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E pluribus unum interpretable 
convolutional neural networks
George Dimas , Eirini Cholopoulou  & Dimitris K. Iakovidis *

The adoption of convolutional neural network (CNN) models in high-stake domains is hindered 
by their inability to meet society’s demand for transparency in decision-making. So far, a growing 
number of methodologies have emerged for developing CNN models that are interpretable by 
design. However, such models are not capable of providing interpretations in accordance with human 
perception, while maintaining competent performance. In this paper, we tackle these challenges with 
a novel, general framework for instantiating inherently interpretable CNN models, named E pluribus 
unum interpretable CNN (EPU-CNN). An EPU-CNN model consists of CNN sub-networks, each of 
which receives a different representation of an input image expressing a perceptual feature, such as 
color or texture. The output of an EPU-CNN model consists of the classification prediction and its 
interpretation, in terms of relative contributions of perceptual features in different regions of the input 
image. EPU-CNN models have been extensively evaluated on various publicly available datasets, as 
well as a contributed benchmark dataset. Medical datasets are used to demonstrate the applicability 
of EPU-CNN for risk-sensitive decisions in medicine. The experimental results indicate that EPU-CNN 
models can achieve a comparable or better classification performance than other CNN architectures 
while providing humanly perceivable interpretations.

Recently the commercial applicability of Machine Learning (ML) algorithms has been regulated through legis-
lation acts that aim at making the world ‘fit for the digital age’ with requirements, safeguards, and restrictions 
regarding ML and automatic decision-making in  general1. A crucial aspect regarding the compatibility of ML 
models concerning these regulations is interpretability. But how is the interpretability of ML models defined? 
According to the recent  literature2, interpretability refers to a passive characteristic of a model, indicating the 
degree to which a human understands the cause of its decision. Hence, the provided interpretations of the 
decision-making process of a model can limit its opaqueness and earn users’ trust, e.g., by offering interpreta-
tions for risk-sensitive decisions in medicine. In real-world tasks, the discriminative power of ML models, as 
expressed by their performance measures, e.g., their predictive accuracy, is regarded as an insufficient descriptor 
of their  decisions3.

Various approaches have tackled interpretability from a post hoc perspective, i.e., using methods that receive 
as input a fitted black-box to determine the causality of its  predictions4. Post hoc approaches include image 
perturbation methods applied on the network by masking, substituting features with zero or random counter-
factual instances, occlusion, conditional sampling, etc. Such approaches aim at revealing impactful regions in 
the image that affect the classification  result5,6. Other post hoc methodologies handle the interpretation problem 
by constructing simple proxy models, with similar behavior to the original model and implement the perturba-
tion notion at a feature-level7,8. This approach limits the credibility of the explanations, since the proxy model 
only approximates the computations of the black  box9. Another set of techniques that reduce the complexity 
of operations to achieve interpretability utilize the gradient that is backpropagated from the output prediction 
to the input layer. These methods construct saliency maps by visualizing the gradients to present areas that are 
considered important by the  network10; solely relying on their explanations, however, can be  misleading11. In 
general, these methods aim at interpreting the inference of a deep learning model after its development and train-
ing, which can lead to unreliable  interpretations12. Another drawback of applying these post-hoc methodologies 
to general CNN models is that the saliency maps that indicate important regions for the prediction outcome are 
derived from a specific latent image representation of a layer of the model. These representations are a result of 
the model’s learning process and their interpretations are not  perceptual13.

A different approach to interpretability is the development of ML models that are interpretable by design, e.g., 
decision trees, lists, and  sets14. Such models are also referred to as inherently interpretable, and usually, introduce 
a trade-off between interpretability and accuracy. The structure of such a model is simpler; thus, its predictive 
performance may be inferior to that of a more complex black-box model. However, this trade-off might be 
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preferable in high-risk decision-making domains due to the importance of understanding, validating and trust-
ing ML  models15. CNNs with embedded feature guiding and self-attention mechanisms in their architecture, can 
also be regarded as inherently  interpretable16. These mechanisms derive interpretations by visualizing saliency 
maps and CNN features indicating certain concepts on the input  image17. However, such models usually do not 
associate the saliency maps with human-perceivable features, and do not account for the contribution of these 
salient regions to the result. Other methods quantify the alignment of predefined concepts with learned filters 
in different layers of a network or aim towards the disentanglement of  features18 however, they do not address 
the direct contribution of the concept representations to the  prediction19. Also, training such models requires a 
considerable manual effort for additional annotations with respect to the human-understandable concepts illus-
trated in each  image20. Approaches extending regular CNNs to encode object parts in deeper convolutional layers, 
have also been proposed; nevertheless, they usually result in performance  degradation21. Another approach is to 
leverage the intelligibility and expressiveness of Generalized Additive Models (GAMs)22, which are recognized 
for their  interpretability23. The interpretation of a GAM is based on observations associating the effect of each 
input feature to the predicted output. A variety of applications incorporate GAMs into their methodology to 
leverage their expressiveness in domains such as  healthcare24. GAMs based on Multilayer Perceptrons (MLPs)25, 
were recently proposed for interpretable data classification and regression; however, these particular models are 
not tailored for contemporary, CNN-based, computer vision tasks.

State-of-the-art interpretable CNN models usually exploit the information deriving from saliency maps, 
indicating image regions on which the model focuses its attention; however, it is not apparent how these regions 
contribute to the predictions. A recent relevant methodology incorporates interpretable components into a CNN 
model to explain its  predictions26; nevertheless, the provided interpretations are intertwined with predefined edge 
kernels, and the selection of the color components does not consider any aspects of human perception. In general, 
there is a lack of methodologies that could explain the classification of an image based on perceptual features, i.e., 
features such as color and texture, described in a way that can be easily perceived and interpreted by  humans27.

Several studies have investigated ensemble models that offer interpretable results. However, most of them are 
targeted in stacked generalization, i.e., they combine lower-level models to minimize the generalization error for 
multiple  predictors28. These studies propose ensemble models incorporating CNN sub-networks with different 
architectures that are trained separately by receiving the same input, or CNN sub-networks with the same archi-
tecture trained on a different partition of the same  data29. The different CNN sub-networks are usually pre-trained 
on large-scale datasets. Typically, the final output is derived by some kind of a meta-learner model that combines 
all the individual predictions of the sub-networks of the  ensemble30,31. The current CNN ensemble approaches 
rely mainly on heatmaps generated by post-hoc models to be regarded as  interpretable32,33. More importantly, 
these approaches focus on improving the overall predictive accuracy, rather than implementing a unified frame-
work that considers the interactions between each component to provide an inherently interpretable outcome.

In this paper, we propose a novel framework for the construction of inherently interpretable CNN models for 
computer vision tasks, motivated by the need for perceptual interpretation of image classification. The proposed 
framework is named after the Latin expression E pluribus unum interpretable CNN (EPU-CNN), which means 
“out of many, one” interpretable CNN. A major advantage of the proposed framework is that it is generic, in the 
sense that it can be used to render conventional CNN models interpretable. Given a base CNN architecture, 
an EPU-CNN model can be constructed as an ensemble of base CNN sub-networks, by following the GAM 
approach. The EPU-CNN framework requires that each sub-network of the model receives a set of orthogonal 
(complementary) perceptual feature representations of the same input image. EPU-CNN is therefore scalable as 
it can accommodate an arbitrary number of parallel sub-networks corresponding to different perceptual features. 
The sub-networks are jointly trained and working as one, to automatically generate interpretable class predic-
tions. An EPU-CNN model associates the perceptual features with salient regions, as computed by the different 
sub-networks, and it explains a classification outcome by indicating the relative contribution of each feature to 
this outcome using opponent semantics. Therefore, EPU-CNN is appropriate for a wide range of application 
contexts, since perceptual features, such as color and texture, are essential for the discrimination of image con-
tent by  humans34. For example, in biomedicine, abnormalities can be mainly discriminated using color features 
in endoscopy, texture features in magnetic resonance imaging (MRI)35, and both color and texture features in 
dermoscopy for assessment of  malignancies36. In agriculture and food quality assessment, color and texture play 
a decisive role for the selection of healthy plants, and for the identification of best quality fruits and  meat37,38. 
Overall, there is a variety of industrial applications that could benefit from an interpretable classification system 
based on such perceptual  features39.

