)
=

{
�ιι

(
f
)
,�ξξ

(
f
)}

.

where estimating a precision matrix �vv

(
f
)
 in this GGS model (Eq. 22) may also be regarded as a pseudoinverse 

for the sampled covariance matrix �̂vv

(
f
)
 (Eq. 23) for several samples ( ∀t ∈ T ), where the sample size T = |T|.
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However, estimating the precision matrix �ιι

(
f
)
 in this GGS model is twice a pseudoinverse, first for the 

sampled covariance matrix �̂vv

(
f
)
 and second the forward operator Lvι (Eq. 22), also involving estimation of the 

precision matrix �ξξ

(
f
)
 . The second-type likelihood explaining the sampled covariance-matrix �̂vv

(
f
)
 (Eq. 23) is 

a complex-valued Wishart (Eq. 24), with degree of freedom T and scale matrix T−1�−1
vv

(
f
)
 . With this second-type 

likelihood (Eq. 24), direct estimation of the precision-matrices or hyperparameters �
(
f
)
=

{
�ιι

(
f
)
,�ξξ

(
f
)}

 
is impractical, requiring variational Bayes approximations or Gibbs sampling not extensible to high dimensions.

Therefore, we use the successive approximations to the second-type likelihood p
(
�̂vv

(
f
)∣∣∣�

(
f
))

 (Eq. 24) by 
the Expectation Maximization (EM)  algorithm66,73,88,89,119,120. These successive approximations at an EM k-th 
iteration are expressed in Gibbs exponential form p(k)

(
�̂vv

(
f
)
|�

(
f
))

 of an expected −log second-type likeli-

hood of the data sampled covariance-matrix �̂vv

(
f
)
 implicit in the cost function Q

(
�
(
f
)
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(k)(
f
))

 (Eq. 25).

where the cost function Q
(
�
(
f
)
, �̂
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))

 is obtained from the expected −log second-type likelihood (Eq. 26) 
of the data v

(
t, f

)
 for several samples ( ∀t ∈ T ) and upon hyperparameters �

(
f
)
 and hyperparameters from the 

previous EM iteration �̂
(k)(

f
)
.

This likelihood is obtained from expectation applied to the −log joint probability p
(
v
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)
, ι
(
t, f

)
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(
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))

 over 
parameters (brain oscillations) ι

(
t, f

)
 (Eq. 27). The joint probability is composed of the HIGGS model first-type 

likelihood and a priori probability (Eq. 27), and the expectation is based on the a posteriori probability of the 
HIGGS MAP1 (Eq. 19).

The function Q
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 possesses an additive form (Eq. 28) upon expected covariance-matrices for 

parameters (brain-oscillations) �̂
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 and residuals (spectral sensor noise process) �̂
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 . These expected 

covariance matrices are dependent on the data sampled covariance �̂vv
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)
 hyperparameters �̂
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)
 at the k-th 

EM expectation.
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and its sampled estimator �̂
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 (Eq. 27)89.

Analogous formulas are obtained for an expected covariance-matrix �̂
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 (Eq. 30) determined from an 
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Then, due to the cost function additive form (Eq. 28), the Gibbs exponential form p(k)
(
�̂vv

(
f
)
|�

(
f
))

 (Eq. 25) 

admits a factorization into two marginal second-type Wishart ( WC ) likelihood models (Eq. 31). Se details the 
derivation for these successive approximations to the HIGGS second-type likelihood in SI III. Bimodal Wishart 
form of the HIGGS expected second-type likelihood (Lemma 1).

The EM approximated MAP2 (maximization stage) �̂
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f
)
 and �̂
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 (Eq. 32) may be trapped at local 

optima but is explicitly Wishart and scalable to high dimensions combined with regularization priors p
(
�ιι

(
f
))

 
and p

(
�ξξ

(
f
))

 that may facilitate the search closest to the global  optimal88,120. As with the previous first-type 
likelihood for �ιι

(
f
)
 (Eqs. 13, 14, 15), any of the penalizations discussed in the previous section may be used 

here to regularize the EM procedure. See Lemma 1 in SI IV. HIGGS second-type maximum a posteriori and 
priors (Corollary to Lemma 1).

The EM maximization stage (Eq. 32) poses the same formalism as for a pair of observed GGS models at 
every iteration based on the −log transformation of this posterior distribution, an additive penalized cost func-
tion L(k)
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= L(k)
(
�ιι

(
f
))

+ L(k)
(
�ξξ

(
f
))

 . Note that for expected covariance-matrix �̂
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 (Eq. 33), 

which is not directly observable, this is the same problem as for the observed �̂ιι

(
f
)
 (Eqs 13, 14, 15), employing 

the graphical a priori models P . A novel algorithm exposed here computes this solution based on the Bayesian 
hierarchical hgLASSO a priori model 2.3 GGS model MAP1 via Hermitian Graphical LASSO (hgLASSO).

For the spectral sensor noise process, we assume that �ξξ

(
f
)
 is known but a scalar factor θ2ξ
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)
 to be esti-

mated: �ξξ

(
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= θ2ξ

(
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)
Aξξ , for which we use an exponential prior with scale parameter αξ (Eq. 34), with p being 

the number of MEG/EEG sensors and T being the sample number.

In this paper, we define Aξξ as the identity matrix but note that it might be used to encode spurious EEG 
sensor connectivity due to scalp leakage currents. αξ (Eq. 34) could be used to encode the instrumental noise 
inferior threshold that we define as 10% of the EEG signal (Eq. 35).

GGS model MAP1 inverse solution via Hermitian Graphical LASSO (hgLASSO) algorithm. Un-
biasedness of the MAP1 inverse solution with hgLASSO a priori probability. We leverage recent results on the 
distribution of high-dimensional estimators of precision matrices of Jankova and Van de Geer (JVDG)82 to pro-
vide statistical guarantees for the HIGGS inverse solution. First, we reduce the bias of �̂ιι

(
f
)
 at each iteration of 

EM maximization in the onestep hgLASSO inverse solution (Eq. 18) or second step in the multistep hgLASSO 

inverse solution (Eq. 13) by substituting 
⌣
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This unbiased estimator is the complex-valued extension for the graphical LASSO (gLASSO)35 exposed in the 
JVDG  theory82.

