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The effect of load on spatial 
statistical learning
Nadav Amsalem 1, Tomer Sahar 1,2 & Tal Makovski 1*

Statistical learning (SL), the extraction of regularities embedded in the environment, is often viewed 
as a fundamental and effortless process. However, whether spatial SL requires resources, or it can 
operate in parallel to other demands, is still not clear. To examine this issue, we tested spatial SL using 
the standard lab experiment under concurrent demands: high- and low-cognitive load (Experiment 
1) and, spatial memory load (Experiment 2) during the familiarization phase. We found that any 
type of high-load demands during the familiarization abolished learning. Experiment 3 compared 
SL under spatial low-load and no-load. We found robust learning in the no-load condition that was 
dramatically reduced in the low-load condition. Finally, we compared a no-load condition with a very 
low-load, infrequent dot-probe condition that posed minimal demands while still requiring attention 
to the display (Experiment 4). The results showed, once again, that any concurrent task during the 
familiarization phase largely impaired spatial SL. Taken together, we conclude that spatial SL requires 
resources, a finding that challenges the view that the extraction of spatial regularities is automatic 
and implicit and suggests that this fundamental learning process is not as effortless as was typically 
assumed. We further discuss the practical and methodological implications of these findings.

Our visual world is full of dynamic and ever-changing incoming stimuli. Given the vast amount of visual input, 
one of the challenges is to cope with the stimuli load and prepare for the expected stimuli. Fortunately, objects 
in the environment often appear not in a random fashion but rather in certain repeated contexts. Extracting and 
utilizing these regularities in the environment is an excellent tool to reduce the amount of information needed to 
be processed and allow a more efficient allocation of resources. Indeed, such extraction of regularities is widely 
accepted as a fundamental cognitive process1,2 that occurs implicitly, without direct intention or awareness, effort-
lessly, and without perturbing other concurrent processes3. That is, while explicit visual memory relies on limited 
capacity and available resources and is constrained by divided attention4–9, implicit learning of those visual 
regularities should, by definition, only be minimally affected, if at all, by other concurrent cognitive demands.

One such form of implicit visual learning is visual Statistical Learning (SL)2,10–12. A visual SL task commonly 
consists of two parts; First, participants view a stream of complex stimuli, usually composed of arbitrary shapes. 
Unbeknown to them, some of the stimuli occur in a certain temporal regularity, and those regularities repeat 
within blocks of trials. After the learning (or familiarization) phase, a test phase is administered. Participants view 
two streams of shapes—old (stimuli that appeared in the same temporal regularity as in the familiarization phase) 
and new (stimuli that appeared in a different temporal order), and the task is to decide which one of the two is 
more familiar. Importantly, both the old and new streams consist of pairs or triplets composed of the complex 
stimuli seen in the learning phase and thus performance above chance level indicates that the observer was not 
merely familiar with certain stimuli but incidentally learned the regularities: the specific temporal associations 
among the stimuli. To conclude that the learning occurred implicitly, some studies also directly test participants’ 
explicit knowledge about the repeated regularities12–17.

Participants can learn not only temporal regularities18 but spatial ones as well14,16,19,20. In a seminal study19, 
participants saw displays with a complex spatial arrangement of six shapes. Critically, these arrangements were 
created by laying out pairs or triplets of specific shapes, in a specific spatial configuration (see below, Fig. 1b). 
Participants viewed each complex display only once, but in fact, each of the six base pairs was repeated in 72 trials. 
Again, the test phase consisted of a base (old stimuli) and foil (new stimuli) discrimination task, and participants 
were asked to indicate which of the two was more familiar. The results from three experiments showed implicit, 
unaware, and non-intentional extraction of spatial statistics.

These findings illustrate the remarkable ability to extract non-trivial spatial and temporal relationships among 
visual (and auditory11) arbitrary stimuli, mostly occurring without direct intention to acquire them. Describing 
this notion, authors have often used the term automaticity15,21,22 wrapping several aspects of SL together: (a) 
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incidental—learning occurs without direct intention, (b) unawareness—learning occurs without explicit aware-
ness of the regularities or without awareness that such information was acquired, (c) fundamental process—the 
extracted information does not depend on specific stimuli, and the information is available for other ongoing 
processes, (d) inattentional—learning does not depend on the allocation of attention, and, (e) effortless—learning 
does not depend on available resources and occurs with little or no cost on other processes3. Yet, as described 
below, evidence for the effortless aspect of SL is mixed.