To the best of our knowledge, EPU-CNN is the first framework based on GAMs for the construction of inher-
ently interpretable CNN ensembles, regardless of the base CNN architecture used and the application domain. 
Unlike current ensembles, the models constructed by EPU-CNN enables interpretable classification based both 
on perceptual features and their spatial expression within an image; thus, it enables a more thorough and intui-
tive interpretation of the classification results. Notably, ensembling shallower CNN architectures can be more 
efficient than training a single large  model40. EPU-CNN, however, differentiates from other CNN ensembles both 
in terms of mathematical formulation and with respect to the inputs that each sub-network receives, i.e., other 
CNN ensembles usually propagate the same image representation to its components and each subnetwork is 
trained  seperately41. Furthermore, EPU-CNN constitutes a unified framework, where all components are trained 
simultaneously to offer inherently interpretable classification results. In this way, EPU-CNN provides a novel 
approach in constructing CNN ensembles with the capacity of providing perceptually interpretable predictions. 
Furthermore, unlike previous interpretable CNN  models21,42, the classification performance of EPU-CNN models 
is comparable to or higher than that of their non-interpretable counterpart, which in the case of EPU-CNN is 
the base CNN model. This is demonstrated with an extensive experimental evaluation on various biomedical 
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datasets, including datasets from gastrointestinal endoscopy and dermatology, as well as a novel contributed 
benchmark dataset, inspired by relevant research in cognitive  science43.

Methodology
As a framework, EPU-CNN follows the GAM approach for the construction of interpretable image classifica-
tion models. GAMs represent a class of models extending linear regression models by using a sum of unknown 
smooth functions 

∑
fi(xi) , i = 1, 2, …, N. A GAM is formally expressed as follows:

where x = (x1, x2, …, xN)T, x ∈ RN , denotes an input feature vector, g(∙) is a link function (e.g., logit), β is a bias 
term and [Y|x] denotes the expected value of the response variable Y, given an input x. Each fi(∙), represents a 
univariate smooth function, fi : R → R , mapping each xi ∈ R to a latent representation, fi(xi), through which, 
xi participates to the result. This structure is easily interpretable because it enables the user to explore how each 
input variable xi affects the predicted output.

The EPU-CNN framework considers Eq. (1) as a template to construct an interpretable ensemble of CNNs 
from a conventional, non-interpretable, CNN base model (Fig. 1). The sub-networks of the ensemble are arranged 
in parallel, and each sub-network has the same architecture with the base model. Each sub-network receives a 
different input, which should be a perceptual feature representation of an input image. This representation will 
be referred to as Perceptual Feature Map (PFM) of an input image, and it can be obtained by an image transfor-
mation revealing a physical property of choice that can be easily perceived and interpreted by humans over the 
input image space, e.g., color and  texture27. The number of sub-networks is determined by the number of different 
PFMs required to render a CNN interpretable for a particular application. Considering that each sub-network of 
an ensemble with a parallel topology should receive inputs with complementary  information44, the PFMs should 
be orthogonal. Let us consider N different PFMs Ii, i = 1, 2, …, N, of an input image I. Each Ii is provided as input 
to a corresponding sub-network Ci(∙; ηi), which is parametrized by ηi, and trained jointly with the rest of the 
sub-networks. Hence, the input of an EPU-CNN model is a tensor I = (I1, I2, …, IN) with dimensions of N × H × W, 
where N, H, and W denote the number, height, and width of the PFMs, respectively. Each sub-network provides 
a univariate output Ci(Ii; ηi). The output of the EPU-CNN ensemble is computed by summing up all Ci(Ii; ηi), 
i = 1, 2, …, N. The output of each Ci(Ii; ηi) can be regarded as a Relative Similarity Score (RSS), quantifying the 
resemblance of image I to a class with respect to Ii. Considering a binary classification problem, RSS takes values 
within the range of [− 1, 1]. It represents the degree of similarity of an input image to a particular class, with 
respect to a particular PFM Ii. An absolute RSS value closer to 1 implies a greater similarity, whereas a positive 
or negative sign of the RSS associates the similarity with the one class or the other. By visualizing these scores, 
it becomes easier for a human to understand how each Ii affects a classification result of the EPU-CNN model. 
Furthermore, by examining the layer activations of Ci(Ii; ηi), the scores can be associated with respective image 
regions; thus, enabling a deeper interpretation of the classification result, based on the spatial arrangement of the 
observed features within the input image. The details about the PFMs considered in this study, the formulation 
of the classification model, and its interpretable output, are described in the following paragraphs.

Opponent perceptual feature maps. In this study the generation of PFMs is motivated by the theory of 
human perception of color vision proposed by Hering in the 1800’s, and the opponent-process theory proposed 
in the 1950’s by Hurvich and  Jameson45. The behavior of a cell in the retina of the human visual system is deter-
mined by a pattern of photoreceptors, which comprises a receptive field. Receptive fields have a center-surround 
organization, which causes the cell to exhibit spatial antagonism, e.g., a cell that is excited by a light stimulus in 
the center of its receptive field will be inhibited by a light stimulus in the annulus surrounding the excitatory 
center. There are different types of photoreceptors, with different sensitivities to light frequency and intensity, 
responding differently to chromatic and luminance variations. Depending on the type of the photoreceptors, 
receptive fields can be color-opponent or spatially-opponent without being color-opponent46. Studies have pro-
vided indications that the transmitted stimuli to the retina can be decomposed into independent luminance and 
chromatic-opponent sources of information, and that the chromatic and luminance information of an image are 
processed through separate pathways by the human visual  system47,48. Also, computer vision experiments have 
indicated the encoding of the chromatic and luminance components separately, as a more effective approach for 
image  recognition48,49.

Motivated by these studies, the proposed framework considers an opponent representation of the input 
images, focusing on both color and texture, which are two decisive properties for image  understanding27. Also, 
color and texture provide cues enabling inferences about the shapes of objects and surfaces present in the image. 
Opponent color spaces have been proposed to cope with drawbacks of the RGB color space, such as the high 
correlation between the R, G and B color components, and its incompatibility with human perception. Rep-
resentative examples include, Ohta’s color space, which is obtained as a linear transformation of RGB, and it 
has been proposed in the context of color image segmentation, and CIE-Lab, which is obtained as a non-linear 
transformation of RGB, proposed as a device independent, perceptually uniform color space (i.e., a color space 
where a given numerical change corresponds to similar perceived change in color)50. Considering the effective-
ness of CIE-Lab in numerous applications in computer vision, especially in  biomedicine51, in this study CIE-Lab 
is considered as a basis for the derivation of three PFMs, corresponding to its components. All the components 
of CIE-Lab are approximately orthogonal. Components a and b encode two antagonistic colors that cannot 
be perceived together simultaneously, e.g., there is no “reddish-green” or “bluish-yellow” color. Specifically, 

(1)g(E[Y |x]) = β +

N∑

i=1

fi(xi),
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component a, expresses the antagonism between green-red hues (redness is expressed for a > 0, and greenness 
is expressed for a < 0), and component b expresses the antagonism between blue-yellow hues (yellowness is 
expressed for b > 0, and blueness is expressed for b < 0). The L component represents the perceptual lightness, 
which expresses an antagonism in luminance, between light and dark. This component, which is practically a 
greyscale representation of the RGB image, is usually characterized by the highest variance, as it concentrates 
rich information about the texture of the image  contents48.

Figure 1.  Outline of the EPU-CNN framework.
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In the field of computer vision, several studies have been based on spatial frequency representations of images, 
to effectively model texture for machine  perception52. Aiming to the interpretation of the classification outcomes 
based on perceptual texture characteristics, the L component is further analyzed with respect to its spatial fre-
quency. The human eye has a capacity to focus on the right range of spatial frequencies to capture the relevant 
details of images; thus, visual perception treats images at different levels of resolution. At lower resolutions, these 
details correspond to larger physical structures in a scene, whereas at higher resolutions the details correspond 
to smaller structures. The concept of multiresolution image representation can be modeled by the 2D Discrete 
Wavelet Transform (DWT)53. This representation is computed by decomposing the original image using a wavelet 
orthonormal basis. The computation of the 2D DWT is performed efficiently using the à trous algorithm, which 
is based on convolutions of the image with a pair for low and high-pass filters, called Quadrature Mirror Filters 
(QMFs), and dyadic down-sampling. A multilevel 2D DWT, focusing on different bands of non-overlapping 
spatial frequencies, can be performed by successive application of the 1-level 2D DWT on the filtered image 
with the lowest frequencies. The lowest frequency image of the last level represents a smooth approximation of 
the input image, where the different structures, e.g., objects, parts of objects and background, can be easier seg-
regated upon their intensity. Based on this observation, in the context of EPU-CNN, the approximation image 
of the third level of the 2D DWT was selected as a PFM representing the light–dark antagonism with sufficiently 
less noise than the original L component. The higher frequency bands can be used as PFMs representing image 
texture at a higher detail. The selection of frequency bands depends on the application context and the pursued 
interpretation detail. In this study, the highest frequency band of the first level of the 2D-DWT was selected to 
represent the antagonistic concept of coarse–fine texture by exploiting the edges of the image becoming clearer 
at that level. The concept of coarse–fine texture is associated with the density of image edges per unit  area54, 
because finer textures tend to have a higher density of edges per unit area than coarser textures. Such edge-based 
representations are perceptually meaningful for the discrimination of different objects in a  scene55. Consider-
ing that after each level of the 2D DWT the resolution of the image of the previous level is halved, and that the 
architecture of the base CNN models depends on the dimensions of the input image, the filtered images obtained 
after the application of the 2D DWT are up-sampled to match the size of the input image I. Thus, in this study 
the input tensor of an EPU-CNN model is formed as I = (I1, I2, I3, I4), where I1 and I2 are the PFMs corresponding 
to the light–dark and coarse–fine concepts respectively, I3 = b corresponds to blue-yellow, and I4 = a corresponds 
to the green–red concept. An example illustrating the opponent PFMs used in this study, is provided in Fig. 2.

