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Epidemic thresholds and human 
mobility
Marta Pardo‑Araujo 1,6, David García‑García 2,3,6*, David Alonso 1 & Frederic Bartumeus 1,4,5

A comprehensive view of disease epidemics demands a deep understanding of the complex 
interplay between human behaviour and infectious diseases. Here, we propose a flexible modelling 
framework that brings conclusions about the influence of human mobility and disease transmission 
on early epidemic growth, with applicability in outbreak preparedness. We use random matrix 
theory to compute an epidemic threshold, equivalent to the basic reproduction number R

0
 , for a 

SIR metapopulation model. The model includes both systematic and random features of human 
mobility. Variations in disease transmission rates, mobility modes (i.e. commuting and migration), and 
connectivity strengths determine the threshold value and whether or not a disease may potentially 
establish in the population, as well as the local incidence distribution.

Outbreaks of infectious diseases pose a threat to public health worldwide and may disrupt any type of human 
activity. Reliable and versatile tools to predict and gauge the dynamics and possible spread of a disease are thus 
critical for the adequate preparedness of public health systems. This is specially important during the early stages 
of disease outbreaks, when little information may be available on the epidemiology of the disease1–3.

The basic reproduction number ( R0 ) is probably the most widely extended indicator in health systems for 
assessing the risk of infectious diseases4–6. It serves as an epidemic threshold, valuable for assessing the severity 
of possible outbreaks of the disease. The R0 is defined as the number of infections caused by a typical infected 
individual in a fully susceptible population. Whenever this quantity is greater than 1, the disease is expected to 
follow an initial exponential growth if a small number of infected individuals is introduced in the system. If it 
is smaller than 1, the disease is expected to die out eventually in the absence of external factors that increase its 
transmissibility.

As seen in the recent COVID-19 pandemic, one of the crucial factors determining the spread and control 
of infectious diseases is the movement of individuals. The scales7–10, volume11–13, and complexity14–16 of human 
mobility patterns bring new challenges to the understanding of the R0 , and more generally, to outbreak predic-
tive capacity. Nonetheless, theoretical developments show how crucial epidemic information can be distilled in 
a simpler manner from seemingly complicated transport networks17–20.

We propose a modelling framework for the analysis of the possibility of spread of a disease across a meta-
population, consisting on local populations linked by a weighted network. Two kinds of human movement 
between these are contemplated in the model, in search of an accurate understanding on how different types 
and scales of mobility may affect the R0 of the disease. To model the variability inherent to spatial processes and 
human activities, we assume that the strengths of the connections between the local populations are randomly 
distributed. This allows us to focus on general properties of the model, rather than in specific instances of it. 
Using tools from random matrix theory (RMT21–23), we are able to obtain explicit predictions on the possibility 
of spread of the disease in terms of only a few parameters of the underlying distributions. In particular, we find 
that even though the systems are formulated in terms of random quantities, the predicted epidemic threshold 
of the disease only depends on deterministic indicators.

We consider a SIR epidemic model that consists of N coupled local populations, or patches. Three different 
processes may modify the number of infected individuals at each patch i: (a) the natural dynamics of the disease, 
consisting of contagions of susceptible from infected individuals from the patch (at a rate βi of transmission of 
the disease) and recovery of infected individuals (at a rate γi , that combines the rate of true recovery from the 
disease and the natural death rate of the population), (b) contagions of susceptibles from infected individuals 
from other patches j (at a rate βjcji , that factors the local disease transmission rate βj and a corrective term cji ), 
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and (c) arrivals/departures of infected individuals from/to other patches j (at rates mij and mji respectively). These 
assumptions are captured in the following set of differential equations

where Si and Ni denote the susceptible and total populations at each of the N nodes of the network. We assume 
that the total population of the system remains constant over time; see Supplementary Sect. 1 for more details 
and the full system of equations.

The interaction terms cij may be associated to short-term mobility based on back-and-forth displacements 
between the patches of the system, while the movement rates mij represent displacements from one patch to 
another with no returns, suggesting temporally delayed or long-term mobility compared to back-and-forth 
motion. We will refer to these types of mobility as commuting and migration respectively, and refer to them as 
the connectivity network as a whole.

The two mobility related terms in Eq. (1) are standard in models of infectious diseases24,25 and are usually 
analyzed separately. The force of infection generated by back-and-forth interactions (factored here as the prod-
uct of the local term βj and the corrective factor cji , quantifying the force of infection on patch i generated by 
interactions with individuals from patch j) was introduced by Lajmanovich and Yorke26 and has been studied by 
Lloyd and May, among several authors27–31, and migratory rates among populations have been treated extensively 
before32–35. Locally, the disease evolves at each node according to the classical SIR model4,36,37. The two types of 
mobility considered here (comprising “returners” and “explorers”) have also been observed in real-world mobility 
networks, and are expected to have different effects in spreading processes9.

While the epidemic spread in random networks has been subject of intensive investigations38–41, the novelty 
in our approach is the random nature of the parameters describing the connectivity between nodes. We draw 
the commuting and migration coefficients cij and mij from two arbitrary probability distributions, modelling 
randomness in the strength of the connections rather than on their occurrence (although, in particular, the 
absence of a connection is modelled by a zero-strength connection). This accounts for random connectivity and 
spatial heterogeneity, and allows for an innovative application of RMT techniques, as we demonstrate below. 
These techniques have been successfully employed in the study of ecological communities by Allesina et al.42–44 
and others45–48, generalizing in various directions the famous stability-complexity criterion of May49.