In the absence of additional demands, temporal SL can operate robustly21 but is somewhat limited under addi-
tional demands23. Recent findings point out that task demands during the learning phase affect temporal SL24,25 
but critically, it is not known how concurrent demands affect learning in both the temporal and spatial SL forms.

Other types of implicit learning tasks suggest that implicit learning in the spatial domain is quite robust in 
the face of additional demands. For instance, a series of experiments26 examined how different types of visual 
working memory tasks (e.g., color arrays, dot location arrays) affected a simple visual search task (i.e., T among 
L task). Importantly, in their search task, the target location was either cued explicitly (by spatial or verbal cues) 
or implicitly (by a high probability that the target will appear at a certain quadrant of the display). They found 
that any concurrent memory task that created a load impaired only explicit cues, but not implicit cues extracted 
through incidental learning, see also27.

Another study demonstrated that implicit learning is not easily affected by concurrent demands28. This study 
examined whether contextual cueing, a visual search task where the target location is implicitly or inciden-
tally learned through the repeated configuration of the target and its surrounding distractors29–31 is affected by 
memory load from concurrent working memory tasks. They found that contextual cueing was robust to concur-
rent demands and suggested that implicit context learning does not rely on visual or spatial working memory 
resources (but see32,33). Interestingly, however, when a spatial memory task was administered during the testing 
phase (rather than the learning phase) the contextual cueing effect was impaired, suggesting that concurrent 
demands impaired the expression of learning but not to the learning itself34,35.

To the best of our knowledge, no other study has directly examined the effects of load (by concurrent tasks) 
on visual SL. This question has two important implications; from a practical standpoint, most visual SL tasks 
employ some sort of a cover task during the SL learning phase. That is, participants are not told to memorize the 
SL displays directly, but rather to perform an adjacent task like repetition detection, to ensure that participants 
are actively engaged in the display. Inadvertently, these demands, as weak as they might appear, could distort, 
or impair learning. More importantly, from a theoretical standpoint, if load affects SL, then it is not as effortless 
as previously assumed. In the current study, we focused on the spatial, rather than the temporal, version of the 
task since it is easier to manipulate load on a trial-by-trial basis, and as abovementioned it is not clear how load 
affects this form of SL. Our goal was therefore to examine how different types of load (i.e., concurrent additional 
demands) during the learning phase affect the outcome of incidental spatial SL.

Experiment 1
The goal of Experiment 1 was to test whether incidental learning of spatial regularities is robust to memory load 
during the familiarization phase. In each trial, participants performed a letters-digits old-new memory task (sim-
ple characters change-detection task). During the retention interval of the memory task, we showed participants 
a 6-shapes spatial SL display. Half of the trials in the task were low-load and half high-load, and different base 
triplets were associated with each condition. Thus, we were able to examine if the subsequent recognition of base 
triplets is affected by the amount of load (high vs. low conditions) during familiarization.

Method
Participants.  Participants in all experiments were The Open University of Israel undergraduate students 
who took part in the experiments for course credit (age range: 18–40). All had normal or corrected vision, 
normal color vision, and without any neurological or attention deficits. The sample size was based on a previ-
ous study14 with 20 participants showing a large effect of learning (Cohen’s d > 0.8, see Exp. 3 below). Taking 
into consideration that we introduced a load manipulation, we set the minimal sample size of 35 participants. 
Power analysis (pwr package for r, 2018, version 1.2-2, http://​cran.r-​proje​ct.​org/​web/​packa​ges/​pwr/) confirmed 
that this sample size provides 95% power to detect an effect size of at least 0.5 (Cohen’s d) with two-sided paired 
samples t-test. Forty-seven participants completed Experiment 1 (Mean age = 26.5, 31 females, 16 males).

