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Elevated serum leptin is associated 
with attenuated reward 
anticipation in major depressive 
disorder independent of peripheral 
C‑reactive protein levels
Kaiping Burrows 1*, Breanna A. McNaughton 1, Leandra K. Figueroa‑Hall 1,2, 
Philip A. Spechler 1, Rayus Kuplicki 1, Teresa A. Victor 1, Robin Aupperle 1,2, 
Sahib S. Khalsa 1,2, Jonathan B. Savitz 1,2, T. Kent Teague 3,4,5, Martin P. Paulus 1,2 & 
Jennifer L. Stewart 1,2

Major depressive disorder (MDD) is associated with immunologic and metabolic alterations linked to 
central processing dysfunctions, including attenuated reward processing. This study investigated the 
associations between inflammation, metabolic hormones (leptin, insulin, adiponectin), and reward‑
related brain processing in MDD patients with high (MDD‑High) and low (MDD‑Low) C‑reactive protein 
(CRP) levels compared to healthy comparison subjects (HC). Participants completed a blood draw 
and a monetary incentive delay task during functional magnetic resonance imaging. Although groups 
did not differ in insulin or adiponectin concentrations, both MDD‑High (Wilcoxon p = 0.004, d = 0.65) 
and MDD‑Low (Wilcoxon p = 0.046, d = 0.53) showed higher leptin concentrations than HC but did 
not differ from each other. Across MDD participants, higher leptin levels were associated with lower 
brain activation during reward anticipation in the left insula (r = − 0.30, p = 0.004) and left dorsolateral 
putamen (r = ‑− 0.24, p = 0.025). In contrast, within HC, higher leptin concentrations were associated 
with higher activation during reward anticipation in the same regions (insula: r = 0.40, p = 0.007; 
putamen: r = 0.37, p = 0.014). Depression may be characterized by elevated pro‑inflammatory signaling 
via leptin concentrations through alternate inflammatory pathways distinct to CRP.

Major depressive disorder (MDD) affects approximately 163 million people and is the leading cause of years 
lived with disability  worldwide1. Only one third of depressed individuals remit with their first antidepressant 
 treatment2 and treatment response is known to be limited and difficult to  predict3. Although anhedonia—inability 
to feel pleasure—is one of the core features of a major depressive episode and one of the most treatment-resistant 
symptoms of  MDD4, little is known about mechanisms implicated in dysfunctional reward processing to inform 
treatment.

Depressive symptoms are linked to inflammation involving pro-inflammatory  cytokines5–7 with meta-analyses 
indicating that interleukin-6 (IL-6), tumor necrosis factor (TNF), and C-reactive protein (CRP) are elevated in 
MDD  patients8–10. Approximately half of depressed individuals have a CRP concentration of 3 mg/L or greater, 
indicating increased risk of future cardiovascular  disease11. Furthermore, depressed individuals with elevated 
inflammation show heightened treatment  resistance12,13 as well as attenuated brain reward processing within 
the dorsal and ventral  striatum14–17. Thus, anti-inflammatory drugs may be a potential therapeutic target for a 
subset of depressed individuals with heightened  inflammation18.
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Complicating the clinical picture, however, is the fact that MDD has a high comorbidity with metabolic 
syndrome—a cluster of conditions that occur together (e.g., obesity, high blood pressure, cholesterol, hypergly-
cemia), with an approximate 41%  overlap11. Although depression, inflammation, and metabolic disorders often 
co-occur and exacerbate each  other11,19, mechanisms by which inflammation, metabolism, and impaired reward 
processing relate to depression remain unclear, thereby diminishing the ability to develop targeted treatment for 
individuals with MDD presenting with these issues.