Classification model. Given an input tensor I composed of N input PFMs, an EPU-CNN model performs 
feature extraction and classification. An EPU-CNN model is constructed from N CNN sub-networks Ci, with 
each sub-network receiving a PFM Ii, i = 1, 2, …, N, as input. Each Ci can be regarded as a function Ci(∙; ηi), Ci : 
XH×W → Z, where XH×W and Z are the input and univariate output space of each Ci, respectively. A sub-network Ci 
consists of two parts: (a) a feature extractor C1

i
(·;ωi) parametrized by ωi; and (b) a univariate function C2

i
(·; θi) 

parametrized by θi. Thus Eq. (1) becomes:

where C1
i  represents a feature extraction model composed of a CNN followed by a Fully Connected Neural Net-

work (FC-NN), that utilizes activation functions, which are not conditioned to be smooth, and C2
i  represents a 

single FC-NN layer utilizing a smooth activation function that provides the final univariate output of a CNN 
sub-network, ω{N} = {ω1, ω2, … ωN} and θ{N} = {θ1, θ2, … θN} are the parameters of C1

i  , C
2
i  , respectively. Equation (2) 

encapsulates the properties and definition of GAMs while extending its capacity to exploit CNN models for com-
puter vision tasks. Τhe feature extractor C1

i  , can be implemented by a conventional CNN architecture, whereas the 
number of output neurons and the activation function of C2

i  should be considered so to appropriately represent 

(2)g
(
E[Y |I; θ{N},ω{N}]

)
= β +

N∑

i=1

C2
i

(
C1
i (Ii;ωi); θi

)
,

Figure 2.  Illustration of the opponent perceptual features utilized by EPU-CNN.
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the classification outcome, in a binary or multiclass setting. In the context of binary classification, which is con-
sidered in this study, C2

i  is formulated with a single output neuron and the hyperbolic tangent (tanh) activation 
function, resulting in sub-network responses within the range of [− 1, 1]. Ultimately, this allows to intuitively 
express the contribution of each feature to the final prediction, as positive or negative contribution with respect 
to a class label. Since EPU-CNN is applied in the context of binary classification, we chose the final output of an 
EPU-CNN model to be within the interval of [0, 1]. However, the formulation of EPU-CNN presented in Eq. (2) 
indicates that the final output can fall out of the range of [0, 1], i.e., given a N number of Ci and a bias term β the 
right-hand part of Eq. (2) provides values that fall within the range of [β − Ν, β + Ν].

Accordingly, the logit(·) function, defined as:

can be used as a suitable link function, g(·). Considering that the inverse of logit is the log-sigmoid function σ, 
Eq. (2) can be rewritten as:

or

where η{N} = {η1, η2, …, ηN}. By utilizing the log-sigmoid function we bound the output of EPU-CNN within the 
desirable range of [0, 1] suitable for binary classification applications. Equation (5) is a formal representation of 
an EPU-CNN model as illustrated in Fig. 1. To train an EPU-CNN model in the context of binary classification, 
the Binary Cross Entropy (BCE) is chosen as a loss function to be minimized:

where j = 1, 2, 3…, k, EPUCNN(Ij; η{N}) is the class probability of Ij and yj is the ground truth label of Ij. As it can 
be observed from Eq. (6), the total error of the EPU-CNN, deriving from the responses of the CNN ensemble 
consensus, is used to update the parameters of each Ci(·; ηi) = C

2
i
(C1

i
(·;ωi); θi) of the parallel sub-network 

ensemble topology, simultaneously. It is worth noting that an EPU-CNN model can also be adapted for multiclass 
datasets, e.g., using n > 1 output neurons instead of one, in the case of n > 1 classes. Then, the network’s output can 
be interpreted by considering the contribution of the multiclass classification outcome of each CNN sub-network 
to the final classification result (see “Qualitative comparison with state-of-the-art interpretable methods” section).

Interpretable output. Given an input image, EPU-CNN provides three outputs, as illustrated in Fig. 1, 
namely, (a) the predicted class EPUCNN(I; η{N}); (b) a set of RSSs Ci(Ii; ηi), i = 1, 2, …, N, explaining why the image 
is classified in that class; and (c) a set of Perceptual Relevance Maps (PRMs) Si explaining which image regions 
are responsible for each RSS. Figure 3 illustrates the provided outputs of the model for two images that belong 
to different classes. The classification result is indicated as a textual label characterizing the input image, and the 
RSSs are visualized through bar-charts. Each bar-chart consists of horizontal red or green colored bars, indicat-
ing the magnitude of resemblance that each Ii is estimated to have for the banana and apple class, respectively. 
Additionally, the model provides with respect to each Ii, areas (PRMs) highlighting their resemblance to the 
predicted class. The color scaling from orange to yellow regions of the maps indicates the ascending intensity of 
activation.

Image-specific visualizations of RSSs enable the interpretation of the classification process of unlabeled input 
images. This is the most important aspect of an EPU-CNN model. For example, the image of Fig. 3a, is classi-
fied as a banana, because all PFMs, i.e., light–dark, coarse–fine, blue–yellow and green–red, as indicated by the 
respective RSSs, guide the prediction towards the banana class, which corresponds to negative Ci(Ii; ηi) responses 
(red). Accordingly, the image of Fig. 3b, is classified as an apple, because all PFMs guide the prediction towards 
the apple class, i.e., positive Ci(Ii; ηi) responses (green). However, it is not necessary for all the Ci(Ii; ηi) responses 
to be negative for an image to be classified as a banana, since EPU-CNN models consider the consensus of the 
sub-networks.

Perceptual Relevance Maps, Si, are generated to visually inspect the relevant regions of the input image I with 
respect to each RSS Ci(Ii; ηi). Let Fli = (f 1i,l , f

2
i,l , f

3
i,l . . . , f

n
i,l) indicate a tensor of feature maps with Fli ∈ R

n×h×w , 
where n, h, w denote the depth, height and width of Fli , and f ni,l ∈ R

h×w , as computed by a convolutional layer l 
of a Ci. The selection of l is intertwined with its capacity to highlight regions that contribute to the derivation of 
Ci(Ii; ηi). The deeper the layer l that Fli is extracted from, the more approximate the correspondence among the 

(3)logit(x) = −log

(
1

x
− 1

)
,

(4)E[Y |I; θ{N},ω{N}] = logit−1

(
β +

N∑

i=1

C2
i (C

1
i (Ii;ωi); θi)

)
,

(5)EPUCNN

(
I; η{N}

)
= σ

(
β +

N∑

i=1

Ci(Ii; ηi)

)
,

(6)
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feature maps f ni,l and the input image I; thus, a middle layer l of Ci is considered for the construction of each Si
56 

(“Ablation study” section).
To quantify the amount of information that each f ni,l encodes, we compute the Shannon Entropy (SE) scores. 

Then, half of the most informative f ni,l , i.e., f ni,l that correspond to the highest entropy scores, are aggregated to 
construct the Si. The aggregation is performed by averaging f ni,l features maps which results to the initial Si esti-
mation. Then Si is further refined, by applying a thresholding method that maximizes the entropic correlation 
between the foreground and background of Si, for maximum information  transfer57. The entropy-based thresh-
olding operation is performed to exclude values associated with lower saliency and communicate to the user 
the most informative regions. An example of different Si of input images I can be seen in Fig. 3. The generated 
Si illustrated in Fig. 3 are overlayed on the input images (Fig. 3a,b). The highlighted regions indicate the spatial 
association of similarity scores Ci(Ii; ηi) with the respective input image. Moreover, the numbers in the images 
of Fig. 3 indicate in which order the different outputs of an EPU-CNN can be considered by the user. Initially a 
user can examine the regions that are highlighted by the generated PRMs of each PFM (1). Subsequently, these 
regions are participating to the classification outcome, towards either class, with a magnitude that is indicated 
by the RSSs (2). Finally, the PRMs (1) along with the RSSs (2) can assist the user to interpret the class prediction 
of an EPU-CNN (3).

(a)

(b)

Figure 3.  Example of EPU-Net output visualization using bar-charts and saliency maps. The numbering 
indicates the interpretation order of EPU-CNN output. The label field indicates the predicted label. (a) 
Interpretation of an image classified as a banana. (b) Interpretation of an image classified as an apple.
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Experiments and results
Datasets. EPU-CNN was trained and evaluated on nine different datasets. Initially, a dataset specifically 
created for the evaluation of the interpretability capabilities of EPU-CNN was considered. The purpose of using 
this dataset was to demonstrate the capabilities of EPU-CNN with clear, simple, and perceptually meaning-
ful examples. Considering biomedicine as a critical application area for explainable and interpretable artificial 
intelligence (AI), four well-known biomedical benchmark datasets, consisting of endoscopic and dermoscopic 
images, was used for further evaluation. Furthermore, to demonstrate the generality of the proposed approach, 
four well-known benchmark datasets for real image classification were considered.