Debiasing �̂ιι

(
f
)
 is particularly relevant to increase the reliability of functional connectivity estimates and 

reduce distortions. This unbiased estimator unb
(
�̂ιι

(
f
))

 follows the Hermitian Gaussian distribution (Eq. 22), 
allowing us to carry the thresholding of the EM maximization in the onestep hgLASSO inverse solution (Eq. 18) 
or the second step in the multistep hgLASSO inverse solution (Eq. 13).

With the fixed value of the regularization parameter αι =
√
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)

 and T ≫ q , whose z-statistic (Eq. 23) 

possesses a Rayleigh distribution with variance 1/
√
2 . We zero all values of �̂ιι
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)
 with Z
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f ; i, j

)
 lower than 

a threshold to ensure a familywise error of type I. It should be noted that this debiasing and thresholding yields 
every iteration of the EM maximization in the onestep hgLASSO inverse solution (Eq. 18) or the second step in 
the multistep hgLASSO inverse solution (Eq. 13) by substituting �̂ιι

(
f
)
 in �̂ιι

(
f
)
 , a statistically guaranteed 

thresholded connectivity matrix.

Scalable and stable MAP1 inverse solution with the hgLASSO algorithm. The solution for the Hermitian Graphi-
cal LASSO (hgLASSO) that we present here is a transformation of its prior (Eq. 10) by means of the extension to 
the complex variable of the scaled Gaussian mixture procedure (Eq. 24)121; see Lemma 2 in SI V. Complex-valued 
Andrews and Mallows Lemma: Local Quadratic Approximation (LQA) of the Hermitian graphical LASSO (hgL-
ASSO) prior (Lemma 2).

The scaled Gaussian mixture (Eq. 24) is a type of representation of the hgLASSO prior (Eq. 10) by a Gauss-
ian distribution of �ιι
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)
 conditioned to other hyperparameters (variances Ŵ
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 ) with a gamma distribution. 

As a result, we obtain a Local Quadratic Approximation (LQA) of the target function used in (Eqs. 13 or 18) 
L
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 in terms of the weighted Hermitian graphical Ridge (hgRidge) due to the modified LASSO prior 
(Eq. 25). The estimation derived from the LQA poses a unique solution, given by Lemma 3 in SI VI. Concavity 
of the first-type maximum a posteriori with hgLASSO LQA prior (Lemma 3).
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 through (Eq. 25), something we solve by redefining it 

into standard precision-matrix �̃ιι(ν) (Eq. 27), which are weighted locally by the estimated variance matrix Ŵ
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from the previous iteration. This precision matrix also requires transforming the Wishart distribution associ-

ated with the GGS of (Eq. 9) and the HIGGS (Eq. 17) in terms of the standard sampled covariance matrix ˜̂�ιι
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due to Lemma 4 in SI VII. Standardization of the first-type likelihood with hgLASSO LQA prior (Lemma 4).
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This standardization poses the typical Hermitian graphical Ridge (hgRidge)  problem106, without weights 
(Eq. 28).

The solution to the hgRidge with standard empirical covariance ˜̂�ιι

(
f
)
 (Eq. 27) allows obtaining the standard 

precision-matrix ̂̃�
(l)
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(
f
)
 (Eq. 28) and thus retrieving the actual precision-matrix �ιι

(
f
)
 (Eq. 25). See Lemma 5 

in SI VIII. Hermitian graphical Ridge (hgRidge) and hgLASSO LQA estimator (Lemma 5). This solution is in 
terms of the matrix square root operation (Eq. 29) that bounds the computational cost of this procedure, which 
requires a single cycle for the mutual estimation of the quantities �ιι

(
f
)
 and Ŵ

(
f
)
.

Validating performance for HIGGS inverse solutions. Simulations. We created simulations (Fig. 4) 
based on second-order stochastic stationary dynamics (Eq. 9) following from an underlying Gaussian Graphical 
Spectral (GGS) model. This Hermitian precision matrix (Fig. 4a) defining this GGS produces brain oscillations 
that resemble the so-called EEG Xi-Alpha model in the spectrum (Fig. 4b)122. In other words, this autoregressive 
dynamic ι(t) is defined from ι

(
t, f

)
 (Eq. 11), produced by a Hermitian precision tensor (connectivity) �ιι

(
f
)
 at 

all frequencies which also causes the oscillations in the alpha peak (Fig. 4c). This Hermitian precision tensor 
originates from spectral factors Kιι

(
f
)
 (Fig. 4d) or the Hilbert transform of multiply lagged connectivity Kιι(τ ) 

producing broad band dynamics (Fig. 4e).
This connectivity �ιι

(
f
)
 (Fig. 4a) is employed as a baseline to compare the results and is more in correspond-

ence with the actual target for state-of-the-art methods. The simulation pipeline that was repeated 100 times to 
produce the same amount of possible ground truth and observations is as follows.

1. Definition of random Hermitian precision-matrix �aa

(
f0
)
 (Fig. 4a) (ground truth functional connectivity) 

given for a referential frequency component f0 meant to be the center of the alpha peak (Fig. 4b) ( f0 = 10Hz ) 
in the cortical network subspace. The elements of this matrix must lie in the unitary circle of the complex plane 
for the reliability of binary classification measures used in this validation.
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Figure 4.  Specification of a linear autoregressive dynamics in the frequency domain based on the Xi and Alpha 
model (a). Alpha connectivity is the ground true to be mixed later with that of the Xi process. The starting 
point are these Alpha and Xi precision-matrices at 10 Hz for an oscillatory network process represented in a 
binary map that corresponds to edges in such network graph-elements. (b) This is extended for all frequencies 
via an amplitude-phase transformation to recreate (c). The precision-tensor employing (d) directed transfer 
function tensor for the Alpha process by means of its composition in spectral factors with the Xi innovations 
The factors are derived from the central slice (10 Hz) by means of the eigen-decomposition. The process cross-
spectrum tensor is obtained by slice-inverting the precision tensor producing e. brain-oscillations by means of 
a Hermitian random Gaussian generator. (f) Two types of forward models, (f1) planar and (f2) human project 
these oscillations to the sensor space producing g. the Xi Alpha observations.
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2. Construction of a synthetic spectral factorization for �aa

(
f0
)
 (Fig. 4c) or spectral directed model used to 

design a precision tensor at all frequencies ( f ∈ F ). This factorization was performed assuming that the reference 
spectral factors at ( f0 = 10Hz ) are derived from a Hermitian eigen decomposition �aa

(
f0
)
= UDU† (Eq. 45), 

where Kιι

(
f0
)
 is the directed transfer function at f0 extracted from the UDU† elements.