Three metabolic hormones—insulin, leptin, and adiponectin—are integral to understanding relationships 
between inflammation, depression, and brain function. Insulin regulates glucose and  energy20, while leptin 
regulates appetite, energy, and  mood21–23; finally, adiponectin improves insulin sensitivity while increasing food 
intake and reducing  energy24,25. Compared to healthy individuals, depressed patients are characterized by: (1) 
heightened insulin resistance not ameliorated by  antidepressants26; (2) both increases and decreases in leptin 
 levels27,28, with directionality of effects attributable to symptom heterogeneity, age, sex, and medical  history29–31; 
and (3) attenuated adiponectin  levels31,32. While insulin resistance and leptin signaling involve pro-inflammatory 
 processes33,34, adiponectin is more closely aligned to anti-inflammatory  mechanisms35–37. Crucially, all three hor-
mones are thought to be important for dopaminergic reward  signaling38. In sum, research indicates that insulin, 
leptin, and adiponectin are linked to inflammation, reward signaling, and depression, but it is still unclear how 
these hormones relate to altered brain reward processing in MDD as a function of inflammation.

To identify the relationship between metabolic markers, inflammation, and reward processing in MDD, we 
conducted secondary data analyses, focusing on neural responses to the monetary incentive delay (MID) task and 
serum metabolic hormone (insulin, leptin, and adiponectin) concentrations in a previously published subset of 
MDD patients varying in peripheral CRP  inflammation14. The MID  task39 reliably recruits the striatum, insula, 
and  thalamus40, brain regions that are: (1) implicated in optimal prediction of future  rewards40,41; (2) sensitized 
by metabolic  hormones42,43; and (3) attenuated in depressed  individuals44,45. We hypothesized that: (a) MDD 
with high CRP inflammation (MDD-High) would exhibit higher serum leptin and insulin and lower adiponectin 
concentrations than healthy controls (HC) and MDD patients with normative CRP inflammation (MDD-Low); 
(b) within MDD-High subjects, higher serum insulin/leptin and lower adiponectin concentrations would be 
correlated with lower blood oxygen level-dependent (BOLD) signal change within the striatum, insula, and 
thalamus during anticipation of rewards.

Results
Demographics and clinical characteristics. Table  1 shows demographic and clinical characteristics 
comparing the combined MDD group and HC. There were no differences in age, sex, annual income, educa-
tion, employment status, nor smoking status between MDD and HC; MDD group showed lower exercise status 
(p < 0.001), higher percent body fat (PBF) (p < 0.001), and higher body mass index (BMI) (p < 0.001) than HC. 
Regarding clinical ratings, MDD and HC differed on all PROMIS scores including alcohol use, anger, anxiety, 
depression, fatigue, physical function, sleep disturbance, and social isolation ratings (p ≤ 0.001), except nicotine 
dependence.

Immunoassay results. Although ANOVA tests indicated that MDD-High, MDD-Low, and HC groups did 
not differ on insulin or adiponectin concentrations, group differences were observed in serum leptin concen-
trations (Kruskal–Wallis χ2 = 8.87, p = 0.012). Specifically, both MDD-High (Wilcoxon p = 0.004, d = 0.65) and 
MDD-Low (Wilcoxon p = 0.046, d = 0.53) showed higher leptin concentrations than HC, while there was no 
difference between MDD-High and MDD-Low (Fig. 1A). Since no leptin differences were found between the 
two MDD groups, MDD-High and MDD-Low were combined as one MDD group and compared with HC on 
neuroimaging and leptin concentrations. A Mann–Whitney–Wilcoxon non-parametric test showed that the 
MDD group exhibited higher leptin levels than HC (p = 0.005, d = 0.62) (Fig. 1B).

Higher PBF was associated with higher serum leptin concentrations within the MDD group (r = 0.68, 
p < 0.001) and the HC group (r = 0.67, p < 0.001); however, there was no slope difference on PBF and leptin 
concentration between MDD and HC (p = 0.99) (Fig. 1C). Similarly higher BMI was associated with higher 
serum leptin concentrations in the MDD group (r = 0.32, p = 0.002) and the HC group (r = 0.28, p = 0.07); again, 
there was no slope difference on BMI and leptin concentration between groups (p = 0.62) (Fig. 1D). In addition, 
leptin concentrations were negatively associated with PROMIS physical function scores within the HC group 
(r =  − 0.53, p < 0.001), but not the MDD group (r =  −  0.09, p = 0.39). No other correlations between leptin and 
PROMIS scores were observed. Moreover, higher PBF was associated with higher serum CRP concentrations 
within HC group (r = 0.58, p < 0.001) but not the MDD group (r = 0.15, p = 0.155), and there was a slope difference 
on PBF and CRP concentration between HC and MDD (p = 0.034); Similarly, higher BMI was associated with 
higher serum CRP concentrations within HC group (r = 0.57, p < 0.001) but not within the MDD group (r = 0.16, 
p = 0.139), and there was a slope difference on BMI and CRP concentration between HC and MDD (p = 0.018).