We follow the approach developed in Refs.50,51 and study an equivalent indicator to the R0 by means of the 
Jacobian matrix J of the linearized infected subsystem of the model (1) around the disease-free equilibrium (DFE). 
More precisely, we are interested in computing the largest real part of the eigenvalues of J, denoted by s(J), that 
determines the initial behaviour of the disease:

Note that s(J) does not need to match the epidemiological definition of R0 , in the sense that it does not 
measure the average number of secondary infections generated by a primary one50; it does however provide an 
equivalent epidemic threshold for disease spread. Another common tool in the study of the stability of the model 
is the next-generation matrix of the system51; we show in Supplementary Sect. 1.2 how our methods could be 
used equivalently in this context.

We also analyze the infectious disease dynamics described by Eq. (1) by making several more general assump-
tions. We study each of these generalizations using RMT, both analytically and numerically. For instance, we 
incorporate randomness in the epidemiological parameters and we target specific modifications of the con-
nectivity network, which could reflect several epidemic scenarios and public health measures (e.g. increased 
transmission at particular locations, heterogeneous vaccination landscapes, mobility restrictions). In general, 
we find that qualitatively different behaviours may result from these variations, providing valuable guidance for 
public health decision-making.

Results
Epidemic threshold.  For simplicity, we first compute the epidemic threshold for a system with the same 
transmission and recovery rates ( β and γ respectively) across the N nodes of the system. In the subsequent sec-
tions we lift this restriction and analyze more general situations.

As explained in the introduction, we assume that the mobility coefficients cij and mij are drawn from two arbi-
trary probability distributions with mean µc and µm and variance σ 2

c  and σ 2
m , respectively. As a consequence, the 

Jacobian matrix of the system at DFE has randomly distributed entries (see Eq. (6)). The asymptotic eigenvalue 
distribution of this matrix can then be described using the low-rank perturbation theorem52,53, a generalization 
of the circular law of RMT54. As N → ∞ , most of the eigenvalues (the bulk) almost surely distribute uniformly 
on a circle of radius centered at βµc − µmN + β − γ with radius σ

√
N  , where σ encodes the joint variability of 

the two families of mobility coefficients (see Eq. (8)), with the exception of a single outlier eigenvalue located on 
the real axis at βµc(N − 1)+ β − γ (Fig. 1b, see “Methods” section for more details). Provided that the mobility 
coefficients are positively distributed, we find that the bulk of the eigenvalues is located on the left of the outlier 
(see Supplementary Sect. 1.1). Since the stability of the system is given by the real part of the rightmost eigenvalue 
of the system, this implies that the threshold for the possibility of spread of the disease is given by

(1)
dIi

dt
= βi

Si

Ni
Ii − γiIi +

N∑

j=1

βjcji
Si

Ni
Ij −

N∑

j=1

mjiIi +
N∑

j=1

mijIj , i ∈ {1, . . . ,N},

{
s(J) > 0 : the disease may spread over the system (instability),
s(J) < 0 : the disease will die out eventually (stability).

(2)s(J) = βµc(N − 1)+ β − γ .
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Although only exact in the large-N limit, Eq. (2) shows a high degree of accuracy even for relatively small net-
works (typically above N = 20 nodes, see Supplementary Sect. 1.1). Note that the particular distribution followed 
by the commuting and migration coefficients is irrelevant for the large-scale dynamics of the disease, as only 
their moments up to second order are relevant, such as their means and joint variance. This is a consequence of 
the well-known universality phenomenon in RMT54, that reduces the apparent complexity of the problem to the 
simple expression Eq. (2), involving only the epidemiological parameters of the system and the average commut-
ing flow. See Fig. 1 for an example of stable and unstable systems as determined by the epidemic threshold Eq. (2).

The importance of each parameter on the spread of the disease can be interpreted from Eq. (2). If the trans-
mission rate is greater than the depletion rate ( β > γ ), the DFE is unstable ( s(J) > 0 ), resulting in a scenario of 
initial epidemic growth. However, if β < γ , the average commuting flow is a key factor for the stability of the 
system (Fig. 1a). The greater the difference γ − β is, the easier it is to achieve stability. The rate of recovery of 
infected individuals γ combines the rate of true recovery and the natural mortality rate; the relative contribu-
tion of each of these to the recovery rate influences the long-term dynamics of the disease (see Supplementary 
Fig. 2). Let us also note that, besides controlling the stability of the system, the size of the rightmost eigenvalue 
of the Jacobian s(J) also shapes the magnitude of the epidemic in a nonlinear fashion (see Supplementary Fig. 3).
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Figure 1.   Epidemic spread induced by disease transmission and human connectivity. The epidemic threshold 
Eq. (2) depends on the transmission and recovery rate of the disease, as well as the average commuting flow of 
the network. We show examples, for a system with N = 50 and γ = 0.95 , of three different scenarios in terms 
of these parameters: a stable scenario where the outbreak dies out (yellow), an epidemic scenario caused by the 
transmission of the disease (purple), an epidemic scenario for a disease with low transmission, caused by the 
high connectivity between the nodes of the network (green). (a) Phase diagram of the stability of the system in 
terms of the transmission rate β and the average commuting flow µc . (b) Eigenvalue distribution of the Jacobian 
matrix of the infected subsystem Eq. (1) for the three scenarios. The corresponding epidemic thresholds are 
given by the three outlier eigenvalues lying on the right of the circle distributions; the outlier of the stable system 
has negative real part and those of the unstable scenarios have positive real parts. The bulk distribution of the 
increased transmission scenario is modified due to the resulting increase in the variance of the network (see 
Eq. (8)). (c) Evolution of the number of infected individuals over time across the patches of the network. Both 
unstable systems show the same qualitative behaviour, as their epidemic thresholds coincide, and the one with 
higher commuting displays higher variability of infected individuals across the nodes of the network.
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Remarkably, the configuration of the migration flows does not influence the stability of the system Eq. (2). 
However, larger volumes of migrating individuals do result in a more variable evolution of the disease across 
patches (Supplementary Fig. 10). This is a consequence of the randomness of the migration coefficients: a larger 
average µm leaves more space for fluctuations around the mean, which results in nodes accumulating both 
larger and smaller proportions of incoming infected individuals. Thus, even though the overall number remains 
essentially the same, more migration leads to larger local heterogeneity, with locations under higher and lower 
epidemic stress. The combined variance of the commuting and migration flows has a similar effect: more vari-
ability in mobility translates into a more heterogeneous epidemic evolution across the nodes of the network 
(Supplementary Fig. 10). This is particularly relevant for the containment of the disease, as the distribution of 
the epidemic stress is of capital importance when facing severe outbreaks55–57.