Figure 1.   Illustration of Stimuli: (a) The spatial SL shapes used in all experiments (b) Illustration of base triplets 
(c) Illustration of the spatial SL display used in all experiments.

http://cran.r-project.org/web/packages/pwr/
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Materials.  The task was programmed and administered using MATLAB software (MATLAB, The MathWorks 
Inc., Natick, MA, 2010) and Psychtoolbox on a Standard PC and 23.5″ LCD Eizo Foris monitor (1920 × 1080, 
120 Hz refresh rate). Analyses were performed using JASP (version 0.15, JASP team, 2021). Bayesian analyses 
were performed with the Standard prior (Caucy ~ 0.707). The stimuli were 24 black-and-white shapes obtained 
from Turk-Browne’s (2005) study22. Each shape (1.14° × 1.14°) was presented within a cell of a black visible grid 
(5 × 5, 11.4° × 11.4°), on a white background. For the memory task, we used the digits 0–9 and the A–J letters 
(font: Segoe UI, 32 points 0.57° × 1.05°).

Spatial SL display.  The 24 stimuli were randomly sampled for each participant: 12 unique shapes for the 
high memory load condition and 12 unique shapes for the low memory load condition (Fig. 1a). The 12 shapes 
were then randomly divided into four base triplets. Thus, each load condition had four unique base triplets. Two 
of the four were two left arrow-shaped triplets and the other two were left diagonal triplets (Fig. 1b). The spatial 
SL display was a combination of one arrow triplet and one diagonal triplet presented together and therefore each 
load condition had four unique SL displays. Each spatial SL display was composed of six stimuli arranged in a 
combination of arrow and diagonal triplets positioned at the nine central grid cells. The other grid cells remained 
empty (Fig. 1c).

Procedure.  The procedure followed standard spatial SL tasks as there was a learning phase followed by a 
test phase (Fig. 2). Each trial sequence in the learning phase started with a fixation display (a black cross, 0.57°) 
presented for 400 ms. Then, the memory items display appeared for 200 ms. In the low-load condition of Experi-
ment 1, one letter and one digit (each randomly chosen) appeared together at the center of the screen. In the 
high-load condition, a random combination of 3 letters and 3 digits appeared. The memory array was followed 
by a spatial SL display presented for 2 s. After viewing the spatial SL display, participants performed the memory 
test, which consisted of one “old” character (i.e., appeared), or one “new” character (i.e., did not appear). The 
test items were presented at the center of the screen (Fig. 2a). In each load condition, half of the trials were old, 
and half were new, randomly distributed across the blocks. Participants were instructed to respond whether the 
test item (i.e., one letter or digit) was old or new by pressing the corresponding keys (‘h’ or, ‘j’) on the keyboard 
within three seconds. A feedback display (11.4° × 11.4°, “correct”, “incorrect”, or “too slow”) appeared for 300 ms, 
followed by a blank interval of 600 ms. There were 112 trials in each load condition, divided into four blocks of 
56 trials. The block sequence was ABAB (e.g., high-load, low-load, high-load, low-load) with their order coun-
terbalanced across participants. For each load condition, there were four spatial SL displays, each repeated 28 
times (thus, for each of the load conditions, a unique triplet repeated 56 times). Before the experimental trials, 
participants performed eight practice trials, four in each load condition, composed of random stimuli configura-
tion (Fig. 1a). The order of SL displays, in both conditions, was randomly and evenly assigned across trials within 
each block.

Participants were instructed to perform the character memory task (i.e., to respond on each trial whether the 
test stimulus is “old” or “new”) and were not told anything about the SL display (which appeared as fillers during 
the retention interval in each trial). After completing the study phase, participants took a short break and received 
the instructions for the test phase from the experimenter. Each trial in the test phase (Fig. 2b) consisted of two 
triplets, presented one after the other on a center grid (5 × 5). Each triplet was presented for two seconds with 
150 ms interval between them. One triplet was a triplet that appeared in the learning phase (i.e., old triplet), and 
another triplet consisted of three random shapes from that load condition (i.e., new triplet). Randomly, in half 
of these trials, the old triplet appeared first, and in the other half, it appeared second. Participants were asked to 
respond by pressing the ‘1’ or ‘2’ keys to which of the two triplets was more familiar. Each old triplet was tested 