Interpretability dataset. For the purposes of this study, a novel dataset was constructed, named Banapple. The 
dataset consists of images of bananas and apples. It was created by collecting images, under the Creative Com-
mons license, from Flickr. The images illustrate bananas and apples with variations regarding the color, place-
ment, size, and background. The motivation for the construction of this dataset stems from studies in cogni-
tive science, where human perception is investigated using examples with discrete properties of bananas and 
 apples43. The experiments performed aim to demonstrate that EPU-CNN is capable of capturing the discrimina-
tive characteristics of bananas and apples by the perceptual features it incorporates, i.e., apples have a circular 
shape and usually red color, whereas bananas have a bow-like shape and usually a yellow color. In addition, 
samples that deviate from the average appearance of these objects can provide insights regarding the reliability 
of the interpretation of the model.

Endoscopic datasets. Publicly available datasets of endoscopic images were considered for the evaluation pro-
cess. Namely,  KID58,  Kvasir59 and a dataset that was part of the MICCAI 2015 Endovis  challenge60. The KID data-
set consists of 2352 annotated wireless capsule endoscopy (WCE) images of abnormal findings i.e., inflamma-
tory, vascular and polypoid lesions as well as images depicting normal tissue from the esophagus, stomach, small 
bowel and colon. The Kvasir dataset consists of images of the gastrointestinal (GI) tract, annotated and verified 
by medical experts. These include 4000 images of anatomical landmarks, i.e., Z-line, pylorus and cecum, and 
pathological findings of esophagitis, polyps and ulcerative colitis. The dataset also contains sets of images related 
to endoscopic polyp removal that were not utilized for this work. The MICCAI 2015 Endovis challenge dataset 
consists of 800 gastroscopic images of normal and abnormal findings, such as gastritis, ulcer, and bleeding.

Dermoscopic dataset. The evaluation process of EPU-CNN has also included the International Skin Image 
Collaboration Challenge 2019 (ISIC2019) dermoscopic image collection. ISIC2019 challenge provides a publicly 
available archive of 25,331 dermoscopic images of eight different categories of skin lesions, namely, melanoma, 
melanocytic nevus, carcinomas (both of basal and squamous cells), actinic and benign keratosis, dermatofi-
broma, and vascular lesions. These images were used to construct three different binary classification problems: 
(a) melanomas vs. melanocytic nevi (Me. vs. Ne.); (b) carcinomas vs. melanocytic nevi (Ca. vs. Ne.) and (c) 
carcinomas vs. melanomas.

(Ca. vs. Me.). The tasks (a) and (b) are characterized as a classification between abnormal (carcinomas, mela-
nomas) and normal (melanocytic nevus) skin lesions whereas task (c) discriminates two abnormal categories of 
different incidence and survival rates, i.e., melanomas have higher mortality rates than  carcinomas61. Task (a) 
comprised of 9000 images whereas task (b) and (c) 8200 and 8500 images respectively.

To demonstrate the generality of the proposed framework, EPU-CNN was further validated on well-recog-
nized non-biomedical benchmark datasets CIFAR-10, MNIST, Fashion MNIST and iBean.

CIFAR-10. CIFAR-10 consists of 60,000 color images of natural objects that belong to 10 different classes. The 
dataset is split into 50,000 training and 10,000 test images and each class comprises 6000 images with a size of 
32 × 32 pixels.

MNIST. MNIST is a database of handwritten digits, that consists of a training set of 60,000 images, and a test 
set of 10,000 images. Each image has a size of 28 × 28 pixels, representing a single digit in greyscale among 10 
classes (from 0 to 9). The dataset follows a balanced distribution as each digit is represented by 6000 images for 
training and 1000 images for testing.

Fashion MNIST. Fashion MNIST is a database of fashion items that consists of a training set of 60,000 images 
and a test set of 10,000 images. Each image has a size of 28 × 28 pixels, associated with a label from 10 classes, 
representing different fashion items in greyscale, such as T-shirts, shoes, dresses etc. The dataset follows a bal-
anced distribution as each fashion item is represented by 6000 images for training and 1000 images for testing.

iBean. iBean is a dataset of color images that was created for the classification of diseases in bean plants. It 
consists of 1295 images of bean leaves, that belong to three different classes. The classes represent 428 healthy 
leaves, 432 leaves with angular leaf spot disease, and 436 leaves with bean rust disease.

Classification performance assessment. For the comparison of the classification performance of EPU-
CNN, we selected three well established CNN models, namely, VGG16

62, ResNet50
63 and  DenseNet169

64 and an 
inherently interpretable CNN model abbreviated as  TT65. In this study, the VGG16 was used as a base for the 
TT model. The same training parameters, i.e., batch size, optimization algorithm and data augmentation, were 
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applied on all networks involved in the evaluation process. In detail, the batch size was set to 64 and as an optimi-
zation algorithm the Stochastic Gradient Decent was used; the training data were augmented only with respect 
to their orientation. The weights of all networks were randomly initialized before training. Five different CNNs 
architectures were considered for the construction of EPU-CNN models. More specifically, two indicative CNN 
architectures, namely, BaseI and BaseII, along with  VGG16,  ResNet50 and  DenseNet169 were incorporated as base 
models in the EPU-CNN framework. These models were selected to demonstrate the generality of the proposed 
framework, i.e., its applicability to rendering different conventional CNN architectures interpretable. Regarding 
the architecture of the indicative CNN architectures, BaseI, consists of 3 convolutional blocks in total, followed 
by an FCNN. The first two convolutional blocks are identical and include two convolutional layers followed by 
a max-pooling and a batch normalization layer. The convolutional layers of these blocks have a depth size of 64 
and 128 respectively. The following convolutional block consists of three convolutional layers with a depth size of 
256 followed by a max-pooling and a batch normalization. All the kernels of the convolutional layers had a size 
of 3 × 3. BaseII, follows the same architecture with BaseI with an additional convolutional block, in the beginning 
of the architecture, utilizing an inception module. BaseI, BaseII,  VGG16,  ResNet50 and  DenseNet169 were used for 
the construction of EPUI, EPUII, EPUVGG, EPUResNet and EPUDenseNet, respectively.

The evaluation followed a tenfold cross validation procedure with the average Area Under the receiver oper-
ating Characteristic (AUC) score among all folds. The AUC was selected as an overall summary measure of 
binary classification performance, which unlike accuracy, is relatively robust for datasets with imbalanced class 
 distributions66. The performance of all models is summarized in Table 1. The best results are in boldface typeset-
ting and the results ranked second are underlined. It can be observed that the results obtained by the EPU-CNN 
models indicate an overall better or comparable classification performance to their non-interpretable counter-
parts, i.e., BaseI, BaseII,  VGG16,  ResNet50 and  DenseNet169. More specifically, on Banapple, Endovis, Kvasir and 
ISIC 2019 (Me. vs. Ne.). In most cases EPUII provided better results when compared with the other EPU-CNNs 
and with the majority of the base models. However, although in some cases the EPU-CNN models did not pro-
vide a better classification accuracy than the base models, their advantage is that their output is interpretable. 
The interpretability of these models is assessed in the following sub-section.

Figure 4 illustrates the number of trainable parameters of each model. It can be observed that the complexity 
of an EPU-CNN model is analogous to that of its base model. Additionally, an EPU-CNN can provide competent 
results even with base models of low complexity, i.e., EPUI and EPUII utilize ~ 40 and ~ 19 million parameters, 
respectively; however, they provide higher classification performance when compared to more complex EPU-
CNN models. Furthermore, the less complex EPUII has comparable or even better classification performance 
when compared to EPUI while it outperforms substantially  ResNet50 that is a more computationally demanding 
base model (~ 27 M parameters). On the other hand, the inherently interpretable (TT) model that has a similar 
complexity to EPUII, i.e., ~ 20 M parameters, provides the lowest overall classification performance amongst all 
models.

Quantitative interpretability analysis. To quantitatively evaluate the interpretability of the proposed 
framework we exploited the properties of the Banapple benchmark dataset. Banapple is suitable for this purpose 
because our perception of the class-related objects is directly associated with the way we categorize them, based 
on their visual attributes regarding color and  shape43. Therefore, the subsequent task of annotating the images 
of Banapple did not require any domain-specific knowledge. Images of bananas and apples have distinguishable 
characteristics with respect to all PFMs utilized by the EPU-CNN models, i.e., light–dark, coarse–fine, blue-
yellow and green–red. Thus, in the case of a correct class prediction, ideally, all RSSs should trend towards the 
same direction, as indicated by the sign of an RSS, e.g., all RSSs for an apple image should be positive, whereas 
for a banana image should be negative. Hence, given that the EPU-CNN models in this study use four PFMs, a 
ground truth, yint , and predicted, ỹint , interpretability label is expressed as follows:

Table 1.  Classification results (AUC) of EPU-CNN and CNN models. Significant values are in bold and italics.