Variations in epidemiological parameters.  The epidemic threshold given by Eq.  (2) was obtained 
under the assumption that the rate of disease transmission did not change across nodes. We now relax this 
constraint and explore how perturbations in these parameters affect the spread of the disease across the system. 
These modifications could be understood as local heterogeneities in the probability of transmission produced 
by vaccination policies, new disease strains, non-pharmaceutical interventions or socioeconomic inequalities, 
for instance.

Local variations in transmission rates may cause global epidemic spread.  Let us assume that the disease trans-
mission rate changes from β to β∗ at a small subset of patches in the system. This new rate could range from no 
transmission (vaccination, quarantine) to an exceptionally high one (highly contagious strains, massive gath-
erings). Using the low-rank perturbation theorem52,53, we see that the bulk of the eigenvalues of the Jacobian 
remains the same but the location of the outlier is modified (Fig. 2c), and additional outliers are generated for 
every perturbed node (see Eq. (9) for an analytical expression and Supplementary Sect. 2 for more details). As 
expected, we find that disease spread is facilitated (obstructed) if the perturbed transmission rate β∗ is lower 
(higher) than β (Fig. 2a), larger perturbations resulting in higher and earlier epidemic peaks (Fig. 2d). This per-
turbation influences the whole system and not exclusively the node with higher transmission (Fig. 2b). Interest-
ingly, the resulting epidemic threshold (Eq. (9)) now depends also on the mean migration flow µm , although a 
minor effect is observed (see Supplementary Fig. 8). This contrasts with the unperturbed case Eq. (2) in which 
the stability of the system only depends on the average commuting rate µc . Importantly, an increase in transmis-
sion at a single patch has a more drastic impact on the stability of the system than an equivalent rise distributed 
over several patches (see Supplementary Fig. 8).

Mobility (and not transmission) structures the spread of the disease.  Once contagions take place, infected indi-
viduals may be redistributed through mobility flows across the network. In particular, it turns out that even 
fairly variable transmission landscapes result in similar disease dynamics as homogeneous ones. Figure 3 shows 
an instance of two systems displaying the same qualitative behaviour in terms of disease spread, caused by two 
contrasting transmission landscapes: one for which disease transmission rates change across the nodes of the 
network, and one for which the transmission rates are the same at all nodes (and equal to the average rate of 
the first system). In the first case, there are nodes with relatively high transmission rates (representing massive 
gatherings, absence of public health interventions) and nodes with no infection at all (representing for instance 
effective vaccination). Nevertheless, more variability in the transmission rates (either in variance or in coefficient 
of variation) does require a larger-sized network to achieve an accurate match to the asymptotic expression in 
Eq. (2) (see Supplementary Fig. 9).

The results above show that for contexts verifying our hypothesis (large networks with variable mobility 
flows), the mobility network is relevant in determining the distribution of infected individuals across the sys-
tem. This has important consequences for disease control. For example, regions with a higher incidence of the 
disease may be masking the true sources of contagion, where preventive measures would be most effective. Also, 
extreme events or changes in policies at selected locations, that would cause localized outbreaks, may evolve into 
an overall unstable scenario due to human movement.

An analogous result holds whenever the rates of recovery of infected individuals γi change across nodes. 
Indeed, as a consequence of the low-rank perturbation theorem53, we find that the location of the rightmost 
eigenvalue of the Jacobian matrix J is independent of the variance of its diagonal elements. In particular, this 
means that only the average recovery rate is relevant for the epidemic threshold (and not the particular distribu-
tion followed by γi , see Supplementary Sect. 2).

Variations in mobility parameters.  In this section, we extend the results derived from Eq. (2) to more 
general random matrix configurations. In particular, we analyze disease stability against different perturbations 
of the mobility flows and network arrangements.