Neuroimaging results. Figure 2 shows that there was a significant slope difference between serum lep-
tin and % fMRI signal change for the MID gain versus no gain contrast between MDD and HC within left 
mid-posterior insula (center-of-mass = 37.5, 11.3, 13.2; 87 voxels; peak t = -3.54) and left dorsolateral putamen 
(center-of-mass = 28.7, 13.5, − 0.9; 67 voxels; peak t = -4.10). Correlations within the MDD patients indicated 
that those individuals with the highest leptin concentrations also showed the lowest fMRI BOLD signal change 
for the MID gain versus no gain contrast in left insula (r = -  − 0.30, p = 0.004) and left dorsolateral putamen 
(r = -  − 0.24, p = 0.025). In contrast, within HC, those individuals with the highest leptin concentrations also 
showed the highest fMRI BOLD signal change for the MID gain versus no gain contrast in left insula (r = 0.40, 
p = 0.007) and left dorsolateral putamen (r = 0.37, p = 0.014). Fisher’s r-to-z transformations were applied to these 
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correlations for each group and then compared; results indicated that the relationship between serum leptin 
and gain versus non-gain BOLD signal change was significantly more negative in MDD than HC, within the left 
insula (z =  − 3.88, p < 0.001) and the left dorsolateral putamen (z =  − 3.31, p < 0.001).

In addition, partial correlations showed a significant negative relationship between leptin and gain versus non-
gain BOLD signal change within the left insula (r =  − 0.29, p = 0.006) and the left dorsolateral putamen (r =  − 0.23, 
p = 0.033) in the MDD group after controlling for BMI. Similarly, partial correlations within HC subjects showed 
that the positive relationship between leptin and gain versus non-gain BOLD signal change within the left insula 
(r = 0.37, p = 0.014) and the left dorsolateral putamen (r = 0.38, p = 0.013) remained after controlling for BMI. 
Moreover, when CRP concentrations were used as a covariate, the significant negative correlation between 
leptin and gain versus non-gain BOLD signal change within the left insula (r =  − 0.30, p = 0.005) and the left 
dorsolateral putamen (r =  − 0.24, p = 0.025) remained the same within the MDD group, the positive relationship 
between leptin and gain versus non-gain BOLD signal change within the left insula (r = 0.38, p = 0.013) and the 
left dorsolateral putamen (r = 0.38, p = 0.011) in the HC group remained similar as well.

Discussion
This study investigated whether two MDD groups varying in inflammation (low versus high CRP levels) and 
a HC group differed on three metabolic factors—insulin, leptin, and adiponectin—and if so, how variation in 
metabolism related to brain activation as a function of group while individuals were anticipating future reward. 
Contrary to our hypotheses, MDD groups with low versus high CRP levels (indicative of differences in periph-
eral inflammation levels) did not differ from each other on any of the three metabolic hormones, suggesting 
that peripheral inflammation does not influence metabolic-mediated outcomes in MDD. The combined MDD 
group also did not differ from the HC group on adiponectin and insulin levels. These findings align with prior 
work showing no significant relationship between adiponectin and  depression46,47. Due to adiponectin’s role in 
both pro- and anti-inflammatory processing in depression, perhaps these competing effects cancel each other 
 out46. Study results on insulin concentrations within MDD in other samples are also  mixed26, suggesting that 
dysregulated inflammatory and metabolic profiles may not always co-occur in the same subtype of depression. As 
variation in metabolic profiles may represent different subtypes of depression (e.g., MDD with increased versus 

Table 1.  Sample demographics and clinical characteristics. Significant values are in bold. IPAQ, International 
Physical Activity Questionnaire; PROMIS: Patient-Reported Outcomes Measurement Information System total 
score. MINI, Mini International Neuropsychiatric Inventory; NA = not applicable. a Two sample t test. b χ2 test.