Figure 2.   Schematic Illustration of Experiment 1: (a) Illustration of Experiment 1’s trial sequences during the 
learning phase in the low (left sequence)—and high-load (right sequence) conditions. (b) Schematic illustration 
of the spatial SL familiarity task. Note: the triplets appeared on a 5 by 5 grid.
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four times; twice against each of the two ‘new’ foil triplets. The presentation order was evenly and randomly 
balanced for each old triplet. The foil triplets were always presented as the opposite shape to the target triplet; 
i.e., if the target triplet was a ‘diagonal’ (Fig. 1b right), then the foil was an ‘arrow-shaped’ triplet (Fig. 1b left), 
and vice-versa. Thus, the recognition test consisted of 16 trials (four old triplets, each tested four times) for each 
of the high- and low-load conditions in a random order, for a total of 32 trials.

Ethical approval.  This study was approved by the ethics committee of The Open University of Israel (3193), 
all participants consented prior to experiments. All experiments were performed in accordance to the guidelines 
and regulations of the Declaration of Helsinki.

Conference presentation.  Part of this work was submitted by NA to fulfill his requirements for a master’s 
thesis in Psychology (MA). This paper was presented at the conference for Object Perception, Attention, and 
Memory (OPAM, Nov. 2022, Boston, USA). A version of this manuscript available as a pre-print at https://​doi.​
org/​10.​31234/​osf.​io/​4wksj.

Results and discussion
Seven participants whose accuracy in the memory task of the learning phase was two standard deviations from 
the mean in one of the two load conditions were excluded from the analyses. This left us with 40 participants’ 
data. Including the excluded participants did not change any of the conclusions (see Fig. 5 below, for a summary 
of the results).

Character memory task.  Performance in the memory task during the learning phase in the low-load 
condition (M = 93%, SD = 6.7) was, as expected, better that the high-load condition (M = 70%, SD = 10.1), 
t(39) = 17.7, p < 0.001, d = 2.8. A similar pattern was observed for mean correct RT, with faster performance 
in the low-load condition (M = 923  ms, SD = 238  ms) compared to the high-load condition (M = 1039  ms, 
SD = 244 ms), t(39) = 3.3, p = 0.002, d = 0.522.

Spatial SL task.  Learning was observed in the low-load condition. Performance was significantly larger 
than the chance level (a one-sided test that the mean is larger than 50%, M = 57%), t(39) = 3.2, p < 0.001, d = 0.506. 
In contrast, the high-load condition was not better than chance (M = 53%), t(39) = 0.935, p = 0.178, BF01 = 2.32, 
and was significantly lower than the low-load condition, t(39) = 2.22, p = 0.032, d = 0.351. Thus, Experiment 1 
provided clear evidence that high memory load impaired the learning of spatial regularities.

Experiment 2
While Experiment 1 showed that visual memory load impaired spatial SL, it is not yet clear whether all types of 
memory load would behave the same. For instance, as mentioned above, the expression of the contextual cueing 
effect was impaired only under spatial memory load, and not by non-spatial load34. This compels to test the effect 
of load using a spatial memory task. This should allow us to generalize our conclusions and might even reveal 
a greater impairment stemming from the spatial nature of the task. To this end, the design of Experiment 2 was 
identical to Experiment 1’s, except that instead of the character memory task, low- and high-spatial memory 
load were introduced during the learning phase (Fig. 3).

Method
The materials, procedure, and design were the same as in Experiment 1, except for the following changes. The 
memory items were colored squares (Fig. 2b, 0.91° × 0.91°) filled with black (RGB = 0,0,0), green (RGB = 0,255,0), 
blue (RGB = 0,0,255), yellow (RGB = 255,255,0), magenta (RGB = 255,0,255), or red (RGB = 255,0,0). In the low-
load trials, one squared color appeared at a randomly chosen grid cell. In the high-load condition, six different 
colors simultaneously appeared in six different cells. Participants were instructed to respond whether the test 
stimulus, one old color item, was presented at the same location as before (“old”) or a different location (“new”). 
Old and new test stimuli were equally and randomly presented. Four participants whose performance exceeded 
2 SDs in one of the load conditions were removed from the analysis leaving 37 participants (Mean age = 27.1, 30 
females, 7 males) in the final sample.