Reducing commuting flows is an effective strategy for epidemic control.  We first analyze how changes in the com-
muting flows could affect the possibility of disease spread over the network. More precisely, we remove the force 
of infection generated by the interactions between infected and susceptible individuals from different patches, 
as lockdowns have a direct effect on short-term, commuting patterns, and would be a typical control strategy for 
possible outbreaks. In the following, we will refer as incoming flows at patch i to the interactions between sus-
ceptible individuals from that patch and infected individuals from other patches, resulting in infections at patch 
i. Removing these flows at a patch thus amounts to removing the force of infection generated on it by the rest 
of the patches. On the other hand, we will refer as outgoing flows from patch i to infections caused by infected 
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individuals from patch i in susceptibles residing in other patches. Restricting these flows then affects the force of 
infection generated by the patch on the rest of the system.

We tested six different strategies for the containment of the disease, comprising three targeted and three 
non-structured restrictions (Fig. 4). These scenarios represent perturbations aimed to curb an unstable setting. 
We perturbed (reduced to zero) a fixed number of interactions between nodes, which gives rise to the different 
scenarios. The three targeted strategies consist of shutting down at selected locations A: all outgoing flows, B: all 
incoming flows, and C: both incoming and outgoing flows (at half of the locations). The three non-structured 
strategies consist of D: shutting down as many randomly chosen unidirectional interactions between patches as 
for the targeted scenarios (that is, we keep the flow from patch i to patch j while shutting down the flow from 
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Figure 2.   Epidemic spread due to a variation of disease transmission in one patch. Modifying the transmission 
rate at one patch changes the epidemic threshold Eq. (2) to the more complicated expression Eq. (9). 
Transmission changes from β to β∗ , ranging from no transmission at the perturbed patch (yellow) to an 
increased transmission (purple). Disease transmission occurs at a rate β = 0.15 and the network has N = 50 
patches. (a) Sum of infected individuals across all patches over time for different values of β⋆ . A change of 
regime is represented by the dashed line defined by the threshold value of β⋆ . (b) Infected individuals over time 
for a system with equal transmission rates (left) and a system with an increased transmission rate at one node 
(right, perturbed node in purple). Even though the perturbation in transmission only affects one patch the 
system switches from stable to unstable. (c) Eigenvalue distribution for the system with different transmission 
rate in one patch. As the perturbation increases the epidemic threshold given by the rightmost eigenvalue 
increases. The stars correspond to the examples presented in (b), yellow for the left plot and purple for the 
right one. One more outlier arises for the perturbed case due to the specific form of the structure matrix (see 
“Methods” section). (d) Maximum number of infected individuals at one patch (left) and time to reach the 
epidemic peak (right) in terms of β∗ . The maximum increases nonlinearly as the perturbation in transmission 
increases, while the time to reach this maximum decreases since the initial growth is steeper for higher β∗.
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j to i or vice-versa), E: shutting down randomly chosen interactions between patches in both directions, and 
F: uniformly decreasing the strength of the interactions on the whole network. Based on our model, we obtain 
analytical expressions for the epidemic thresholds for all these scenarios (see Methods), which can be regarded as 
generalizations of Eq. (2). We also compare the effectiveness of the strategies in reducing the epidemic threshold 
in terms of the number of modified flows (see Fig. 4).

The three targeted strategies (A,B,C) result in considerably different local distributions of infected individuals. 
Those nodes for which all incoming flows have been removed show a direct decrease in the number of infected 
individuals (B,C); while restricting only outgoing flows (A) does not create quantitative differences between the 
patches (Fig. 4). Nevertheless, the initial growth of infected individuals over the system as a whole is the same for 
strategies A and B. This suggests that similar resources allocated to contain a disease (number of flows reduced 
to zero) may be equally effective (same s(J)), but result in significantly different local impact. Strategy C, combin-
ing incoming and outgoing restrictions, causes a smaller reduction in the epidemic threshold s(J) compared to 
strategies A and B. As the rightmost eigenvalue controls the magnitude of decrease or increase in the number 
of infected individuals, the velocity of decay in C is thus lower compared to A and B (Fig. 4). This indicates that 
it may be more effective to distribute control efforts than to concentrate them at fewer locations. As shown in 
Eqs. (10) and (11), the average migration flow influences the epidemic threshold for the targeted scenarios (con-
trary to non-perturbed scenarios), causing more significant variations for Strategy C (see Supplementary Fig. 12).

The three non-structured strategies (D,E,F) cause the exact same reduction in the epidemic threshold s(J), 
due to the universality of eigenvalue distributions of random matrices, even though the commuting networks 
are quite different (Fig. 4). Indeed, the threshold Eq. (2) depends only on the average commuting rate, and this is 
subject to the same variation under the three strategies. These expressions are qualitatively different from those 
resulting from targeted perturbations (see “Methods” section), in agreement with previous results58. As a remark, 
strategies D and E produce a higher variation between nodes than F, and larger systems are required to achieve 
accuracy between empirically computed thresholds and their analytical predictions (Fig. 4). In general, we find 
that more spread interventions cause a higher decrease in the epidemic threshold (see Fig. (4)).