3. Considering discrete-time lags in Kιι(τ ) as in equation (Eq. 9) encoded in a matrix Taa , where Taa

(
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)
 is 

the lag for directed interactions directed 
{
. . . , ι(t; i) ← ι

(
t; j

)
, . . .

}
 , we represent Kιι(τ ) (Eq. 46) as proportional 

to a constant connectivity matrix Kaa and the Dirac delta matrix function of the lags �(τ − Taa).

These lags are associated with the spectral Kιι

(
f0
)
 at f0 given the phase relation (Eq. 47), and the directed 

transfer function tensor Kιι

(
f
)
 at all frequencies ( f ∈ F ) (Fig. 4d) as in (Eq. 10) is then obtained from the defi-

nition for Kιι(τ ) (Eq. 46) modulated by a Gaussian spectral form with center in the alpha peak ( f0 = 10Hz).

4. The precision tensor �ιι

(
f
)
 (Fig. 4c) is then recomposed from the spectral factors (Eq. 48) assuming 

directed alpha transfer function tensor Kιι

(
f
)
 (Eq. 47) and Xi innovations precision tensor �ζζ

(
f
)
 as in (Eq. 11). 

The Xi factor was construed by following steps similar to alpha but modulated by a right-sided Gaussian spectral 
form with central frequency ( f0 = 0Hz ). The precision matrix �xx was the inverse of the surface Laplacian in 
the whole cortical space, and the lags for the precision tensor construction were set to zero, corresponding to 
the properties of this process.

5. The precision tensor slicewise inverted �ιι

(
f
)
= �−1

ιι

(
f
)
 (Eq. 48) (this is the ground truth covariance or 

cross-spectrum �ιι

(
f
)
 ) is used to obtain complex-valued vectors of the Fourier transform (Eq. 49). Equivalent 

in this case to the Hilbert transform ι
(
t, f

)
 ( t ∈ T ) by means of a Hermitian Gaussian random generator with 

sample number T = 600 at every frequency ( f ∈ F ). Brain oscillation time series ι(t) (Fig. 4e) are obtained by 
means of the inverse Fourier transform ( F−1 ) across frequencies ( f ∈ F ) of these samples ι

(
t, f

)
 to obtain the 

same number of time instances ( t ∈ T).

6. The Xi-Alpha process ι
(
t, f

)
 in the cortical network subspace (Eq. 49) was projected to obtain observations 

(Fig. 4g) at the sensor space v(t) (Eq 50), time-domain equivalent of (Eq. 16) with corresponding forward-
operator Lvι (Fig. 4f), adding the Xi process and a white noise process in the whole cortical space. A white noise 
process ξ(t) in the sensor space E was also added to the projected source space process. The composition of the 
confounding processes (Xi process defined by �xx and source and white sensor noises) with the alpha process 
defined by �aa

(
f0
)
 was adjusted to keep spectral energy in the alpha band (8–12 Hz) of 10% of the alpha process 

energy.

Two different simulations based on the Electromagnetic Forward Model (EFM) with EFM forward-operator 
Lvι (Eq. 50) were defined: For an idealized “planar EFM” head (Fig. 4f1) and realistic “human EFM” head 
(Fig. 4f2) to produce the Xi-Alpha observations (Fig. 4g). The planar EFM (Fig. 4f1) was computed based on the 
bidimensional geometry of two concentric circles defining a planar cortex and scalp and a layout of equidistant 
planar scalp sensors (30 sensors). The human EFM (Fig. 4f2) was computed for the cortical surface extracted 
from a healthy subject T1 image, with the Boundary Element Method (BEM) implemented in SPM and a layout 
of the extended 10–20 system (30 sensors). A cortical network was defined on a subspace of 22 points for both 
the planar and human EFMs. For the planar cortex, these were equidistantly located, and for the human cortex, 
they were randomly located across different areas of the left (L) and right (R) hemispheres: Occipital (LO and 
RO), Temporal (LT and RT), Parietal (LP and RP) and Frontal (LF and RF).

Experimental confirmation. For the confirmation of HIGGS connectivity, we compared EEG against a more 
direct technique: electrocorticography (ECoG) (Fig. 5) leveraging the unique experimental setup that offers the 
advantage of large brain coverage ECoG recordings on a healthy  macaque123. This comparison scenario is par-
ticularly interpretable in terms of the effect of volume conduction heterogeneities since the EEG is hidden under 
several tissue layers (Fig. 5e2), and the ECoG is instead hidden under only one (Fig.   5e1). See the macaque 
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preparation for the surgical implantation of this ECoG in (Fig. 5a) that, which is shown in the postsurgical X-ray 
(Fig. 5b). The macaque sensor layouts for the simultaneous ECoG/EEG recordings consisted of 128 ECoG sen-
sors placed upon the cortical surface in the left hemisphere and a low-density array of 20 EEG scalp sensors. The 
relative distribution of the macaque cortical surface segmented from the MRI is shown in (Fig. 5c).

The raw EEG/ECoG data is freely available as part of the Neurotycho project http:// www. www. neuro tycho. 
org/. The EEG vEEG(t) and ECoG vECoG(t) were recorded simultaneously in the resting state condition. During 
the experimental session, the monkey was awake, blindfolded, and constrained to a sitting position. Henceforth, 
our study only refers to the processing of this data and not experimental manipulation, ethics are deferred to the 
previous publications about the same data.