Models

Datasets

Banapple KID Endovis Kvasir

ISIC 2019

Ca.vs.Ne Ca.vs.Me Me.vs.Ne

EPUI 0.91 ± 0.01 0.94 ± 0.02 0.97 ± 0.01 0.87 ± 0.02 0.96 ± 0.03 0.92 ± 0.01 0.94 ± 0.02

EPUII 0.92 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.92 ± 0.01 0.94 ± 0.02 0.91 ± 0.01 0.94 ± 0.01

EPUVGG 0.90 ± 0.01 0.93 ± 0.01 0.89 ± 0.03 0.88 ± 0.01 0.97 ± 0.04 0.90 ± 0.01 0.89 ± 0.03

EPUResNet 0.84 ± 0.04 0.86 ± 0.06 0.84 ± 0.01 0.79 ± 0.04 0.88 ± 0.08 0.78 ± 0.06 0.86 ± 0.04

EPUDenseNet 0.90 ± 0.03 0.93 ± 0.05 0.87 ± 0.01 0.90 ± 0.03 0.97 ± 0.03 0.92 ± 0.02 0.92 ± 0.03

BaseI 0.92 ± 0.02 0.96 ± 0.02 0.96 ± 0.01 0.91 ± 0.01 0.90 ± 0.02 0.94 ± 0.03 0.93 ± 0.02

BaseII 0.91 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.91 ± 0.01 0.93 ± 0.01 0.92 ± 0.04 0.93 ± 0.04

VGG16 0.90 ± 0.01 0.90 ± 0.04 0.93 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.90 ± 0.03 0.92 ± 0.02

ResNet50 0.89 ± 0.02 0.92 ± 0.03 0.88 ± 0.10 0.87 ± 0.09 0.69 ± 0.12 0.90 ± 0.02 0.92 ± 0.03

DenseNet169 0.88 ± 0.04 0.94 ± 0.05 0.90 ± 0.12 0.88 ± 0.01 0.76 ± 0.09 0.90 ± 0.01 0.91 ± 0.03

TTVGG 0.82 ± 0.04 0.91 ± 0.03 0.93 ± 0.05 0.85 ± 0.04 0.88 ± 0.03 0.76 ± 0.01 0.81 ± 0.02
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where y is the ground truth class label of an image I, 1 and 0 denotes the apple and banana class respectively 
whereas sign(Ci(Ii; ηi)) returns the sign of an RSS. Given a set of ground truth and predicted interpretability label 
pairs, the interpretability accuracy aint, is calculated as the average Jaccard  Index67, J(∙), among them, as follows:

The results reported in Table 2 show that EPUI and EPUII achieved the highest aint with a score of 72.40 ± 1.51% 
and 72.62 ± 1.63% respectively. This means that the capacity of both EPUI and EPUII models is comparable with 
respect to their capacity to interpret the classification of bananas and apples. Since EPUII achieves a better overall 
classification performance, aint score and it is more computationally efficient, it has been chosen for the qualitative 
investigation of interpretability that is presented in the following sections.

Ablation study. An ablation study was conducted to assess the impact of each component predictor (sub-
network) of EPU-CNN for all possible combinations of the PFMs that have been considered in this study, i.e., 
light–dark (LD), coarse–fine (CF), blue-yellow (BY) and green–red (GR). The results are reported in Table 3 in 
terms of AUC scores. It can be noticed that the best results for the Banapple were obtained using all four PFMs. 
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{
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−(1, 1, 1, 1), ify = 0

,

(8)ỹint
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Figure 4.  Visualization of the complexity of the compared models in terms of the number of trainable network 
parameters.

Table 2.  Interpretability accuracy results of EPU-CNN models.

Metric

EPU-CNN models

EPUI EPUII EPUVGG EPUResNet EPUDenseNet

aint (%) 72.40 ± 1.51 72.62 ± 1.63 66.64 ± 2.21 62.90 ± 4.13 64.62 ± 2.24
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Considering the Dermoscopic datasets, the best results were obtained using PFMs of light–dark, coarse–fine and 
blue-yellow, and for the endoscopic dataset best results were obtained using only the color PFM representations.

An additional ablation study was performed to determine the impact of layer selection to the construction 
of PRMs using EPUII as the best performing model. The feature maps estimated by 3 different layers have been 
chosen for the construction of the respective PRMs. Each of these layers corresponded to the last layer of each 
convolutional block of EPUII. Figure 5 illustrates indicative PRMs constructed using feature maps estimated by 
different convolutional layers on predictions from the Banapple, Endoscopic, and Dermoscopic datasets. As it 
can be observed, the regions identified as meaningful regarding each PFM are approximately consistent with 
each other regardless of the degree of abstraction that each set of feature maps encodes. However, the feature 
maps estimated by the intermediate 5th layer provide less noisy PRMs that highlight with more precision the 
areas on the input image that are estimated to be meaningful with respect to each PFM.

Qualitative interpretability analysis. The qualitative analysis of EPU-CNN was investigated by consid-
ering both PRMs, global and local bar-charts generated by the EPUII model, for each dataset. Given a validation 
set of images with a priori known class memberships, global bar-charts are constructed by averaging the RSSs 
per class, as provided by each sub-network of EPUII. Global bar-charts enhance the transparency of the model 
and reveal the overall contribution of PFMs regarding the data discrimination process. In a global bar-chart, 
PFMs of low or high significance can be identified by their dataset-wide score, which can lead to the selection of 
a subset of the most informative PFMs, i.e., by pruning or replacing the sub-networks the PFMs of low signifi-
cance. The respective results obtained per dataset are provided in the next paragraphs.

Table 3.  AUC scores of the ablation study on all PFM combinations. Significant values are in bold.

Components

Datasets

Banapple Endoscopic Dermoscopic

GR 0.77 ± 0.03 0.89 ± 0.02 0.87 ± 0.01

BY 0.84 ± 0.02 0.80 ± 0.03 0.86 ± 0.01

CF 0.86 ± 0.03 0.78 ± 0.03 0.89 ± 0.01

LD 0.76 ± 0.02 0.77 ± 0.04 0.86 ± 0.02

GR-BY 0.89 ± 0.01 0.96 ± 0.01 0.90 ± 0.01

GR-CF 0.84 ± 0.02 0.95 ± 0.02 0.91 ± 0.03

GR-LD 0.82 ± 0.01 0.91 ± 0.03 0.90 ± 0.02

BY-CF 0.91 ± 0.02 0.86 ± 0.03 0.92 ± 0.02

BY-LD 0.87 ± 0.02 0.84 ± 0.02 0.90 ± 0.02

CF-LD 0.88 ± 0.01 0.82 ± 0.03 0.91 ± 0.03

BY-CF-LD 0.91 ± 0.02 0.85 ± 0.03 0.94 ± 0.01

GR-CF-LD 0.89 ± 0.01 0.92 ± 0.02 0.92 ± 0.02

GR-BY-LD 0.88 ± 0.02 0.93 ± 0.01 0.91 ± 0.01

GR-BY-CF 0.91 ± 0.01 0.95 ± 0.02 0.92 ± 0.02

GR-BY-CF-LD 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01

Figure 5.  Example of PRMs generated by features maps extracted from different layers of  EPUII.
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Banapple. The global bar-charts illustrated in Fig. 6a indicate that all the perceptual features contribute to the 
classification of the images. This result is in accordance with our perceptual  understanding43, since apples and 
bananas are discriminated with respect to all PFMs considered in this study. Figure 7 illustrates examples of local 
bar-charts along with the respective PRMs of classified images. Specifically, the images presented in the first col-
umn of Fig. 7, were correctly classified by EPUII, and this is reflected by the visualization of the RSSs. The PRMs 
of each sub-network indicate the regions of the input image which resemble the class that each RSS suggests. For 
instance, in Fig. 7d the highlighted areas of the PRMs corresponding to green–red and blue-yellow are overlayed 
precisely on the class-related object, i.e., the bananas. Interestingly, the difference between the light–dark and 
coarse–fine RSSs can be justified by the obscurity of the highlighted regions of Slight-dark and Scoarse-fine, i.e., both 
PRMs highlight the table.