Results
Spatial memory task.  As in Experiment 1, performance in the memory task during the learning phase 
in the low-load condition (M = 94%, SD = 3.5) was more accurate than the high-load condition (M = 70%, 
SD = 10.7), t(36) = 15.2, p < 0.001, d = 2.54. Performance was also faster in the low-load condition (M = 900 ms, 
SD = 158 ms) than in the high-load condition (M = 1127 ms, SD = 249 ms).

Spatial SL task.  Akin to Experiment 1, only the low-load condition showed learning and accuracy was 
significantly larger than the 50% chance performance (M = 56%), t(36) = 2.57, p = 0.014, d = 0.424. The high-load 
condition was within the chance performance (M = 53%), t(36) = 1.574, p = 0.124, BF01 = 1.8, yet the high-load 
and the low-load were not significantly different, t(36) = 0.814, p = 0.421, BF01 = 4.1.

https://doi.org/10.31234/osf.io/4wksj
https://doi.org/10.31234/osf.io/4wksj
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Discussion
Like Experiment 1, we observed learning under the low-load condition, but not under the high-load condition. 
We can therefore conclude that learning is constrained under any type of high-load (i.e., memory or spatial). 
However, the support for the lack of significant learning in the high-load condition was anecdotal and the current 
results still need to be clarified. Specifically, in contrast to Experiment 1, the low- and high-spatial load condi-
tions of Experiment 2 were not statistically different while the low-load was statistically larger than 50 percent 
chance performance (and the high-load was not). We believe that the lack of significant difference is the product 
of the rather small learning effect found even under the low load condition (56%). That is, when learning is quite 
poor, to begin with, it would be difficult to find the considerable difference between the two load conditions. In 
the next experiment, we addressed this issue by comparing a low-load condition to a no-load condition, which 
allowed us to estimate the magnitude of learning without any task.

Experiment 3
The results of the first two experiments were consistent in showing no learning under the high-load conditions. 
However, the difference in learning between the low- and high-load conditions was relatively small and significant 
only in the first experiment. We suspected this could be because most of the load effect was introduced by the 
secondary task itself, which brought the learning down, leaving little room for additional load effect. Indeed, in 
their classical study, Fiser and Aslin14 reported a much greater learning effect (Exp. 114: Cohen’s d ~ 1.2) when 
using a similar design, but without any additional secondary task19. Thus, in the next experiment, we compared 
spatial SL performance under two conditions: a no-load condition, in which participants viewed the repeating 
SL displays without performing any concurrent task, and a low-load condition with an easy spatial memory task 
during the learning phase (the same as in the low-load condition of Experiment 2, Fig. 4a). Directly comparing 
the low-load with the no-load condition allows us to quantify undisturbed learning, and how additional, even 
rather low load demands, affect learning.

Method
The materials, procedure, and design were the same as in Experiment 2, except for the following changes. The 
task consisted of a low-spatial load condition, the same as in the low-spatial load condition of Experiment 2, 
and a no-load condition (i.e., passive-viewing) in which the participants were only required to passively view the 
spatial SL displays. Participants in the no-load condition were told just to observe the screen and displays and 
were not informed that there will be a test on these shapes. In the low-load condition, participants were instructed 
to perform the spatial memory task (as in Experiment 2) and were not told anything about the filler SL displays. 
Stimuli, trial design, number of trials, and the display sequence and timing were the same as the low-load task.

To minimize carry-over effects, the block’s sequence was now AABB (i.e., low-load, no-load) counterbalanced 
across participants. Forty-three new participants (Mean age = 30.4, 34 females, 10 males) completed Experiment 3.

Results
Spatial memory task.  In the memory task during the learning phase, the mean correct responses was 94% 
(SD = 4.4, mean RT = 902 ms, SD = 221 ms). Accuracy was not significantly different from the low-load condition 
of Experiment 2 (M = 94%, independent samples test, t(78) = 0.019, p = 0.985, BF01 = 4.2).

Spatial SL task.  Both conditions were significantly larger than the chance level, suggesting that spatial SL 
was able to occur in parallel to the low-spatial load (M = 56%), t(42) = 4.12, p < 0.001, d = 0.629. Learning was 

Figure 3.   Schematic Illustration of Experiment 2. Illustration of Experiment 2’s trial sequences during the 
learning phase in the low (left sequence) and, in the high-load conditions (right sequence).
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found also in the no-load condition, (M = 70%), t(42) = 7.59, p < 0.001, d = 1.1), and most importantly it was far 
more robust than the low-load condition, t(42) = 4.89, p < 0.001, d = 0.746.