Figure 5.  Confirmation of HIGGS connectivity based in EEG that is recorded simultaneously with ECoG 
implanted in the macaque. (a) Surgical preparation for implantation onto the macaque cortex macaque 
of a high-density ECoG array embedded in a silicon layer. (b) A post-surgical X-ray image showing this 
implantation. (c) Digital preparation based on the macaque MRI segmentation of the cortex, inner skull, 
outer skull and scalp, and conductance model for this segmentation based on registration with the MRI of the 
high-density ECoG implantation (128 blue sensors) and low-density EEG layout (20 green sensors). (d) Power 
spectral density of the simultaneous recordings for ECoG (d1) and EEG (d2) highlighting the alpha band within 
8–14 Hz employed later as data for the identification of network connectivity. (e) Electromagnetic Forward 
Model (EFM) employed to compute the connectivity inverse-solutions from the ECoG (e1), with lead field 
dependent on two conductance layers (cortex and silicon), and EEG (e2), with Lead Field dependent on four 
conductance layers (cortex, inner skull, outer skull and scalp). ECoG recordings and their Lead Fields provide 
a more fine-grained reference for confirming connectivity estimators and measures of distortions for the EEG 
(f). Significant cortical subspace based on the ECoG alpha band data to facilitate the comparison in terms 
of connectivity due to low-density of the EEG. The detected subspace is revealing a large-scale alpha cortical 
network that extended over the inferior occipital (IO), superior occipital (SO), posterior temporal (PT), anterior 
temporal (AT), inferior parietal (IP), superior parietal (SP), inferior frontal (IF) and superior frontal (SF) areas. 
(g) For the subspace covered by this network the HIGGS connectivity inverse-solutions were computed from 
the ECoG (g1) and EEG (g2).

http://www.www.neurotycho.org/
http://www.www.neurotycho.org/
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Both EEG and ECoG were synchronized to the trigger signal and downsampled to 1000 Hz, keeping 2 min 
of recordings. The artifact removal procedure included linear detrending with the L1TF package, average DC 
subtraction, and 50 Hz notch filtering. The spectral analysis (Fig. 5d) of both ECoG (Fig. 5d1) and EEG (Fig. 5d2) 
signals reveals a larger power spectral density within the band (8–14 Hz) associated with the macaque alpha 
oscillations. The forward operators were obtained from a head conductivity model (Fig. 5e) for the ECoG LECoGvι  
(Fig. 5e1) and EEG LEEGvι  (Fig. 5e2) through FEM computations in SimBio using the macaque individual T1 MRI 
segmentation. The head model included five conductivity compartments: cortex, ECoG silicon layer, inner skull, 
outer skull, and scalp.

We work at a subspace of cortical sources detected from ECoG, and in a similar fashion to the simulation 
study (Fig. 5f), extracting the connectivity (Fig. 5g) with all methods from both ECoG (Fig. 5g1) and EEG 
(Fig. 5g2) observations. We screen out the significant cortical network nodes (Fig. 5f) from the ECoG by means 
of implementation for spectral analysis of the Structured Sparse Bayesian Learning (SSBL)69. This implementa-
tion uses assumptions similar to those of HIGGS but with a diagonal covariance structure. We offer technical 
details  in124.

The detection (Fig. 5f) corresponding to the alpha band oscillations (Fig. 5d1) yielded a large-scale network 
of distributed nodes, which strongly correlates with the findings for these ECoG cortical patterns in the left 

Figure 6.  Experiment to evaluate unbiasedness conditions of the Hermitian Graphical LASSO (hgLASSO) 
algorithm in different scales at the top: low (first row), high (second row) and ultrahigh (third row). The 
hgLASSO algorithm performs the MAP1 for the presicion-matrix as described in Materials and methods 
sections "Gaussian graphical spectral (GGS) model and MAP1 inverse solution with Hermitian graphical 
LASSO (hgLASSO)" and "GGS model MAP1 inverse solution via Hermitian graphical LASSO (hgLASSO) 
algorithm". From left to right in hot colormap (a) the typical simulated precision-matrix, (b) the hgLASSO 
estimation, (c) the debiased estimator, with (d) the empirical distribution, compared of the theoretical Rayleigh 
distribution, and (e) the corrections due to thresholds of this distribution. At the bottom for the ultra-high 
dimensionality the robust convergence pattern in 30 iterations of the hgLASSO likelihood in 100 trials (f) and 
the seemingly perfect Rayleigh statistics in these 100 trials (g).
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 hemisphere125. The more extended Occipital (O) oscillations were accompanied by secondary cortical oscilla-
tions extended over the Temporal (T), Parietal (P), and Frontal (F) areas. This large-scale analysis differs from 
previously reported studies, which were limited to P <—> F interactions at ECoG sensor space as  in126. We con-
sider eight regions of interest (ROI) extracted manually from the left hemisphere cortical segmentation. These 
are Inferior Occipital (IO), Superior Occipital (SO), Posterior Temporal (PT), Anterior Temporal (AT), Inferior 
Parietal (IP), Superior Parietal (SP), Inferior Frontal (IF), and Superior Frontal (SF).

Results
Unbiased functional connectivity via hgLASSO inverse solution of the GGS model. As an 
essential step (Fig. 6), we verify the properties of the MAP1 estimator for the precision matrix �ιι

(
f
)
 repre-

senting functional connectivity as described by a Gaussian graphical spectral (GGS) model of oscillatory brain 
networks at a generic frequency f  . See Materials and Methods section "Gaussian graphical spectral (GGS) model 
and MAP1 inverse solution with Hermitian graphical LASSO (hgLASSO)" for the interpretation of such a func-
tional network model and MAP1 inverse solution �̂ιι

(
f
)
 for the functional connectivity. We remind the reader 

that the algorithm revindicated for this MAP1 inverse solution places the Hermitian graphical LASSO (hgL-
ASSO) a priori model upon the Hermitian graph elements in �ιι

(
f
)
 , which explains brain-oscillations ι

(
t, f

)
 in 

the GGS model. In Materials and Methods section "GGS model MAP1 inverse solution via Hermitian graphical 
LASSO (hgLASSO) algorithm", we describe the implementation of the hgLASSO algorithm that we demonstrate 
here for the first time fulfilling stable and scalable unbiasedness conditions. Here, amplitudes 

∣∣�ιι

(
f
)∣∣ of the 

Hermitian graph elements are employed as the proxy for functional connectivity and to illustrate the algorithmic 
properties. The hgLASSO a priori model is incorporated into both multistep MAP1 and onestep MAP2 inverse 
solutions, as described in Materials and Methods section "Hidden Gaussian graphical spectral (HIGGS) model 
and inverse solutions via multistep MAP1 and onestep MAP2" for the Hidden GGS (HIGGS) model explaining 
oscillations v

(
t, f

)
.