MDD HC

p valueMean (SD) Mean (SD)

N 88 44

Age (years) 34.34 (11.06) 30.91 (10.15) 0.087a

Sex = male (%) 27 (30.7) 19 (43.18) 0.220b

Annual income (US dollars) 65,352 (115,668) 51,686 (35,399) 0.447a

Consolidated education 6.20 (1.66) 6.50 (1.42) 0.300a

Employed = yes (%) 53 (61.6) 32 (78.0) 0.102b

Smoke = yes (%) 18 (20.5) 5 (11.4) 0.292b

Exercise = yes (%) 32 (36.4) 31 (70.5) < 0.001b

IPAQ category (%) 0.002 b

 HEPA active 28 (35.0) 24 (64.9)

 Inactive 33 (41.2) 4 (10.8)

 Minimally active 19 (23.8) 9 (24.3)

IPAQ minutes per week 3021.66 (3550.23) 5397.61 (4044.80) 0.002a

Percent body fat 39.18 (8.08) 29.13 (10.84) < 0.001a

Body mass index (kg/m2) 30.56 (4.57) 26.50 (5.22) < 0.001a

Medication = un-medicated (%) 26 (29.5) NA NA

PROMIS alcohol use 48.91 (7.12) 44.52 (6.78) 0.001a

PROMIS anger 58.11 (6.68) 44.38 (5.56) < 0.001a

PROMIS anxiety 63.08 (6.50) 45.60 (7.42) < 0.001a

PROMIS depression 61.02 (7.18) 43.50 (6.38) < 0.001a

PROMIS fatigue 61.20 (7.58) 43.61 (7.14) < 0.001a

PROMIS nicotine dependence 28.07 (10.84) 25.32 (7.04) 0.129a

PROMIS physical function 50.04 (7.05) 60.22 (6.64) < 0.001a

PROMIS sleep disturbance 57.31 (10.00) 43.67 (7.67) < 0.001a

PROMIS social isolation 58.15 (5.43) 42.69 (7.89) < 0.001a

Current major depressive episode on MINI = yes (%) 82 (93.2) 0 (0) < 0.001b
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decreased appetite, weight change, or atypical vs typical depression)26,48,49, perhaps inflammatory and metabolic 
profiles of depression do not overlap.

Crucially, we demonstrate two important findings for the entire MDD group that are consistent with pre-
dictions for the MDD high inflammation group. First, MDD, regardless of inflammation status (as indicated 
by CRP level), showed greater serum leptin concentrations than healthy individuals, consistent with previous 
 research27,28. The absence of leptin-mediated inflammatory function as measured by peripheral CRP concentra-
tions suggests that alternate inflammatory pathways may be involved leptin’s role in reward processing that have 
yet to be  explored50. Leptin binding to its receptor leads to canonical signaling via Janus kinases (JAK) and signal 
transducer and activator of transcription protein (STAT)  pathways51, but also has the capability of extracellular 
signal-regulated kinases (ERK), p38 mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinases (JNK), 
protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K)  activation50. These pathways, all of which 
have been implicated in depression, mediate leptin signaling on targets affecting neurotransmitter regulation, 
antidepressant activity, neuronal spine density, and glucocorticoid  resistance52–56.