Discussion
Experiment 3’s results replicated within the same participants, both the large magnitude of learning reported in 
the classical spatial SL effect14, and the smaller, still better-than-chance performance found in the low spatial load 
condition of Experiment 2. Taken together, performing even a low-load concurrent task considerably impaired 
the robustness of statistical learning of spatial regularities.

Still, one might argue that the no-load condition might have prompted participants to engage more with the 
SL displays, and therefore enhanced learning in this condition might result from the increased attention to the 
displays. We addressed this issue in the next experiment.

Experiment 4
Experiments 1–3 showed that a concurrent task, even one which creates a low degree of load, impairs the learn-
ing of spatial regularities. Further increasing either cognitive or spatial load during that phase was detrimental 
to the learning. In contrast, the learning under the no-load condition, without any concurrent task, was robust. 
This entails both theoretical and practical implications as studies often use conditions in which participants 
are passively viewing the displays to measure SL. Yet, it is not clear what subjects are actually doing during the 
no-load condition. One possibility is that “doing nothing” encourages them to actively search for regularities. 
Thus, the goal of our final experiment was to address this issue by providing a cover task to minimize this ‘active 
search’ tendency while keeping the load at a minimum (if any at all).

To this end, instead of a low spatial load, we tested a condition in which participants were asked to respond 
as quickly as they could upon the detection of an un-frequent dot-probe on filler displays (see above, Fig. 4b). 
We reasoned that such a task should hardly impose any additional load while keeping participants engaged with 
a task. In fact, the ‘alertness’ for the detection of the dot by sustaining visual attention to the display might assist 
the learning. On the opposite, impaired learning in that condition relative to no-load would suggest that the 
presence of an additional task itself, even one that adds a minimal concurrent load impairs SL.

Method
The materials, procedure, and design were similar to those of Experiment 3, except for the following changes. 
Because we needed more displays for the dot-probe detection task, we added 12 new arbitrary spatial SL shapes 
(created with common paint software) to the existing pool of shapes (stimuli available at https://​osf.​io/​qbdwr/). 
The 36 shapes were randomly divided into three unique sets of 4 triplets. These sets were randomly created across 
participants. Importantly, each set was matched to a condition during the learning phase. The task consisted of 
a passive-viewing 112 trials like Experiment 3 no-load condition. In addition, there was a dot-probe condition 
(i.e., task load), where in 32 random trials across the 144 trials, a black dot (0.8° × 0.8°, RGB = 0,0,0) appeared 
on a randomly chosen empty grid-cell, one second into the spatial SL display. The display remained on-screen 
for an additional second and participants were asked to respond as fast as they could by pressing the spacebar 
when they saw the black dot. Participants were not told anything about the SL displays. Similarly, in the no-
load condition, participants were not told anything about the SL displays, just to observe the screen until they 
get further instructions. Importantly, the spatial SL displays during the dot-probed trials were of four unique 
triplets which were not tested in the spatial SL test phase. The remaining 112 trials in that condition were of 
four unique triplets that did appear in the spatial SL test phase. The block’s sequence was AABB (i.e., task-load, 

Figure 4.   Schematic Illustration of Experiments 3 and 4 (a) Schematic illustration of Experiment 3 design: low-
load trials (right) and no-load trials (left) (b) Schematic illustration of Experiment 4 design: task load trials with 
infrequent dot trials interleaved (“Detect dot”, right), and the no-load trials (left). Note: The dot color was black 
circled here in red for visualization.

https://osf.io/qbdwr/


7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11701  | https://doi.org/10.1038/s41598-023-38404-2

www.nature.com/scientificreports/

no-load) counterbalanced across participants. Forty new participants (Mean age = 27.4, 23 females, 17 males) 
completed Experiment 4.

Results and discussion
Dot‑probe task.  Average dot detection hit rate was 98.4% (SD = 2.4). The mean detection RT for the dot 
probe trials was 680 ms (SD = 175 ms).