The second column of Fig. 7 illustrates wrongly classified images. Notably, each of these images have resem-
blances to the opposite class with respect to color and shape. For example, in Fig. 7b the perceptual features of 
light–dark, coarse-fineand blue-yellow, wrongfully guide the prediction towards the banana class (red). This can 
be justified since the image contains objects that share characteristics that resemble the banana class, i.e., the 
shape and color of the hands holding the apple. The RSS of green–red however, trends towards the apple class 
(green) with high magnitude, whereas the respective Sgreen-red, highlights the apple. Accordingly, the PRMs of 
light–dark and coarse–fine focus on the hands explaining the trend of the respective RSSs towards the banana 
class. Nevertheless, even though Sblue-yellow focuses on the apple, the respective RSSs indicate that the image belongs 
to the banana class. In Fig. 7e the light–dark and blue-yellow RSSs trend towards the apple class (green). The 
direction of these RSSs towards the incorrect class can be justified considering that the color and orientation of 
the bananas are not representative of their class. Accordingly, Slight-dark and Sblue-yellow focus only partially on the 
banana. Similarly, the shape and color from the inside of the apple in Fig. 7h are unusual for an apple. Hence, the 

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.  Example of dataset-wide interpretations provided by EPU-CNN on all datasets. Green (positive 
response) and red (negative response) bars indicating participation the 1 and 0 class respectively, and the black 
lines indicate the standard deviation. (a) Banapple. (b) KID. (c) MICCAI Endovis 2015. (d) Kvasir. (e–g) ISIC 
2019.
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coarse–fine and red-green RSSs lean towards the opposite direction. It can be observed that the negative red-green 
and coarse–fine scores, have corresponding PRMs that do not focus on the class-related object, i.e., they highlight 
regions of the hand and the background. Also, the greenish color of the bananas in Fig. 7k, can be descriptive for 
both classes (as both bananas and apples can be green), which is also expressed by the disagreement between the 
relative scores of the color PFMs. Interestingly, the disagreement between the light–dark and coarse–fine scores 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.  Example of local bar-charts produced by EPUII on images from the Bananapple dataset. The label 
field indicates the predicted label. First column shows correctly classified images. Second column shows wrongly 
classfied images. Third column shows changes in the classification and its interpretation.
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can also be justified by the highlighted regions in the respective PRMs, i.e., the outline of the banana object in 
Scoarse-fine and the circular region, resembling an apple in Slight-dark.

To further investigate the behavior of EPU-CNN, we have chosen an image depicting an apple (Fig. 7c) 
which was digitally processed to obtain 3 variations: (a) to illustrate a bitten apple (Fig. 7f); an apple with a shape 
resembling that of a banana (Fig. 7i); and (c) an apple resembling both the shape and color of a banana while 
maintaining a reddish region (Fig. 7l). The interpretation changes that can be observed include the following:

(a) When the shape resembles a bitten apple the coarse–fine PFM is still guiding the prediction towards the 
apple class but with greater uncertainty (Fig. 7f), whereas the Scoarse-fine discriminates the image based on 
its textural variations, i.e., the curvature of the left side of the apple.

(b) When the shape resembles a banana, the coarse–fine PFM strongly suggests that the image belongs to the 
banana class (Fig. 7i,l). The magnitude of light–dark RSS has also changed, but still trends towards the 
apple class. The PRMs Slight-dark and Scoarse-fine appear to contribute to the segregation the depicted object; 
however, only the RSS of coarse–fine PFM suggests the opposite class, indicating that is more sensitive to 
shape variations.

(c) When the yellow region is added, the light–dark and green-yellow PFMs guide the prediction to the banana 
class. However, the green–red RSS trends towards the apple class. As expected, Sblue-yellow and Sgreen-red focus 
on the yellow and red segments of the object respectively (Fig. 7l). This justifies the trend of each PFM 
towards either class, i.e., yellow and red are representative colors of banana and apple class respectively.

These interpretations reveal that the coarse–fine PFM enables the respective sub-network to respond to dif-
ferent shape variations and infer relevant decisions. In addition, the color related PFMs, i.e., blue-yellow and 
green–red, are very sensitive to the class-related colors and it is clearly reflected both in the respective PRMs and 
RSSs. When both the class-related colors, i.e., yellow and red, cooccur in the image, the blue-yellow and green–red 
PFM guide the prediction towards the banana and apple class respectively.

Endoscopic datasets. The experiments showed that EPUII tend to discriminate normal from abnormal images 
of the endoscopic datasets mainly based on the blue-yellow and green–red PFMs. This is illustrated in the respec-
tive global bar-charts (Fig. 6b–d). As it can be observed, the light–dark and coarse–fine are biased towards a 
specific class, in all endoscopic datasets. On the other hand, the chromatic PFMs are the main contributors to 
the correct classification predictions. This finding is in accordance with the literature since it has been proven 
that color has a leading role in finding abnormalities in the gastrointestinal  tract51, and with the results of the 
ablation study in Table 3.

An example of local bar-charts visualizing the prediction interpretations of EPU-CNN on endoscopic images 
is presented in Fig. 8a,b. Since the light–dark and coarse–fine features are not informative, only the color related 
PFMs were considered. Figures 8a,b illustrate correctly classified endoscopic images of both the normal and 
abnormal class. In the case of the image depicting an abnormality (Fig. 8a), the Sgreen-red indicates that the focus of 
the sub-network that corresponds to the green–red PFM focuses on the abnormality, i.e., blood, whereas Sblue-yellow 
focuses on normal tissue and only partially on the abnormal region.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.  Example of EPU-CNN interpretations, as generated by EPUII, on biomedical images. The label field 
indicates the predicted label. (a) Abnormal and (b) normal endoscopic image; (c) Carcinoma and (d) (normal) 
nevus skin lesion; (e) Abnormal endoscopic image and (f) modification of (e) to resemble a normal endoscopic 
image; (g) Melanoma skin lesion and (h) modification of (g) to resemble nevus.
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To assess the behavior of EPUII in a more controlled way in the endoscopic datasets, we proceeded to digi-
tally process an endoscopic image and create different conditions for their classification to the normal and the 
abnormal classes. Indicative examples are presented in Fig. 8 where the abnormal region of Fig. 8e is removed, 
resulting in the synthetic image of Fig. 8f. The qualitative result of this process, considering only the chromatic 
PFMs, is reflected in the RSSs and the PRMs of Fig. 8f. Specifically, it can be noticed that by replacing the abnor-
mal region with normal tissue, the RSS of the green–red PFM shifts from trending towards the abnormal class 
(red) to the normal class (green). Furthermore, the RSS of the green–red PFM, in the absence of an abnormality, 
indicate that the respective subnetwork focuses on normal tissue.

Dermoscopic datasets. The evaluation of the interpretability of EPUII on the dermoscopic datasets revealed that 
all the PFMs participate actively in the classification process with an exception to green–red PFM that appears 
biased towards either the Melanoma or Carcinoma class on all trials (Fig. 6e–g). This is an indication that the 
PFM of green–red is not informative to the network regarding the classification of dermoscopic images. Fur-
thermore, as it can be observed in Fig. 6e–g the classification process of EPUII is relying on both chromatic and 
textural cues (i.e., blue-yellow, light–dark and coarse–fine) that are considered by the ABCD rule of skin lesion 
classification to assess the malignancy of a  lesion68 (this can also be confirmed from the results of the ablation 
study in Table 3).

An example of local bar-charts of classified dermoscopic images are illustrated in Fig. 8c,d. The local bar-chart 
includes the most informative PFMs, i.e., light–dark, coarse–fine and blue-yellow. In Fig. 8c,d all RSSs are trend-
ing, correctly, towards the abnormal (carcinoma, red) and normal (nevus, green) class respectively. In the case 
of the carcinoma (Fig. 8c), Slight-dark focuses on the entirety of the image, whereas Scoarse-fine and Sblue-yellow focuses 
on regions with color variations, e.g., on the yellow spot and little cuts on the lest and bottom side of the image 
respectively. In the case of the nevus (Fig. 8d), Slight-dark and Scoarse-fine isolate the lesion by segregating it from the 
rest of the image, either by focusing on it or around it, whereas Sblue-yellow indicates only a slight attention of the 
network to the lesion. Similarly, to the other datasets, we proceeded to digitally modify the image of Fig. 8g that 
illustrates a melanoma to resemble a nevus. The modification was implemented according to the rule-based 
diagnostic criteria expressed by the ABCD  rule68; in detail, we removed the part of the lesion that introduced 
color variation on the same mole and obtained a more symmetrical shape. The qualitative results of this process 
are illustrated in Fig. 8h, where it is shown that after the modification all the RSSs trend towards the nevus class 
(green). Furthermore, the Sblue-yellow PRM, in the absence of an abnormal region, indicate that the respective sub-
network does not focus on the skin lesion. The Slight-dark and Scoarse-fine PRMs seem to maintain a similar behavior 
with the unmodified image.

Qualitative comparison with state-of-the-art interpretable methods. Even though there is an 
increasing research interest regarding the interpretation of CNNs, there is still not a standard procedure to 
evaluate and compare the interpretable output. Nevertheless, a qualitative comparison can reveal strengths and 
weaknesses of such methods. In this study, the interpretations that EPU-CNN provides are qualitatively com-
pared to seven methodologies that have been proposed to interpret CNNs and have been also widely used in 
the literature. These methods provide saliency maps indicating regions or points on the input image that are 
estimated to be crucial for a prediction inferred by a CNN.