We illustrate the properties of our algorithm with an example at different dimensionalities, 30, 100, and 
1000, yielding 900, 10,000, and 1000,000 functional connectivities to be estimated, respectively. Our validation 

Figure 7.  Simulated experiment of a relatively simple oscillatory network HIGGS model (left-center) producing 
observations through (1) an idealized “planar” (left-top) or (2) average “human” (left-bottom) EFM. Estimation 
errors regarding a ground-true Hermitian precision-matrix with binary amplitudes (left-center) may be judged 
in the colormaps of the estimation under the planar (a1–g1) and human (a2–g2) EFM. These estimation are 
characteristic of multistep methods (based on first-step ELORETA and LCMV) in an average EEG situation 
(d2,e2) even employing the hgLASSO unbiased estimator. With same multistep methods the estimation errors 
of the state-of-the-art gLASSO approximating the Hermitian graph-elements in this HIGGS (f1,g1;f2,g2) fall 
beyond even in ideal circumstances. In 100 trials of a binary connectivity ROC measures show these estimation 
errors and improvement with our direct solution with hgLASSO (a1,a2) which may not be possible with 
hgRidge or hgNaïve estimation (b1,c1,b2,c2).
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strategy (Fig. 6) is to compare the empirical distribution of the empirical distribution of the unbiased statistic 
for the estimated precision matrix �̂ιι

(
f
)
 against the Rayleigh distribution for the theoretical �ιι

(
f
)
 . A Rayleigh 

distribution is derived from the complex-valued extension  of82 for the GGS model described in Materials and 
Methods section "GGS model MAP1 inverse solution via Hermitian graphical LASSO (hgLASSO) algorithm".

First, we employ a blockwise chained (blocks were mutually dependent) simulated precision-matrix structure 
�ιι

(
f
)
 as  in81, illustrated here with hot colormaps of a typical trial (Fig. 6a). These matrices were integrated into 

a Hermitian Gaussian generator generating the sampled covariance matrix from sampled instances (a sample 
number of 100 times the matrix dimensions). Second, �̂ιι

(
f
)
 , a precision matrix, is estimated with our hgLASSO 

algorithm (Fig. 6b), and third, from this estimate, the unbiased precision matrix unb
(
�̂ιι

(
f
))

 (Fig. 6c) is com-
puted as proposed by the theory. Fourth, we obtain the histogram of a z-statistic Z

(
f
)
 (Fig. 6d) for this unbiased 

estimate at the null hypothesis matrix entries (zero precision-matrix entries �ιι

(
f ; i, j

)
= 0 ), and this histogram 

accurately resembles the theoretical Rayleigh distribution. Computing the z-statistic was performed by scaling 
the unbiased precision matrix using the theoretical variances �̂�

(
f ; i, j

)
.

Fifth, we remove the values under the Rayleigh threshold (Rayleigh corrected precision-matrix) obtained 
from the 0.05 p value of the theoretical Rayleigh distribution. With the Rayleigh threshold, from the originally 
dense unbiased precision matrix (Fig. 6c), we obtain an improved corrected result (Fig. 6e) in comparison to the 
sparse biased hgLASSO precision matrix (Fig. 6b). The hgLASSO (base of all estimated maps), as we illustrate 
in the ultrahigh dimensionality, a robust convergence pattern (Fig. 6f) for multiple repetitions of the experi-
ment (100 trials). The z-statistic histograms for these 100 trials reflect the high coincidence with the theoretical 
Rayleigh distribution (Fig. 6g).

Erroneous multistep and exact onestep functional connectivity for the HIGGS model in simu‑
lations. The proof of concept for the HIGGS model (Fig. 7) employs random precision-matrices instances 
�ιι

(
f
)
 similar to the previous results in section "Unbiased functional connectivity via hgLASSO inverse solu-

tion of the GGS model" but yielding binary functional connectivity as defined with the amplitude of Hermitian 
graph-elements 

∣∣�ιι

(
f
)∣∣ . Our binary “ground-truth” functional connectivity 

∣∣�ιι

(
f
)∣∣ (Fig.  7 left-center) is a 

much more plausible target of estimation errors via classification scores (Fig. 7 right).
Simulations of the HIGGS model producing EEG observations v

(
t, f

)
 are due to brain oscillations ι

(
t, f

)
 

steaming from an alpha rhythm peaking at 10 Herts, which follows from an interpretation of the GGS model 
in terms of second-order stochastic stationary dynamics. See the description of these simulations in Materials 
and Methods section "Validating performance for HIGGS inverse solutions". The brain oscillations ι

(
t, f

)
 are 

projected through forward operators Lvι that follow two types of EFM geometrical designs: (1) Planar EFM 
(Fig. 7 left-top), recreating an ideal circumstance where concentric circles recreate the cortical network, head 

Figure 8.  Experimental confirmation of performance in macaque simultaneous EEG/ECoG recordings (left). 
A large-scale alpha oscillatory network (left-center) screened from ECoG with certain method is the target of 
HIGGS inverse-solutions. Incongruence base on comparing these solutions under the ECOG (left-top) and 
EEG (left-bottom) EFM. Employing as reference the fine-grained ECOG solutions (a1,b1), incongruence of the 
EEG solutions are measured with Kulback–Leibler, LogEuclidean and Remaniean metrics (right) confirming the 
performance in Fig. 2. This incongruence due to leakage and localization errors is represented with the Kulback–
Leibler divergence (KLD) kernel “EEG/ECoG+ EEG\ECoG– 2I” (a3,b3), for EEG and ECoG precision-matrices.
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and EEG sensor geometries, and EEG fields lead through homogeneous conductance. (2) Human EFM (Fig. 7 
left-bottom), recreating an average human EEG circumstance. Then, the GGS model precision matrix �ιι

(
f
)
 

(Fig. 7 left-center), which describes brain oscillations ι
(
t, f

)
 at the alpha peak, is the target of the estimation �̂ιι

(
f
)
 

with all types of inverse solutions exposed here (Fig. 7 a1-g1,  a2-g2). See these inverse solutions in Materials 
and Methods section "Hidden Gaussian Graphical Spectral (HIGGS) model and inverse solutions via multistep 
MAP1 and onestep MAP2".