Spatial SL task.  As in Experiment 3, robust learning was found in the no-load condition (M = 75%), 
t(39) = 8.67, p < 0.001, d = 1.37. There was also robust learning in the dot-probe task condition, (M = 68%), 
t(39) = 6.5, p < 0.001, d = 1.02. The two conditions were statistically different t(39) = 3.11, p = 0.003, d = 0.492. 
Interestingly, recognition of SL triplets in the low-task load of Experiment 4 (M = 68%) was significantly more 
accurate than the low-spatial load of Experiment 3 (M = 57%, independent samples Welch t-test, t(65.2) = 3.39, 
p < 0.001, d = 0.751). This finding suggests that task load, which could harness resources onto the primary task 
display, might facilitate the learning of spatial regularities (compared to other cover tasks that might share 
demands with the learning). Nevertheless, other methodological parameters differ between the tasks (e.g., mem-
ory load and response on each trial, spatial load vs. dual-task load) and hence it is yet to be determined how 
exactly secondary task parameters affect learning. Importantly, there was still an advantage for learning spatial 
regularities when this learning occurred under a passive viewing condition without any additional demands.

General discussion
In the present study, we examined how different load types during exposure to spatial SL displays affect the 
incidental learning of spatial regularities of arbitrary shapes. Figure 5 depicts a summary of the results.

As can be seen, we found that nearly any amount or type of concurrent load during the viewing of the spatial 
SL displays impaired the later recognition of the spatial relations among the shapes. We introduced a low memory 
load by a concurrent memory task of digits and letters (Experiment 1) and a low spatial load from the location 
of colored squares (Experiment 2). Both resulted in poor but above-chance levels of learning. Importantly, in 
both Experiments 1 and 2, any type of concurrent high-load during the viewing of the displays abolished the 
learning. We further replicated the relatively powerful spatial SL effect under a no-load, passive viewing condition 
(Experiment 3) and showed that it was dramatically reduced even under a low spatial load condition. Experi-
ment 4 similarly replicated the large learning effect under a no-load condition showing again a benefit, this time 
over a simple, infrequent dot-probe cover task that required minimal demands. That is, even a simple task with 
minimal load (if any) that encouraged participants to pay attention to the display, impaired spatial SL. Notably, 
however, this cover task induced a much smaller impairment to SL when compared to the spatial low-load tasks 
confirming a gradual effect of load on learning. Together, these results are consistent with the general notion 
that task demands during exposure influence SL23,24 and further demonstrate that incidental learning of spatial 
relations is not an effortless process. This means that any use of resources directly shared or not disrupts SL.

While the temporal form of SL is more commonly used than spatial SL, the role of load in any of these forms 
was hardly directly tested. Temporal tasks often used a repetition detection (n-back task) during the learning 
phase21,22 or another detection task during the presentation of the stream15,17,20. Regardless of the amount of load 
it creates, we showed that the presence of a task itself during the learning, even without any specific working 
memory load, impaired spatial SL. Since it was shown that SL results in a flexible representation that can transfer 
between the spatial and temporal domains20 (i.e., learned temporal relations were expressed as spatial, and vice 

Figure 5.   Summary of the results from Experiments 1–4. Percentage of correct responses in the spatial SL 
task as a function of the load condition and type of task. Error bars represent ± 1 standard error of the mean. 
The horizontal dotted line represents the chance level performance of 50% correct responses. Mean accuracy 
(Percent correct) is indicated in each bar. The colored dots represent individual scores. Note: L = Low-load 
condition, H = High-load condition, N = No-load condition.
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versa), it is reasonable to speculate with a degree of confidence that temporal SL should be affected by load much 
like the spatial form. Future research could directly examine the impact of load in the temporal domain (e.g., 
with an n-back task36). Importantly, the current results are clear that this type of SL is less resistant to parallel 
demands than previously suggested15,22,37.

In contrast to other types of implicit learning tasks, such as contextual cueing, which were found to be robust 
to load or dual-task situations26,28,38,39 our results demonstrated that load easily disrupted spatial SL. This dis-
crepancy raises the possibility that spatial SL might not be “as implicit”41 as other visual tasks that are robust to 
concurrent demands15. Indeed, the interfering effects of load on a spatial SL task are aligned with the idea that 
some implicit learning tasks actually require some degree of explicit processes40–43.