Second, left mid-posterior insula and left dorsolateral putamen responses during anticipation of reward 
were lowest in MDD patients with the highest leptin concentrations, but this pattern was reversed in healthy 

Figure 1.  Serum leptin concentrations between groups and their relationship with percent body fat and body 
mass index. (A) Both major depressive disorder (MDD) subjects with high CRP (MDD-High) and low CRP 
(MDD-Low) exhibited higher log-transformed serum leptin concentrations compared to healthy comparison 
subjects (HC). (B) The combined MDD group showed higher log-transformed serum leptin concentrations than 
HC. (C) Leptin concentrations were positively correlated with percent body fat in MDD and HC groups. (D) 
Leptin concentrations were positively correlated with body mass index in MDD group and partially correlated 
with BMI in HC group.
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individuals (higher left insula and left putamen responses were linked to higher leptin levels). Taken together, 
these findings suggest that depression may be characterized by elevated pro-inflammatory signaling via leptin 
concentrations through alternate inflammatory pathways distinct to CRP, which relates to blunted mid-insula 
signals previously evident in MDD patients during the processing of bodily  sensations57,58 as well as reduced 
insula and putamen responses during reward anticipation in girls at high risk for  MDD59. As reduced striatal 
signal during reward processing may precede MDD  onset60, it will be important for future research to determine 
whether high leptin levels are also present in individuals at high risk for future MDD. We speculate that perhaps 
elevated leptin and attenuated striatum activity might interact during adolescence to reduce positive mood and 
appetitive valuation of reward stimuli. Leptin regulates brain reward and motivation signals in striatal regions, 
including the  caudate61; however elevated leptin levels may inhibit dopamine release and therefore reduce reward 
activation in the caudate, which may be associated with a high fat  diet62. Prior work in our research group found 
that MDD patients had poor diet quality, including a high fat  diet63. A healthy dietary pattern would be useful 
to reduce leptin concentrations, which may then increase reward activity in striatal  regions64. Although leptin 
receptors were observed in the insular cortex in animal  studies65, it is unclear whether neurons that contain leptin 
receptors can sense the peripheral leptin to regulate reward processing. Leptin signaling within the insular cortex 
may alter brain  function66 through both JAK2-MAPK and JAK2-PI3K pathways, conceivably via elevated leptin 
concentrations (leptin resistance) leading to decreased reward processing in depressed individuals. Another 
pathway to reward processing could be the sympathetic activation that is modulated by leptin. It is possible that 
individuals with or at high risk for MDD lack these leptin-sensitive  neurons67.

In our study, MDD differed in exercise, percent body fat (PBF), body mass index (BMI), and PROMIS scores 
compared to HC. MDD participants had lower exercise scores, as measured by the International Physical Activity 
Questionnaire, which may be attributed to depressive symptoms, higher BMI, and physical co-morbidity with 
other  illnesses68. Despite the evidence that exercise/physical activity improves mental health  parameters69,70, not 
all individuals with depression engage in physical activity or to levels that would be  beneficial71,72. Also, MDD 
subjects showed higher PBF and BMI than HC and were both positively associated with leptin as previously 
 reported73,74. Higher PBF and BMI are associated with increased risk for obesity, which is often comorbid with 
MDD and associated with a distinct set of depressive  symptoms75–78. In our study, PBF and BMI are also highly 
correlated with CRP in HC group, but not in MDD group, which may explain elevated leptin concentrations 
regardless of CRP-mediated inflammatory status in  MDD79. Leptin, which is synthesized in adipose tissue and 
influences body weight, may be linked to this bidirectional relationship between obesity and depression, due to 
higher levels of adipose in depressed  individuals75,80. Lastly, PROMIS scores, except nicotine dependence, also 
differed in MDD versus HC. It is not surprising that PROMIS Anger, Anxiety, and Depression were all higher 
in MDD versus HC, which represents more negative  affect81. While PROMIS Physical Function was different 
in MDD versus HC, it was only associated with leptin in HC (not MDD) suggesting that leptin may not affect 
physical function in depressed individuals.