First, three onestep MAP2 inverse solutions are implemented as successive approximations due to MAP1 
inverse solutions within an Expectation–Maximization (EM) loop for 1) brain oscillations ι̂

(
f , t

)
 in the EM 

expectation stage and 2) functional connectivity �̂ιι

(
f
)
 in the EM maximization stage. The functional connec-

tivity MAP1 (maximization stage) determines a GGS model precision matrix �̂ιι

(
f
)
 from the expected covari-

ance matrix �̂ιι

(
f
)
 via the unbiased Hermitian Graphical LASSO (hgLASSO) algorithm (Fig. 7a1, a2). See this 

algorithm in Materials and Methods sections "Gaussian Graphical Spectral (GGS) model and MAP1 inverse 
solution with Hermitian Graphical LASSO (hgLASSO)" and "GGS model MAP1 inverse solution via Hermitian 
Graphical LASSO (hgLASSO) algorithm". Here, we also introduce violations to the hgLASSO unbiasedness 
conditions in the functional connectivity MAP1 via the Hermitian graphical Ridge (hgRidge) (Fig. 7b1, b2) and 
Hermitian graphical Naïve (hgNaïve) (Fig. 7c1, c2).

Second, the multistep MAP1 inverse solutions are implemented for 1) brain-oscillations ι̂
(
f , t

)
 via ELORETA 

(Fig. 7d1, d2)56 and LCMV (Fig. 7e1, e2)55 in the first step and 2) functional connectivity �̂ιι

(
f
)
 in the second 

step and from the sampled covariance-matrix �̂ιι

(
f
)
 via the unbiased Hermitian Graphical LASSO (hgLASSO) 

algorithm. Here, we also introduce a violation to the hgLASSO Hermitian graph elements in the functional 
connectivity MAP1 via the approximation of Graphical LASSO (gLASSO)35,41. This violation is incorporated in 
the second step for either multistep MAP1 inverse solutions with the first step via ELORETA (Fig. 7f1, f2) or 
LCMV (Fig. 7g1, g2). The sampled covariance matrix �̂ιι

(
f
)
 is determined from the first-step brain oscillations 

ι̂
(
f , t

)
 defined as a filtered  process41 and not its Hilbert  transform53. To achieve a fair comparison, we employed 

the optimal regularization parameter for the initial inverse solutions eLORETA and LCMV selected by general-
ized cross-validation of the sampled covariance matrix for the data �̂vv

(
f
)
.

The accuracy of the functional connectivity estimates was assessed by the classification scores of a binary 
ground true 

∣∣�ιι

(
f
)∣∣ (Fig. 7 left-center) by measures of the Receiver Operator Characteristic (ROC) (Fig. 7 right). 

These measures are given for inverse solutions 
∣∣∣�̂ιι

(
f
)∣∣∣ due to the planar (Fig. 7right-top) and human (Fig. 7right-

bottom) EFMs. The measures used in the radar graphs were the global AUC (area under the curve) and partial 
SENS (sensitivity), SPEC (specificity), PREC (precision), and RECALL (F1 or Fisher scores) measured at the 
optimal operating point of the ROC curve.

Confirmation of the performance of the functional connectivity for the HIGGS model in 
macaque EEG/ECoG experiments. We leverage an experimental setup (Fig.  8) offering for macaque 
(1) large-scale coverage resting-state ECoG observations vECoG

(
t, f

)
 onto the left cortical hemisphere and (2) 

simultaneous EEG observations vEEG
(
t, f

)
123. The ECoG observations vECoG

(
t, f

)
 are from a high-density sub-

dural sensor array that was placed surgically onto the macaque cortex and provides (Fig. 8 left-top). See the 
experimental preparation and inverse solutions from ECoG �̂

ECoG

ιι

(
f
)
 and EEG �̂

EEG

ιι

(
f
)
 in Materials and Meth-

ods section "Validating performance for HIGGS inverse solutions", in this case targeting a functional network 
underlying the resting-state alpha rhythm.

On the one hand, a fine-grained EFM forward-operator LECoGvι  for the ECoG observations provides accurate 
functional network detection (Fig. 8 left-center), as well as functional connectivity by any onestep (Fig. 8a1) or 
multistep (Fig. 8b1) inverse solutions �̂

ECoG

ιι

(
f
)
 . On the other hand, sensor low density and several tissue layers 

yield a coarse-grained EFM forward operator LEEGvι  for the EEG observations (Fig. 8 left-bottom) and therefore as 
expected incongruent inverse solutions �̂

EEG

ιι

(
f
)
 (Fig. 8a2, b2) regarding an ECoG reference �̂

ECoG

ιι

(
f
)
 (Fig. 8a1, 

b1) as proposed  in125.
We employ the Kullback–Leibler Divergence (KLD)127 as the proxy to measure this incongruence. The KLD 

distance measures the relative entropy between pairs of multivariate probability distributions. In this case, the 
distributions are Gaussian Graphical Spectral (GGS) models p

(
ι
(
t, f

)∣∣�̂EEG

ιι

(
f
))

 and p
(
ι
(
t, f

)∣∣�̂ECoG

ιι

(
f
))

 

expressed as a function of the estimated precision matrices �̂
EEG

ιι

(
f
)
 and �̂

ECoG

ιι

(
f
)
 summarizing the GGS prop-

erties. A multivariate effect of distortions locally (for each graph element) for EEG �̂
EEG

ιι

(
f
)
 and regarding ECoG 

�̂
ECoG

ιι

(
f
)
 may be measured by means of the KLD kernel for onestep (Fig. 8a3) and multistep (Fig. 8b3) inverse 

solutions. For a quantitative analysis of the performance (Fig. 8 right), we report distances based on the KLD 
metric and others (Riemannian and Log-Euclid).