Yet, before concluding that spatial SL is an explicit rather than implicit process we should first consider several 
differences between visual learning tasks that are affected by load (e.g., spatial SL) and those which are not (e.g., 
probability learning26,27, contextual cueing28,30,34). For instance, this discrepancy might stem from a fundamental 
difference in what is learned: target position vs. association between shapes. The latter, which is mostly irrelevant 
when searching for an item, might be more demanding and more susceptible to the effect of load. Another pos-
sibility is that the visual search task used in both probabilistic cueing and contextual cueing has an inherent 
“task load” to begin with, and therefore the effects of any additional demands might be more difficult to detect.

Our findings suggest that spatial SL is easily disturbed by other ongoing processes regardless of their nature. 
Whether SL in general is robust when it comes to operating in parallel to other demands43 is a critical and unre-
solved question. Moreover, as discussed above, the automaticity of SL can be viewed from different aspects3,22. 
Here, we focused on one aspect of automaticity, namely effortfulness. The other aspects of automaticity, such 
as the incidental nature of the task, and that observers often fail to report that they noticed a repetition or that 
they learned anything, are relatively undisputed. Thus, while we conclude that spatial SL might not be a purely 
implicit, effortless process39,43, one needs to be cautious in generalizing and comparing our results to other types 
of implicit learning tasks.

Despite several differences found between various types of SL tasks, the common findings of visual SL are 
often taken together even with findings from audition44 and language acquisition45 to support the claim that 
SL is a general-domain process1. It was further claimed that this general-domain SL is constrained by work-
ing memory limitations1,46–48. While the current study did not aim to directly test this notion, the findings are 
indeed consistent with it as we showed that SL is constrained by non-selective working memory demands (e.g., 
character memory and spatial color memory). Yet, the question of whether similar mechanisms are underlying 
SL of various modalities and domains is to be determined.

From a broader theoretical perspective, we argue the fact that people incidentally learn arbitrary, meaning-
less spatial configurations is quite remarkable even if this learning ability is easily disrupted by load. Further-
more, that participants were able to recognize non-trivial spatial relations among arbitrary shapes above chance 
performance suggests that contextual information, like spatial configurations, might be hard-wired into these 
memory representations14,49–51.

The current results also bear practical and methodological implications. From a practical perspective, there 
are several examples where one can think of applying spatial SL in real-world settings, such as learning the con-
figuration of your apps on the smartphone, or remembering the sitting arrangement of students in your class. 
All these and others might benefit from trying to learn them actively and intentionally without any parallel task. 
Accordingly, future studies should examine SL and how it is affected by load in more ecological environments 
(e.g., using VR).

In terms of methodology, researchers should reconsider using passive viewing conditions for testing learning 
as it might overestimate both the magnitude and the implicit nature of learning12,22,52. On the one hand, there are 
good reasons to test passive viewing condition as it is likely to be more ecological since in everyday life we rarely 
engage in detection tasks53. On the other hand, it is not clear whether learning is automatic in the sense that it 
is imposed on the observer even when instructed to ignore the stimuli21,54. Instead, learning might be robust 
under this condition just because participants explicitly search for regularities out of experimental boredom (this 
condition was described as “the most boring thing I have ever done” by an anonymous participant), experimental 
curiosity, or just because they have nothing else to do.

Note that even if the no-load condition, in its passive viewing form, compelled participants to engage with 
the displays, then the enhanced learning under this condition is in a sense the result of more effort and resources 
invested in learning. This points to the positive consequences of directly engaging with the display12,54,55 rather 
than engaging with some other task. In any case, it is advisable to incorporate other, non-demanding cover tasks 
when testing implicit learning mechanisms. Future studies should search for the specific conditions that emulate 
no-load trials while controlling for participants’ engagement.

In conclusion, our study provides clear evidence that spatial SL requires resources, that learning is impaired as 
the task load during familiarization increases, and that a presence of a task, even minimally demanding, reduces 
learning. These findings critically challenge that SL occurs automatically and call for more caution in designing 
implicit learning cover tasks as those could largely impact learning.

Data availability
None of the experiments were formally preregistered. The data of the current study are available in the Open 
Science Framework (OSF) repository, https://​osf.​io/​qbdwr/.
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