Figure 2.  Correlations between serum leptin and % fMRI signal change for the MID gain versus no gain 
contrast between HC and MDD. Within MDD, higher leptin concentrations were associated with lower fMRI 
BOLD signal change for the MID gain versus no gain contrast in left insula and left dorsolateral putamen. 
Within HC, higher leptin concentrations were associated with higher fMRI BOLD signal change for the MID 
gain versus no gain contrast in left insula and left dorsolateral putamen.
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This project possesses several strengths, including: (1) the integration of blood-based inflammation and 
metabolic data with functional neuroimaging; (2) a sizable sample of MDD patients (n = 88); and (3) analysis 
of the MID paradigm that enables separation of reward anticipation and outcome phases. However, this project 
focused on secondary analysis of the Tulsa 1000 project data, which also includes multiple limitations. First, most 
of the insulin research in depression has specifically focused on insulin resistance as opposed to total insulin 
concentration as measured in the Tulsa 1000 project. Second, in contrast to prior work selecting MDD patients 
on particular characteristics relevant to appetite, weight, or atypical symptoms when investigating metabolic 
factors linked to  depression26,48,49, individuals with MDD from the Tulsa 1000 project were not selected on the 
basis of these criteria. Third, as research indicates that body fat and leptin are positively  correlated30, it is impera-
tive to note that MDD patients in our sample had a higher BMI than HC that also positively scaled with leptin 
levels; however, within our MDD group, BMI was not significantly related with insula and putamen activation 
during reward anticipation and did not account for the negative correlation between leptin and reward-related 
brain activation. Fourth, although two-thirds of the MDD group were currently taking at least one type of 
psychotropic medication, medicated and unmedicated MDD participants did not differ on leptin levels, BMI, 
insula and striatum BOLD signal, or relationships between these metrics suggesting that medication was not 
accounting for the present results.

We show evidence that the association between leptin and anticipatory reward processing is different in 
depressed versus non-depressed individuals, which may be due to a metabolic re-regulation involving leptin-
related pathways. More importantly, our findings suggest that leptin’s mechanism of action to reward processing 
is not dependent on inflammation as related to CRP peripheral concentrations, this may provide us with a new 
therapeutic window (e.g., increase leptin sensitivity to reward processing) for treatment of the most treatment-
resistant depressive symptom—anhedonia.

Methods
Participants. A subset of participants varying on peripheral inflammation, as determined by serum CRP 
levels, was drawn from the first 500 subjects as part of the Tulsa 1000 study, a naturalistic longitudinal study of 
1000 individuals with mental illness and  HC82. The Tulsa 1000 study was approved by the Western Institutional 
Review Board and conducted in accordance with the Declaration of Helsinki; all participants provided written 
informed consent and received compensation for their participation. See Victor et al. for the complete Tulsa 
1000 study  protocol82.

See Burrows et al. for the study population used in the present  analysis14. Briefly, three, age and sex matched 
groups of subjects were selected based on their serum CRP concentrations: (a) MDD subjects with CRP > 3 mg/L 
(MDD-High, n = 44, CRP range 3.12–22.99 mg/L); (b) MDD subjects with CRP concentrations between 0 and 
3 mg/L (MDD-Low, n = 44, CRP range 0.07–2.89 mg/L); and (c) HC subjects regardless of their CRP concen-
trations (HC, n = 44, CRP range 0.05–9.47 mg/L). All MDD participants completed the Mini International 
Neuropsychiatric Inventory (MINI)83 and met either Diagnostic and Statistical Manual of Mental Disorders 
(DSM)–IV or DSM-5 criteria for a major depressive disorder. The three groups were matched on demographics 
including age, sex, income, education, employment status, and smoking status.

All participants provided blood samples and completed two runs of the functional magnetic resonance 
imaging (fMRI) scan with the MID task. Venous blood samples, collected in BD Vacutainer serum collection 
tubes, were centrifuged at 1300×g for 10 min at room temperature. The serum was then aliquoted and stored at 
− 80 °C until analysis.