Discussion
Theory. The state-of-the-art connectivity inverse solution MEG-ROI-nets Graphical LASSO (gLASSO)41, 
which is employed here as a baseline here for comparison, was completely limited to only real-valued operations. 
The flaw is twofold due to instability in large scale and the lack of MEG-ROI-nets gLASSO algorithms capable 
of dealing with models that dwell in the complex-variable space of the Fourier or Hilbert transform under the 
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GGS  assumptions30,45,80,81,83,87,128–131. It was therefore our task to provide a solution to estimation errors produced 
by such algorithms as discussed in Introduction section "Second step MAP1 inverse solution for functional con-
nectivity of the GGS model and estimation errors".

A gLASSO inverse solution based upon a real-valued sampled covariance �̂ιι

(
f
)
 for ι

(
t, f

)
 defined as the 

filtered process for ι(t) or sometimes the Hilbert envelope −log
∣∣ι
(
t, f

)∣∣ is claimed to encode in �̂ιι

(
f
)
 all con-

nectivity information in state-of-the-art neuroimaging practice but only does it partially. Here, we employed the 
MEG-ROI-nets gLASSO41 upon the real-valued sampled covariance matrix �̂ιι

(
f
)
 for the filtered process ι

(
t, f

)
 

which does not uphold the Gaussian Graphical Spectral (GGS) model assumptions but is a less gross approxima-
tion than Hilbert envelope −log

∣∣ι
(
t, f

)∣∣1,21,25–27,39–41,132,133.
For oscillatory network phenomena estimation of connectivity �̂ιι

(
f
)
 required both amplitude and phase 

information that was determined with the Hermitian Graphical LASSO (hgLASSO)20. We remind the reader 
a hgLASSO inverse solution introduced in Materials and Methods section "Gaussian graphical spectral (GGS) 
model and MAP1 inverse solution with Hermitian graphical LASSO (hgLASSO)" and section "GGS model 
MAP1 inverse solution via Hermitian graphical LASSO (hgLASSO) algorithm" is only resource to find estimates 
�̂ιι

(
f
)
 for the complex-valued precision matrix of such GGS model. At every frequency, the complex-valued 

sampled covariance matrix �̂ιι

(
f
)
 for ι

(
t, f

)
 defined as the Hilbert transform for ι(t) conforms to the so-called 

cross-spectrum. Only this quantity, or equivalently its matrix inverse or precision-matrix �̂ιι

(
f
)
 , fully encodes 

the dynamical properties of oscillatory components ι
(
t, f

)
 in activity ι(t).

Our hgLASSO algorithm showed consistency in simulations to the theoretical Rayleigh tendency of ampli-
tudes for the Hermitian graph-elements in complex-valued Gaussian Graphical Spectral (GGS) models (Fig. 6). 
Such Rayleigh tendency in Hermitian graph-elements30,80,81 was a natural extension of the Chi-Square tendency 
in the real-valued  case82,134. The complexity of the proposed algorithm was bounded by the Hermitian matrix 
eigen decomposition and we shall note no gLASSO algorithm was available which fulfills statistical guarantees, 
performs stably in the large dimensionality, and deals with a complex-valued cross-spectrum. Our hgLASSO 
is therefore an optimal procedure amongst state-of the-art algorithms for this type of graphical model either in 
real or complex-variable29,30,35,37,41,45,81–83,128,135,136.

Estimation of the Hidden GGS (HIGGS) connectivity �̂ιι

(
f
)
 in simulations (Fig. 7) and macaque real data 

(Fig. 8) as in typical real life situations assumed prescreened network nodes by some method determining the 
statistically significant cortical regions or nodes for a given resting state or task activity transient ι

(
t, f

)
38,40,41,137. 

Implementing onestep and multistep connectivity estimates �̂ιι

(
f
)
 in the subspace of prescreened network 

nodes ruled out other sources of distortions and allowed us to evaluate in isolation the estimation errors exposed 
in Introduction section "First step MAP1 inverse solution for brain oscillations and estimation errors". These 
estimation errors are caused in theory by misspecification of the HIGGS model in inverse solution targeting 
connectivity estimates �̂ιι

(
f
)
 . Other sources of distortion were the localization errors and leakage in activity 

estimates ι̂
(
t, f

)
 that would be produced by multistep (in the first step) or onestep (successive approximations) 

upon the whole cortical  space38,41,42,54.
Inverse solutions for HIGGS connectivity �̂ιι

(
f
)
 were implemented via the hgLASSO, for both onestep, in 

successive approximations in an iterative fashion, and multistep, in a first step, estimating the cross-spectrum 
�̂ιι

(
f
)
 as described in Materials and Methods section "Hidden Gaussian graphical spectral (HIGGS) model and 

inverse solutions via multistep MAP1 and onestep MAP2". Our onestep connectivity inverse solution was an 
extension to the Expectation Maximization (EM) algorithm as with the identification of the covariance matrix 
�̂ιι

(
f
)
 in a Covariance Component Model (CCM)73–76 or identification of the autoregressive-coefficients K̂ιι

(
f
)
 

in a State Space Model (SSM)48,77,78. Implementation of the hgLASSO algorithm defined the flavor of the HIGGS 
model onestep identification connectivity defined as the complex-valued precision matrix �̂ιι

(
f
)
 . HIGGS obtain-

ing an unbiased, scalable and stable inverse solution for a locally optima GGS within EM  iterations88 was not 
considered by previous CCM or SSM identification approaches.