Changes in migration shape the local incidence of the disease.  As seen in Eq. (2), migratory flows do not modify 
the possibility of spread of the disease in the unperturbed scenario. Nevertheless, their particular configuration 
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Figure 3.   Transmission does not necessarily shape the distribution of infected individuals. Two systems, 
one with random transmission (left), where the transmission rate at each node is drawn from a probability 
distribution, and one with the same transmission at all patches (right), equal to the mean of this distribution. 
The network has N = 50 nodes and the βi are drawn from a random distribution of mean µβ = 0.6 and 
standard deviation σβ = 0.6 . We present a schematic representation for the network (top) and the evolution 
of the number of infected individuals at the patches over time (bottom), colored according to the local 
transmission rate. Even though the transmission landscape is very different for both examples the distribution 
of infected individuals over the network is quite similar. In particular, the case with random transmission shows 
a network with zero transmission in some nodes (in yellow) in which there is an initial increase of infected 
individuals.
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Figure 4.   Restrictions in commuting and their impact on disease spread. We consider a base network of size 
N = 40 and average migration rate µc = 0.12 , a scenario of uncontrolled disease spread (grey). We test the six 
mobility restriction strategies described in this section, which all result in successfully controlling the expansion 
of the disease by perturbing 10% of the commuting flows of the network to µ∗

c = 0 . For each scenario, the top 
graph displays the strength of the commuting flow from patch i to patch j in its (i, j)-th cell. The brightness of 
the color represents the strength of the interaction, with white representing absence of interaction. Each line 
in the bottom graph shows the evolution of the infected population at each patch, colored according to its 
average incoming and outgoing commuting flow. The three targeted strategies (in shades of orange) consist of 
A: restricting all outgoing flows at 4 nodes, B: restricting all incoming flows at the same set of nodes as in A, 
C: restricting both incoming and outgoing flows at half of the nodes selected in the previous scenarios. The 
three random strategies (in shades of blue) consist of D: restricting randomly chosen unidirectional flows, E: 
restricting half as many randomly chosen flows in both directions, F: uniformly decreasing all the flows in the 
network. The bottom left graph shows the resulting epidemic threshold in terms of the number of perturbed 
nodes, as given by the analytical expressions provided by Eqs. (10)–(12) (continuous lines) and empirical 
computations from synthetic networks (dots).
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may influence the quantitative behaviour of the epidemic and the local distribution of infected individuals across 
nodes. A reason for this is that the migration flows determine the sizes of the populations at the equilibria of the 
system, as shown in Eq. (4).

We investigate this by testing analogous strategies to those shown in Fig. 4 for targeted and random increases 
in migratory flows (see Supplementary Sect. 3.2). Increased migratory flows may reflect the effect of seasonal 
movement patterns or crisis scenarios, hence, an increase of the so-called exploratory behaviour9. We find that 
an increment in the incoming (outgoing) migration flows at specific locations results in a larger (smaller) number 
of infected individuals at these nodes, respectively. A node having both incoming and outgoing large flows will 
display the same qualitative behaviour as the rest of the nodes in the system, as these compensate each other. 
Among the random strategies, those resulting in a network with higher variability (such as strategies D and E) 
cause a more heterogeneous epidemic evolution across nodes. In any case, the potential for disease spread and 
the approximate number of infected individuals in the system remain the same for all scenarios.

Correlated mobility flows can cause or prevent epidemic spread.  The epidemic threshold Eq. (2) shows that the 
possibility of spread of the disease is independent of the statistical variability of the mobility networks. However, 
more subtle configurations of these flows can change the properties of the system. For instance, it is well-known 
that correlations between diagonally opposite elements in random matrices (that is, mobility flows on the same 
edges going in opposite directions) deform the bulk eigenvalue distributions in Fig. 1, changing the circular law 
to a now elliptic law53. However, as discussed above, only the outlier eigenvalue is responsible for the stability of 
the system, and thus these correlations alone are not enough to modify the epidemic threshold.

The mobility network, however, may present more complicated correlations. As observed in Ref.59, correla-
tions between elements of random matrices that share a common index may modify the location of the outlier 
eigenvalue as well, even causing epidemic spread in systems that would have otherwise been predicted as stable. 
Figure 5 shows two examples of this phenomenon; more details and examples of correlated mobility networks 
are shown in Methods and Supplementary Sect. 3.3. It turns out that only the correlation between the incoming 
and outgoing connectivity at the nodes influences the potential for disease spread; its sign determines whether 
the mobility network fosters or prevents disease spread. The other three possible types of correlation considered 
in Ref.59 (those involving flows going in opposite directions and those involving either incoming or outgoing 
flows at the nodes of the network, see Supplementary Fig. 14) do not affect the stability of the system. In particu-
lar, whenever the incoming and outgoing flows at each node are positively correlated (favoring the existence of 
high-traffic and low-traffic nodes rather than a less coordinated arrangement), the disease spread is facilitated. 
Instead, mobility networks in which only the existence of source or sink nodes is favored (high correlations for 
only outgoing or incoming flows) display the same qualitative behaviour as uncorrelated ones. Importantly, the 
epidemic threshold Eq. (15) of networks with correlated mobility flows depends on the joint variance of the 
mobility network σ and the average migration rate µm , with higher values of these parameters leading to higher 
potential of disease spread.

Discussion
For the first time, we use random matrix theory for the study of epidemic models. This novel approach allows 
us to compute epidemic thresholds analytically and understand the expected early epidemic growth of infec-
tious diseases conditioned to random transmission and human mobility. Our framework addresses several 
known challenges for network and metapopulation infectious disease models60–63, and shows enough flexibility 
to deal with the temporal and spatially structured randomness inherent to human connectivity networks. Recent 
developments in RMT59,64,65 are yet to be exploited in this context, and may better adjust these analytical tools 
to more realistic scenarios. We expect epidemic models to benefit from RMT as community ecology has already 
done42,43,47.