Immunoassays. Serum leptin and insulin concentrations were both analyzed using the Human Leptin, 
Insulin Kit (Meso Scale Diagnostics, Maryland, USA). Adiponectin was measured with the Human Quantikine 
ELISA kit (R&D Systems, Minneapolis, USA). The Neuroinflammation Panel 1 Human Kit (Meso Scale Diag-
nostics, Maryland, USA) was used to measure CRP concentrations. All analytes were tested in duplicate. The 
intra- and inter-assay coefficients of variation (CV) were 6.7% and 8.9% (leptin), 6.9% and 8.5% (insulin), 2.8% 
and 6.9% (adiponectin), 2.2% and 10.0% (CRP), respectively.

fMRI MID task. Brain reward processing was measured using the MID  task84 programmed in  PsychoPy85. 
Each MID run included 45 trials and lasted 562 s. On each trial, a cue that indicated a potential win or loss 
(circle or square) was presented, then a target (white triangle) was presented after a short delay. Participants 
were instructed to press a button within a short response time to win or avoid losing the amount of money 
indicated by the cue. To make sure each participant succeeded on approximately 66% of trails, task difficulty 
was calibrated by each participant’s reaction time during a practice session and updated during the scan. Brain 
images were acquired with two identical GE MR750 3T scanners at Laureate institute for Brain Research, Tulsa, 
Oklahoma, USA. The scanning parameters were TR/TE = 2000/27  ms, FOV/slice = 240/2.9  mm, 128 × 128 
matrix, 39 axial slices. High resolution structural T1-weighted images were acquired (TR/TE = 5/2.012 ms, FOV/
slice = 240 × 192/0.9 mm, 186 axial slices).

Neuroimaging data preprocessing. Neuroimaging data preprocessing was conducted using the AFNI 
software  package86. The preprocessing steps included discarding of first 3 TRs, despiking, slice timing correc-
tion, co-registration to anatomical volumes, motion correction, smoothing with a 4 mm Gaussian full width at 
half-max smoothing kernel, and normalization to Montreal Neurological Institute space. The blood oxygen level 
dependent (BOLD) response to each of the six anticipatory task conditions (three win and three loss) was mod-
eled with four-second block regressors convolved with a canonical hemodynamic response function. Volumes 
with either a Euclidean norm of the derivatives of the six motion parameters greater than 0.3 or greater than 
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10% outlier voxels were removed from regression step. Regressors used in the model were the first 4 polynomial 
baseline terms, along with 6 motion parameters (roll/pitch/yaw/x/y/z translation), large loss (− 5), small loss 
(− 1), no loss (− 0), no win (+ 0), small win (+ 1), large win (+ 5).

Statistical analysis on immunoassays. Normality of leptin, insulin and adiponectin distributions were 
tested using Shapiro-Wilks test; all three analytes were log-transformed due to their non-Gaussian distribu-
tions. Group differences on insulin and adiponectin concentrations were assessed using Analysis of Variance 
(ANOVA). The distributions for leptin were found to be non-Gaussian even after log-transformation, therefore, 
Kruskal–Wallis and Mann–Whitney–Wilcoxon non-parametric tests were used to test group differences. Values 
with an absolute z greater than 3 for each analyte were defined as outliers, however, no outliers were found in 
this dataset. Effect size was computed with Cohen’s d. In addition, Pearson’s correlations were used to explore 
potential relationships between leptin and demographics/clinical characteristics including: PBF, BMI, exercise, 
and PROMIS ratings within the MDD or groups. ANOVA tests were used to evaluate leptin level slope differ-
ences between groups.

Statistical analysis on neuroimaging. The slope difference in the relationship between leptin and per-
cent fMRI BOLD signal change on the MID gain versus non-gain contrast was evaluated using AFNI’s group 
analysis program 3dttest++ using the model beta ~ Group*log(leptin). Clusters with a significant interaction 
were selected based on a voxel wise p < 0.05. The family wise error rate was set to α < 0.05 using 3dClustsim to 
estimate probability of false positives and 3dFWHMx to measure the intrinsic smoothness of the residuals, both 
using the spatial autocorrelation function (acf) option. Small volume correction was performed by applying this 
cluster-wise correction separately for 10 different regions (left and right insula, thalamus, caudate, putamen, 
nucleus accumbens) that were selected a priori. Follow up regression analyses were conducted in R for signifi-
cant clusters.

Data availability
The data that support the findings of this study are available on request from the corresponding author, KB. The 
data are not publicly available due to restrictions e.g., their containing information that could compromise the 
privacy of research participants.
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