Validation. We spoused our validation of estimation errors in HIGGS inverse solutions in electroencepha-
logram (EEG) in simulations (Fig.  7) and macaque real data (Fig.  8), since this is the “worst case scenario” 
compared to magnetoencephalogram (MEG) or electrocorticogram (ECoG). EEG is exquisitely sensitive to con-
ductivity heterogeneity of head tissue layers, which produces quite large distortions of the electric lead fields 
Lvι

7–9. Additionally, the high conductivity of the scalp leads to blurring of the EEG potential, which aggravates 
the estimation errors of any activity estimates ι̂

(
t, f

)
 or its cross-spectrum �̂ιι

(
f
)
 , that are transferred to con-

nectivity estimates �̂ιι

(
f
)

138. Thus, EEG results for connectivity �̂ιι

(
f
)
 presented here can be considered a lower 

bound for those of MEG or ECoG.
The methods under evaluation fell into three different modalities: I) the onestep successive approximations, 

employing our hgLASSO unbiased estimator for �̂ιι

(
f
)
 (Fig. 7 a1, a1), and employing estimators hgRidge (Fig. 7 

b1, b2) and hgNaïve (Fig. 7 c1, c2) which violated this unbiasedness condition in �̂ιι

(
f
)
 . II) the multistep meth-

ods with eLORETA56 (Fig. 7 d1, d2) and LCMV55 (Fig. 7 e1, e2), both employing the same hgLASSO unbiased 
estimator for �̂ιι

(
f
)
 . It has been  argued53 that these types of multistep estimators reduce connectivity estimation 

errors. III) the same multistep methods with eLORETA (Fig. 7 f1, f2) and LCMV (Fig. 7 g1, g2) but employing 
MEG-ROI-nets gLASSO  estimator35 for the real-valued �̂ιι

(
f
)
 implemented in the MEG-ROI-nets  package41 

which does not uphold the GGS assumptions.
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Even with the relatively simple ground truth some methods produced large estimation errors in these simu-
lations (Fig. 7) indistinctly, employing (I) an idealized or planar (Fig. 7 left top) and (II) a human (Fig. 7 left 
bottom) Electromagnetic Forward Model (EFM). In simulations (Fig. 7 right) partial classification measures 
RECALL, PREC, and SENS quantify and confirm the essential flaw with multistep methods employing (II) 
hgLASSO or (III) gLASSO. The perfect multistep estimation in the planar EFM (Fig. 7a1), which benefited 
from the renowned statistical goodness of eLORETA and our unbiased hgLASSO algorithm, was undone in the 
human EFM (Fig. 7a2). Another multistep solution based on LCMV (Fig. 7e1, e2), with excellent performance 
anywhere else, does not reach expectations even in the planar EFM ideal circumstances (Fig. 7e1). Only the 
onestep hgLASSO sparse inverse solution showed no major estimation errors (Fig. 7a1, a2) and outscores any 
other non-sparse onestep (Fig. 7b1, b2, c1, c2) or sparse multistep (Fig. 7d1, d2, e1, e2) solutions in both planar 
(right-top) and human (right-bottom) models.

Connectivity leakage measured as 20% in PREC or RECALL (shown as colormap false positives) is a sys-
tematic property of these multistep methods appearing even in a relatively simple human network model. The 
situation is even worse when using the gLASSO approximation for these methods, which corrects leakage in 
either simulation model (Fig. 7f1, f2, g1, g2) as claimed  before41,53 but produces extreme estimation errors, yield-
ing random classification according to all classification measures. gLASSO fails under the specific assumption 
of a GGS model, which bases connectivity on Hermitian graph elements. Previous simulation studies validating 
this correction method did not corroborate them under the GGS assumption and were limited to even simpler 
network models (up to 5 nodes)41.

The qualitatively sparse pattern (Fig. 7) obtained in simulations via the onestep (Fig. 7a1, a2) and multistep 
eLORETA (Fig. 7d1, d2), with both methods employing the unbiased hgLASSO inverse solution, resembled the 
sparsity simulated in the ground truth (Fig. 7 left center) and minimized connectivity estimation errors. Sparsity 
renders factual biological circumstances such as efficiency in large-scale network  phenomena139, as we illustrated 
with the macaque ECoG (Fig. 8) with the sparse alpha network (Fig. 8 left center) and sparse connectivities 
(Fig. 8a1, b1) obtained from any (onestep or multistep) method employing the unbiased hgLASSO estimator.

Remarkably, the dimensionality of the macaque ECoG alpha network (Fig. 8 left-center) ruled out the pos-
sibility of using current implementations of the gLASSO algorithm implemented  in35,83,87, or by MEG-ROI-nets41. 
Confirmation in macaque shows the connectivity determined for this type of network from the ECoG (Fig. 8 
left-top) and EEG (Fig. 8 left-bottom) by means of the onestep hgLASSO (Fig. 8a1, a2) and multistep eLORETA 
hgLASSO (Fig. 8b1, b2).

The macaque experiment (Fig. 8) confirms the benefit in our onestep hgLASSO inverse solution, targeting a 
severely ill-posed inverse problem in recovering connectivities for a large-scale alpha network (Fig. 8 left-center) 
based only on EEG 19-sensor observations (Fig. 8 left-bottom). Indeed, for both the onestep and multistep 
methods, there are striking similarities in the ECoG (Fig. 8 a1, b2) and EEG (Fig. 8a2, b2) solutions. Our onestep 
hgLASSO solutions (Fig. 8a1, a2) maximize the sparsity. With the Kullback–Leibler divergence (KLD) kernel 
(Fig. 8a3, b3), we illustrate contraposition between these sparsity and distortion levels, measured as multivariate 
relative entropy for GGS models. This measure represents divergence (incongruence) from the identity matrix for 
the product between the EEG precision matrix and ECoG covariance that would express a multivariate effect of 
distortions locally (for each graph element). The norm for this matrix, the KLD metric and others (Riemannian 
and Log-Euclid) shows a 1/3 congruence improvement.

Conclusion
In this manuscript, we leveraged Bayesian inverse problem theory to investigate the benefits and shortcomings in 
facing functional connectivity estimation with a large family of inverse solution methods. This estimation must 
be taken with care from mild to severely ill-conditioned and high-dimensional settings such as the ones dealt 
with here, in simulations and real data. In such settings, achieving exact functional connectivity estimates, via 
Bayesian MAP2 methods for the HIGGS model is unfeasible and requires approximations. We have introduced 
a reasonable approximation leading to the iterated MAP1s that is feasible, via quasilinear inverse solutions that 
incorporate our hgLASSO algorithm. Our HIGGS implementation specifying the hgLASSO a priori achieves 
the best performance due to unbiased functional connectivity estimates at every iteration, outperforming state-
of-the-art methods. The Bayesian theory and methods presented here could potentially be applied to signal 
processing and imaging other biological phenomena described by the cross-spectrum.
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