Here, we have considered a SIR metapopulation model in a fully connected network with randomly distrib-
uted connection strengths between patches or nodes. The model includes two types of mobility among popula-
tions: commuting (individuals going back and forth between two patches) and migration (individuals moving 
from one patch to another). We compute an epidemic threshold, equivalent to the basic reproduction number 
R0 , that determines whether the establishment of an infectious disease upon an outbreak will be possible or not. 
This generalizes a previous expression of Lloyd and May29 derived for a simpler model without migration and a 
uniform force of infection across patches. Our result is fully explicit and, as such, allows us to identify the role of 
each feature of the connectivity network in the early growth of the disease. In non-perturbed random networks, 
we found that only the commuting flows influence the stability of the system, and may cause the spread even of 
diseases that would have otherwise gone extinct. Migration flows, on the other hand, shape the spatial distribu-
tion of infected individuals over the network.

More complex dependencies were observed when exploring plausible perturbations of the system. We found 
that the stability of systems exposed to localized variations in transmission and connectivity was influenced by 
the average migratory rate, and that higher variability in the mobility flows favoured the spread of the disease in 
correlated networks. This contrasts with the unperturbed case, where early epidemic growth was independent of 
these features. In general, variations leading to higher local concentrations of force of infection cause more insta-
bility than equivalent, widely disseminated distributions. This phenomenon was observed: (i) when increasing 
the transmission of the disease at selected locations, (ii) when evaluating different targeted and random strategies 
for mobility reduction, and (iii) when allowing for general correlations on the connectivity flows. This may be 
due to a combination of the exponential growth of infectious diseases during early stages of outbreaks and the 
statistical nature of the underlying network. Epidemics are expected to follow an initial exponential growth and 
thus a steeper rise in contagions is caused by accumulations of infected individuals. Therefore, configurations that 
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produce larger statistical fluctuations in the network result in higher local concentrations of infected individuals, 
while more evenly spread distributions generate smaller, diluted increases.

Even though we can infer some generalities from our model, any sort of universal recipe for stability should 
be handled with caution, as the effects of the connectivity between patches are subtle and have implications on 
other features of the epidemic evolution. For instance, equally effective strategies to control the disease globally 
can produce significant differences in the magnitude of local outbreaks. Another example is observed when 
considering specific correlations in the mobility flows. Even if the gross number of moving individuals remains 
the same, particular configurations of the network may change the stability of the system. Remarkably, our results 
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Figure 5.   Correlated flows may determine the growth of the outbreak. Three systems with identical 
epidemiological parameters and underlying networks (of size N = 200 ) with identical mean and variance 
are depicted in the same way as described in Fig. 4. The base scenario (grey) displays no correlation between 
incoming and outgoing flows at its nodes ( Ŵ = 0 , see Eq. (14)) and shows a negligible variation over time in 
terms of disease spread. Setting this correlation to a negative value causes the disease to die out in the long term 
( Ŵ = − 0.3 , green), while a positive correlation results in a scenario of epidemic growth ( Ŵ = 0.3 , purple). 
The effect of this correlation on the mobility flows can be identified from the networks: positively correlated 
networks favour the existence of nodes with both high incoming and high outgoing flows (darker horizontal 
and vertical lines tend to intersect at the diagonal), while in negatively correlated networks nodes with high 
incoming flows generally do not have high outgoing flows and vice-versa (darker horizontal and vertical lines 
do not intersect at the diagonal). Bottom plot shows the eigenvalues of the Jacobian matrix of the three systems 
shown in the scenarios (smaller, faded symbols), together with their predicted outliers as given by Eq. (15) 
(larger, solid symbols).
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resemble previous findings in agent-based random networks17,40,66, in the fact that only moments up to the second 
order of the connectivity distributions are relevant for the epidemic thresholds.

Understanding the structure of human connectivity networks may provide useful information for the contain-
ment of outbreaks. We have seen how mobility is crucial in determining the distribution of infected individuals 
across the network, in addition to the natural dynamics of the disease. More precisely, we found that the inci-
dence of the disease follows patterns associated to the connectivity of the system, that may not coincide with the 
spatial configuration of the transmission. For instance, geographically close locations with similar transmission 
rates could display contrasting disease incidence. This phenomenon is crucial to identify true sources of disease 
spread, and has been observed before in other transport networks11,15,19,20. This could be particularly useful for 
the design of effective control measures during the early stages of an outbreak, when the epidemiology of the 
disease may not be yet understood. Many of these policies are based on mobility restrictions (e.g., lockdowns, 
closures of borders, reductions on the economic activity), and their epidemiological and socioeconomic impact 
depend precisely on the spatial and temporal scales of deployment.

While RMT techniques are only meaningful for large-sized and sufficiently random systems, they allow us 
to obtain factual estimates for the epidemic thresholds even with limited data availability, as our results depend 
on simple summary statistics. Based on these, we can identify the parameters relevant for disease spread in a 
range of epidemic scenarios (e.g., vaccination, new disease strains, non-pharmaceutical interventions). Assum-
ing that epidemiological and connectivity parameters are inherently random quantities makes our results robust 
to natural stochastic variability. First, the epidemic thresholds we obtain are deterministic, and second, great 
accuracy is found even for small systems.