In detail, six post-hoc methodologies, namely, Grad-CAM69,  LIME8,  XRAI70, Shapley Additive exPlanations 
(SHAP)71,  Smoothgrad72 and Vanilla  Gradients73, as well as one inherently interpretable  model65 (TT) were uti-
lized in this evaluation. The post-hoc methodologies were applied on the CNN models that achieved the highest 
performance on each dataset according to Table 1, whereas TT was trained on each dataset from scratch. All 
the methods provide interpretations in the form of saliency maps while TT can also provide bounding boxes 
that specify discreetly the estimated region of interest. These methods were selected since they can render CNN 
models interpretable without the need for training on datasets specifically annotated for interpretable learning, 
e.g., with annotation regarding the concepts that are depicted on images.

Figure 9 summarizes the interpretations provided by each method on exemplary images that are presented 
in Figs. 7 and 8. All the images have been correctly classified by the respective models that were used. In detail, 
only XRAI and SHAP were successful at highlighting regions of interest on the images that can be regarded 
crucial for classification, i.e., areas of the apple, the skin lesion and blood depicted in the endoscopic image. The 
gradient-based interpretation approaches, i.e., Grad-CAM, Smoothgrad and Vanilla Grad, also revealed that the 
respective CNN models focus on image regions that can be regarded meaningful; nevertheless, the fuzziness of 
their visualization makes the communication of their interpretations difficult to comprehend. On the other hand, 
EPU-CNN can provide different visualizations, that highlight the most relevant regions with respect to each PFM 
as it was estimated by the layer activations of each subnetwork. This can also be expressed quantitatively since 
the RSSs indicate the degree to which each highlighted region affects the classification result. Furthermore, the 
dataset-wide plots that can be constructed by using an EPU-CNN model give insights regarding which PFMs 
are important for classifying the images of a particular dataset. To the best of our knowledge no other interpre-
tation approach can incorporate all this information to its explanations and simultaneously be applied on non-
specialized datasets, e.g., datasets where each image is annotated only with respect to their class membership.

To demonstrate the applicability of EPU-CNN framework, the best EPU-CNN model in terms of classification 
performance on the previous experiments, i.e., EPUII, was trained and tested on four non-biomedical bench-
mark datasets including CIFAR-10, MNIST, fashion MNIST and iBean datasets. To train EPUII in a multiclass 
setting the SoftMax activation function replaced the final log-sigmoid σ(⋅) (Eq. 5) function. Figure 10 illustrates 
interpretations provided by EPUII on predictions of images on the CIFAR-10 dataset, and Fig. 11 illustrates 
indicative interpretations obtained for the classification of images from the MNIST, Fashion MNIST, and iBean 
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datasets. For consistency with the interpretations of the binary settings, the respective illustrations depict how 
each PFM drives a prediction towards either the predicted (green) or any other class (red). The first and second 
rows of Figs. 10 and 11 illustrate interpretations of correct and wrong classifications on images included in the 
aforementioned datasets, respectively. As it can be observed the PRMs generated by the EPUII on the interpreta-
tions presented in the first row of Fig. 10 highlight the object of interest with more precision when compared 
to the wrongly classified images in the second row of Fig. 10. For example, in Fig. 10b all the PRMs highlight 
regions of the frog, and the image has been correctly classified. On the other hand, in Fig. 10d the PRMs mainly 
highlight regions around the frog and the respective image is misclassified to the airplane class, based on all the 
PFMs except from the blue–yellow. Furthermore, it can be noticed that the respective RSSs behave similarly, i.e., in 
Fig. 10c the PRM of coarse–fine highlights the whole image and it does not focus solely on the bird. Accordingly, 

Figure 9.  Example of CNN interpretations provided by various methodologies.

(a) (b) (c)

(d) (e) (f)

Figure 10.  Example of EPU-CNN interpretations, as generated by EPUII, on images of the CIFAR-10 dataset. 
The label field indicates the predicted label. The first and second rows illustrate interpretations of correct and 
wrong predictions, respectively.
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the respective RSS of coarse–fine has a smaller magnitude towards the correct class than the rest of RSSs, which, 
based on the respective PRMs consider mainly the region of the bird.

Moreover, in Fig. 10e the image that belongs to the deer class is misclassified as a dog. As it can be noticed, the 
PRMs of coarse–fine and blue–yellow are mainly focusing on the head region of the deer and the respective RSSs 
drives the prediction towards the dog class. This can be attributed to the fact that the particular deer does not 
seem to have horns, and it has a color pattern that matches that of the dog class. This can be further substantiated 
by observing the image of Fig. 10a. This image depicts a deer that has been correctly classified by the EPU-CNN 
model. As it can be noticed, the PRMs of coarse–fine and blue–yellow highlight the head region of the deer where 
the horns are present. Finally, the image of Fig. 10f that depicts an airplane is classified to the truck class based on 
the PFMs of light–dark and coarse–fine. As it can be noticed, all the PRMs focus on the body of the airplane, and 
on the wheels, whereas no PRM focuses on the wings. Therefore, the respective RSSs of light–dark and coarse–fine 
drive the prediction with a higher magnitude towards the truck class. Figure 12a presents a comparison in terms 
of classification accuracy among EPUII (orange bar) and other state-of-the-art CNN  models62–64,74,75 (gray bars) 
on the CIFAR-10 dataset. EPUII achieved an accuracy score of 93.31% which is comparable or better than the 
other models considered. However, a major advantage over the other models is that the EPU-CNN model can 
provide interpretations regarding the classification outcome. Similarly, Fig. 12b presents a comparison of the 
classification performance in terms of accuracy among EPUII and other CNN models that have been proposed 
for classifying images of the iBean  dataset76. The classification results of EPUII compared to other CNN  models77 
on the MNIST and Fashion MNIST datasets are presented in Fig. 12c,d, respectively. EPUII provided an accu-
racy of 92.32% outperforming the other models on iBean dataset. Regarding the MNIST and Fashion MNIST 
datasets, EPUII achieved a classification accuracy of 99.44% and 93.20%, respectively, which is comparable to 
the other models considered. In the case of the well-known CIFAR-10, MNIST and Fashion MNIST datasets 
the regularization effect of early stopping was performed to prevent overfitting on the training set, considering 
the size of data and the model  size78.

To further demonstrate the interpretations of EPU-CNN, as it can be observed in Fig. 11, the depicted 
interpretations for each dataset display the same object class, classified correctly in the first row of Fig. 11 and 
classified wrongly in the second row of Fig. 11, respectively. Specifically, for the MNIST dataset in Fig. 11a both 
PRMs (light–dark and coarse–fine) mainly highlight the part of the image depicting the handwritten digit for the 
correct classification (both RSSs are positive), whereas in Fig. 11d the PRM of light–dark focuses on the brighter 
region of the image, which is not clearly defined making digit ‘3’ to resemble digit ‘9’. Thus, the respective image 

Figure 11.  Example of EPU-CNN interpretations, as generated by EPUII, on images of the MNIST, fashion 
MNIST and iBean datasets. The label field indicates the predicted label. The first and second rows illustrate 
interpretations of correct and wrong predictions, respectively.
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is misclassified as digit ‘9’. This is also justified based on the coarse–fine RSS, which is negative for that case, 
explaining quantitatively that digit ‘3’ resembles more to a digit of another class, different than digit ‘9’, which is 
the predicted one. Additionally, for the fashion MNIST dataset, in both cases illustrated in the second column 
of Fig. 11 the respective PRMs of coarse–fine mainly focus on the upper part of the images, where the neckline 
of the fashion item is depicted. The PRMs of light–dark mainly highlight a broader region of the fashion items. 
In Fig. 11b both RSSs are positive, explaining that the image indeed resembles a pullover, which is the correctly 
predicted class. Figure 11e depicts a pullover, which is misclassified as a coat. Both RSSs show that the prediction 
tends towards the coat class, which is incorrect. This is also justified by the coarse–fine PRM, which highlights 
the neckline and buttons, since they are more likely to appear on a coat, rather than a pullover. In the example 
image from the iBean dataset, the healthy leaf image in Fig. 11f is misclassified as bean rust, based on RSSs of 
red-green and coarse–fine, which can be attributed to the color patterns highlighted by the respective PRMs in 
the background of the image, which are less likely to be considered healthy leaf patterns. We can also observe a 
similar behavior of driving the prediction to the wrong direction of the coarse–fine RSS in the case of the correct 
classification in Fig. 11c, where the PFM captures parts of the background and drives the prediction towards a 
non-healthy class.