Future investigations on this topic should involve more complex human mobility and connectivity patterns, 
incorporating further spatial and temporal structure into the networks. This would introduce more social realism 
in our framework. For example, commuting should be spatially restricted to relatively close geographical areas, 
and migratory patterns could follow seasonal trends, incorporating the temporal heterogeneity of human mobility 
as well. Further extensions of our model should include the inherent stochasticity in disease transmission, both 
between and within the patches. It is known that the configuration of human contact patterns may change the 
initial spread of an infectious disease67. Indeed, the homogeneous mixing assumed within the patches is a limiting 
assumption that may be restricting the generality of the conclusions reached here. It would thus be desirable to 
compare our findings with models grounded in other frameworks, such as agent-based and/or stochastic models. 
However, combining our random spatial formalism with a stochastic disease transmission model may entail 
nontrivial challenges, in particular for the derivation of theoretical results. The study of the interplay between 
these two types of randomness seems like an exciting future perspective able to better capture realistic human 
behaviour and increase our preparedness to contain the spread of infectious diseases. Future work also includes 
adjusting our model to real mobility and disease transmission data, available after the COVID-19 pandemic, to 
test the possible uses of this framework as a real-world tool for risk estimation and factual prediction.

Methods
Metapopulation SIR model.  We study a metapopulation SIR model, with each local population repre-
senting a node in a network with two types of mobility along its edges. The infected subsystem of the model 
consists of N differential equations describing the temporal evolution of the number of infected individuals at 
each of the nodes of the network:

where i ∈ {1, . . . ,N} and Ni = Si + Ii + Ri denotes the total population at node i, obtained as the sum of sus-
ceptible, infected and recovered individuals. The parameters βi and αi denote the transmission and recovery 
rates of the disease at node i, and di denotes the death rate of the population at the node. We assume that no 
disease-related deaths occur, and denote by γi = αi + di the combined rate of depletion of infected individuals. 
As explained above, the coefficients cij and mij model the connectivity between the nodes of the network and are 
drawn from two arbitrary probability distributions. More precisely, we let c be a positive random variable with 
mean and variance µc and σc , and draw each coefficient cij in (3) from this random variable. New infections are 
then generated at patch i from interactions of susceptible individuals from the patch with infected individuals 
from other patches j at a rate βjcji . This force of infection may be associated to the movement of individuals visit-
ing other patches and returning to their origin patch, which may differ in strength from that generated at their 
original location. Analogously, we let m be a positive random variable following certain distribution with mean 
µm and standard deviation σm from which each coefficient mij is drawn. These parameters model the per-capita 
movement rates of individuals that go from patch j to patch i and stay there. We assume that cii = 0 mii = 0 for 
all i in (3). In general, we will be interested in networks in which the number of patches N is large.

The conditions Ii = Ri = 0 for all i characterize the disease-free equilibrium (DFE) of the system, a steady 
state in which no infected population exists; its explicit expression can be found by solving the system of equations

The migration flows determine the distribution of the population of the system across patches at the DFE, 
as the local outgoing and incoming flows need to compensate in order for each local population to be constant. 
We are interested in evaluating whether a small number of infectious individuals in a susceptible population will 
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proliferate (potentially resulting in an epidemic scenario) or will decay and eventually disappear. In dynamical 
systems terminology, this is equivalent to studying the stability of the infected subsystem Eq. (3) around the 
DFE characterized by Eq. (4). To do so, one computes the rightmost eigenvalue of the corresponding Jacobian 
matrix, as this quantity measures the initial exponential growth rate of the disease in its simplified linearized 
dynamic behaviour51.

Random matrices.  A central idea in our approach is to understand the Jacobian matrix of the system 
around the DFE as an algebraic perturbation of a random matrix, closely related to another random matrix 
which eigenvalue distribution can be accurately predicted for large systems. Schematically, we perform the fol-
lowing decomposition of the Jacobian of the linearized infected subsystem around the DFE

where the structure matrix is assumed to be deterministic and the entries of the noise matrix have mean zero. To 
find the eigenvalues of the Jacobian, one is really interested in computing those of the structure + noise matrix, 
as adding a multiple of the identity results in a translation of the eigenvalues of the original matrix (note that 
det (A+ kId) = k + detA)). They can be found using a theorem of Tao52, that generalizes the well-known circular 
law from random matrix theory54 to low-rank perturbations of random matrices. Loosely speaking, the resulting 
asymptotic eigenvalue distribution consists of two components: the bulk of the eigenvalues, that distribute uni-
formly on a circle which size depends only on the parameters of the noise matrix, together with a small number 
of outlier eigenvalues that depend on the structure matrix. This result holds as long as the rank of the structure 
matrix is low compared to its size (o(N), where N is the size of the matrices in Eq. (5)).