Quantitative assessment of the perceptual relevance maps. To further assess the PRMs in terms of 
their capacity to indicate image regions that are relevant for the classification of images by an EPU-CNN model, 
the Remove and  Debias79 (ROAD) metric has been used. The ROAD metric measures how a given saliency map, 
generated by a gradient-based method, influences the classification confidence of the network. A saliency map 
indicates regions on the input image that contribute to a certain classification result. ROAD examines how the 
confidence of the network changes when spatial regions of the image that are indicated by the saliency map are 
modified. By identifying regions of low and high importance, according to an interpretation saliency map at a 
specific threshold, ROAD isolates the respective image regions of an image I and imputes the remaining image 
values. This results in two new perturbated images referred to as Rlow and Rhigh, each of which isolates the least 
and highest important information, respectively. These images are propagated sequentially to a classification 
model f and the change in the classification confidence, cc, is assessed as follows:

(10)cclow = f (Rlow)− f (I),

Figure 12.  Classification performance in terms of accuracy on the (a) CIFAR-10 dataset, (b) iBean dataset, (c) 
MNIST dataset and (d) on Fashion MNIST dataset.
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Once the change in the classification confidence is estimated by considering both Rlow and Rhigh, the final 
ROAD score is estimated as:

Higher ROAD scores indicate more accurate interpretations.
To evaluate the interpretation capacity of the proposed PRM estimation approach, the best performing 

EPU-CNN, i.e., EPUII, was selected. The ROAD metric was calculated by considering all the PRMs that are 
estimated by each EPU-CNN prediction. For comparison purposes the proposed PRM estimation method that 
EPUII utilized was replaced by GradCAM. For one-to-one evaluation, the GradCAM methodology was applied 
on the convolutional layers that were selected (by ablation study) to be more informative for the PRM estima-
tion, i.e., the 5th convolutional layer of each subnet. Additionally, a recent ensemble model used along with 
post-hoc methods for interpretable classification was considered in the comparative  evaluation33. This model 
was composed of four base models, namely a VGG-16, a DenseNet, an Xception and a ResNet model. GradCam 
was used as a post-hoc approach to make this ensemble model interpretable by aggregating the saliency maps 
estimated by its application on each model. We refer to the GradCam EPU-CNN and to the ensemble model as 
EPUGradCam and Ensemble, respectively.

For a more thorough investigation of the generalization capabilities of EPU-CNN, the ROAD metric was 
calculated on the models trained on MNIST, Fashion MNIST, CIFAR-10, iBean, Banapple as well as on the Endo-
scopic and Dermoscopic datasets. Table 4 summarizes the average ROAD scores achieved by EPUII, EPUGradCAM 
and Ensemble models. As it can be observed, the results obtained using the proposed methodology of the PRM 
provided by EPUII model outperform the application of GradCAM in all datasets.

Conclusions and future work
In this study we proposed a novel, generalized framework, called EPU-CNN, that provides a guideline for the 
development of interpretable CNN models, inspired by GAMs. A model, designed according to EPU-CNN 
framework, consists of an ensemble of sub-networks with a base CNN architecture that is trained as one. The 
proposed framework can be used to render conventional CNN models interpretable, by using it as a base model. 
The proposed EPU-CNN framework can be constructed as an ensemble of an arbitrary number of base CNN 
sub-networks, given a respective number of PFMs, feeding each sub-network. PFMs should satisfy the follow-
ing requirements: (a) they should represent perceptually relevant opponent features of the images, and (b) they 
should be orthogonal between each other. In this paper a total of four PFMs were proposed for interpretable 
classification of images based on color and texture, which are two decisive properties for image understanding. 
These PFMs were chosen according to the literature of cognitive science and human perception. Considering 
that these PFMs are based on the representation of visual information in the human visual system, they are 
sufficiently generic, suitable for a wide variety of applications. The generality of EPU-CNN framework enables 
its use with different input PFMs (satisfying the above requirements), that could be derived using other trans-
formations resulting in opponent image components with a physical interpretation perceivable by humans. 
EPU-CNN is designed in a way enabling human-friendly interpretations of its classification results based on the 
utilized perceptual features. The interpretations provided by EPU-CNN are in the form of RSSs that quantify 
the resemblance of a perceptual feature to a respective class. These interpretations are complemented by PRMs 
indicating the image regions where the network focuses to infer its interpretable decisions. Furthermore, EPU-
CNN provides spatial expression of an explanation on the input image. The most important conclusions of this 
study can be summarized as follows:

• EPU-CNN models satisfy the need for interpretable models based on human perception, i.e., the proposed 
framework is able to provide interpretations in accordance with human perception and cognitive science, 
e.g., EPU-CNN classifies endoscopic images based on the chromatic perceptual features.

• Unlike other inherently interpretable CNN  methodologies21,42, the classification performance of EPU-CNN 
models is not affected by their capacity to provide interpretations. In fact, the results obtained from the com-
parison of EPU-CNN models with respective non-interpretable CNN models, show that their performance 
is better or at least comparable to that of the non-interpretable models.

• When an image is modified with respect to a perceptual feature, e.g., color, the interpretations derived from 
the EPU-CNN model change accordingly both on natural and biomedical images (Figs. 6, 7).

(11)cchigh = f
(
Rhigh

)
− f (I).

(12)ROAD =
cclow − cchigh

2
.

Table 4.  Average ROAD scores obtained from different models on different datasets.

Models

ROAD

MNIST Fashion MNIST Cifar-10 iBean Endoscopic Dermoscopic Banapple

EPUII 0.06 0.06 0.11 0.15 0.15 0.16 0.09

EPUGradCam 0.02 0.02 0.03 0.11  − 0.07 0.06 0.07

Ensemble  − 0.01 0.01 0.03 0.02 0.01 0.03  − 0.02
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• Since EPU-CNN is a generalized framework, it provides a template for the development of interpretable 
CNNs that fulfill the requirements imposed by current legislations regarding the commercial applicability 
of ML models.

• EPU-CNN can be particularly useful in the context of biomedical applications, considering that abnormalities 
are usually characterized by color and texture differentiations of human tissues, as indicated by the results 
obtained from its application on endoscopic and dermoscopic datasets.

Creating a perceptually interpretable CNN-based image classification system requires that, somehow, knowl-
edge about the way humans perceive images is introduced into that system. The initial decomposition of the 
input images into different PFMs that provide separate information about color and texture components of the 
images, serves this purpose. The manual definition of PFMs could be considered as a limitation of the proposed 
framework; however, it should be considered more as a way of modeling human perception into an interpret-
able classification system, rather than a way to introduce an application-dependent bias into the feature extrac-
tion process, as it is typically done with the traditional, so-called “hand-engineered” or “hand-crafted” feature 
extraction. Traditional feature extraction involves the calculation of specific features from the images, whereas 
EPU-CNN maintains its ability to extract automatically derived features from the images, by applying this pro-
cess on the PFMs, which are also images, representing complementary information of the input images. Most 
inherently interpretable models that have been proposed in the literature, can only be applied on datasets that 
are further annotated with respect to human-understandable concepts illustrated in each image, which results 
in limitation regarding their  applicability19,20. The PFM selection of an EPU-CNN model can be considered as 
a less demanding and time-consuming procedure when compared to the annotation of huge datasets with the 
human-understandable concepts.

This paper also showed that given an EPU-CNN configuration with a defined set of PFMs, it is possible to use 
global bar-charts (revealing the overall contribution of PFMs to the data discrimination process) to select a subset 
of PFMs that are more relevant to a particular application. This is optional but it can reduce the complexity of the 
EPU-CNN, since the respective sub-networks will be pruned. Furthermore, it can offer focused interpretations 
and insights based on the most relevant features regarding the internal process of the EPU-CNN model. For 
example, in the case of endoscopic images, the EPU-CNN models considered only the PFMs of color as more 
important which is in accordance with the respective literature; thus, only two of the four sub-networks were 
sufficient. In the case of greyscale input images, such as the images of the MNIST dataset, the PFMs representing 
color can automatically be discarded considering their file format.

Future work includes investigation of alternative PFM representations based on transformation other than 
CIE-Lab and 2D DWT considered in this paper, and applications on different domains. User evaluation studies 
with domain experts could contribute in further adaptation of the proposed framework to derive more mean-
ingful interpretations considering the domain semantics, e.g., in endoscopy associating colors with pathologies. 
Another perspective is further automation of the PFM definition and subset selection processes towards a direc-
tion that minimizes human intervention and is more compatible with the principles of deep learning.

Data availability
Banapple is available at https:// github. com/ innoi sys/ Banap ple. KID is available at: https:// mdss. uth. gr/ datas ets/ 
endos copy/ kid/. Kvasir is available at: https:// datas ets. simula. no/ kvasir/. ISIC2019 is available at: https:// chall 
enge2 019. isic- archi ve. com/. CIFAR-10 is available at: https:// www. cs. toron to. edu/ ~kriz/ cifar. html. MNIST is 
available at: http:// yann. lecun. com/ exdb/ mnist/. Fashion MNIST is available at: https:// github. com/ zalan dores 
earch/ fashi on- mnist. iBean dataset is available at: https:// github. com/ AI- Lab- Maker ere/ ibean/.
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