For instance, assuming that the transmission and depletion rates βi and γi = αi + di are the same across the 
nodes of the system (we drop the subscript i accordingly), the Jacobian of the infected subsystem of the model 
Eq. (3) at DFE reads

As we argue in Sect. 1.1 of the Supplementary Information, the eigenvalue distribution of this matrix coincides 
with that of the following one

where 1N is a N × N matrix of ones, the N × N matrix GN (0, σ) has iid entries with mean zero and standard 
deviation σ , and IN denotes the identity matrix of size N. Let us recall that the commuting and migration rates 
are drawn from random variables with mean and standard deviation (µc , σc) and (µm, σm) respectively. We have 
denoted in (6) the variance of the off-diagonal entries of the Jacobian by

which results from a combination of the variance of c and m (we denote by τ the covariance between the commut-
ing and migration coefficients in (8)). Using theorem 2.8 in O’Rourke and Renfrew (which includes a convenient 
generalization of the circular law, as explained in Supplementary Sect. 1.2), we find that for large N the bulk 
of the eigenvalues of J ′ almost surely lie on the circle of radius σ

√
N  centered at β(1− µc)− γ − Nµm . The 

structure matrix has rank one and generates a single outlier eigenvalue at βµc(N − 1)+ β − γ (see Fig. 6 for a 
schematic representation). The epidemic threshold (2) follows precisely from restricting this eigenvalue to have 
strictly negative real part. For our model, there is no need to control the location of the bulk of the eigenvalues, 
as for the parameter range of interest this always lies on the left side of the outlier. More details related to this 
phenomenon and other technical aspects of this reasoning are provided in Sect. 1.1 of the Supplementary Infor-
mation. Interestingly, we see that the only statistical properties of the random variables c and m that influence 
the eigenvalue distribution of the Jacobian matrix are their mean and variance.

Perturbations.  A similar reasoning provides analytical expressions for the outlier eigenvalues of the several 
generalizations of the model described in Results. For these scenarios, a different structure matrix is chosen in 
Eq. (7) to appropriately model each of the modifications of the base system considered in the text. We display in 
Supplementary Sects. 2 and 3.1 the appropriate choices of structure matrix, which lead to the following generali-
zations of the epidemic threshold s(J) upon using the low rank perturbation theorem53 again. We assume below 
that k is small compared to the size of the network N in order for the low-rank perturbation theorem53 to hold, 
and recall that the average of the commuting and migration coefficients are denoted by µc and µm respectively.

•	 Perturbed infectiousness scenarios: transmission rate changes from β to β∗ = β + α at k nodes of the network 

(5)
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•	 Strategy A (resp. B) for mobility reduction: commuting flows change from cij to µc + ν for all outgoing (resp. 
incoming) flows at k nodes of the network (in the main article, ν = −µc ) 

•	 Strategy C for mobility reduction: commuting flows change from cij to µc + ν for all incoming and outgoing 
flows at k nodes of the network (in the main article, ν = −µc ) 

For Strategies D, E and F, it is the noise matrix that needs to be chosen differently in (7) in order to model the dif-
ferent mobility reductions. Due to the universality phenomenon in random matrix theory (only the moments of 
up to second order of the random variables c and m influence the eigenvalue distribution of the Jacobian matrix, 
not their particular shape) and the parameter range for the coefficients of the system (correlations ρ between 
flows going in opposite directions do not influence the stability of the system, only the bulk of the eigenvalues), 
we find a common expression for the three strategies.

•	 Strategies D, E and F for mobility reduction: mean of the commuting coefficients cij over the whole network 
changes from µc to µc + ν′ (in the main article, ν′ = −µck/N ) 

Correlated flows.  The epidemic threshold s(J) is modified as well when allowing for the mobility flows to be 
non-trivially correlated. Following Baron et al.59, we introduce the following correlations between the mobility 
coefficients in matrix (6) that share a common index

These correlations can be understood as involving mobility flows on the same edge going in opposite direc-
tions ( ρ ), incoming and outgoing flows at the nodes of the network ( Ŵ ), incoming flows at the nodes of the 
network (r) and outgoing flows at the nodes of the network (c). The subscripts in (13) denote the random vari-
able involved in the corresponding expression. Examples of networks displaying these correlations are shown 
in Supplementary Sect. 3.3. It is explained in Ref.59 that no correlations between other pairs of elements of the 
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Figure 6.   Eigenvalue distribution for the Jacobian matrix J ′ . The location of the eigenvalues of J ′ depends on 
each of the three matrices given in (7): the size of the circle on which the bulk of the eigenvalues is uniformly 
distributed depends on the noise matrix, the distance between its center and the origin depends on the multiple 
of the identity, and the distance between its center and the single outlier eigenvalue depends on the structure 
matrix.
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matrices are relevant in the asymptotic regime. The corresponding parameters for the elements of the random 
Jacobian matrix (6) result from a combination of those of the commuting and migration networks

where τ denotes the covariance between the commuting and migration flows connecting the same pair of nodes 
( τ = Cov(cij ,mij) ). We have assumed in (14) that all covariances involving other pairs of commuting and migra-
tion coefficients are zero for simplicity; the more general case follows analogously. After a rescaling on Baron 
et al’s result (see Supplementary Sect. 3.3), we find that the outlier eigenvalue of the system is now located at

Note that this expression coincides with the epidemic threshold of the uncorrelated case Eq. (2), with the 
addition of the last term in the sum above. Moreover, we find that s(J) now depends on the average migration 
rate µm and the joint variance of the network σ 2 . In particular, the sign of Ŵ determines whether the threshold 
Eq. (15) is higher or lower than in the uncorrelated case (see Fig. 5), as only the last parenthesis in this expression 
may take negative values (variations caused by the second-to-last parenthesis vanish in the asymptotic regime; 
in particular its effect on the stability is negligible for sufficiently large values of N; see Supplementary Fig. 16).

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reasonable 
request.
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