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Derivation of mathematical closed 
form expressions for certain 
irregular topological indices of 2D 
nanotubes
Asad Ullah 1,6*, Shahid Zaman 2,6, Arshad Hussain 3, Asma Jabeen 4 & Melaku Berhe Belay 5*

A numeric quantity that characterizes the whole structure of a network is called a topological 
index. In the studies of QSAR and QSPR, the topological indices are utilized to predict the physical 
features related to the bioactivities and chemical reactivity in certain networks. Materials for 2D 
nanotubes have extraordinary chemical, mechanical, and physical capabilities. They are extremely 
thin nanomaterials with excellent chemical functionality and anisotropy. Since, 2D materials have 
the largest surface area and are the thinnest of all known materials, they are ideal for all applications 
that call for intense surface interactions on a small scale. In this paper, we derived closed formulae for 
some important neighborhood based irregular topological indices of the 2D nanotubes. Based on the 
obtained numerical values, a comparative analysis of these computed indices is also performed.

Carbon nanotubes (CNTs) are actually cylindrical molecules that comprise of rolled-up sheets of single-layer 
carbon atoms (graphene). They can be single-walled having a less than 1 nm (nm) diameter or multi-walled, 
comprising of numerous concentrically interlinked nanotubes, with around more than 100 nm diameters. Sumio 
Iijima discovered the multi-walled carbon nanotubes in  19911. CNTs are bonded with  sp2 bonds chemically, an 
extremely strong form of molecular interaction. These nanotubes inherit electrical properties from graphene, 
which are determined by the rolling-up direction of the graphene layers. Apart from these, CNTs also have dis-
tinctive mechanical and thermal properties like light-weight, high tensile strength, low density, better thermal 
conductivity, high aspect ratio and high chemical stability. All these properties make them intriguing for new 
materials development, especially CNTs are best candidates for hydrogen storage cells, cathode ray tubes (CRTs), 
electronic devices, electron field emitters and transistors. Keeping in view their strong applicability and impor-
tance, it is very important to model and characterize these CNTs for a better understanding of their structural 
topology for enhancement of their physical properties.

The study of chemicals using a mathematical method is called mathematical chemistry. Chemical graph 
theory is a branch of chemistry that uses graph theory concepts to convert chemical events into mathematical 
models. The chemical graph is a simple connected graph in which atoms and chemical bonds are taken as verti-
ces and edges respectively. A connected graph of order n = |V(G)| and size m = |E(G)| can be created with the 
help of G and edge set E. The focus of research in the area of nanotechnology is on atoms and Molecules. The 
Cartesian product of a path graph of m and n is called a 2D lattice.

Graph theory has emerged as a powerful tool for analyzing the structural properties of complex systems 
represented by graphs. Topological indices, which are numerical quantities derived from graph  theory2–8, have 
gained significant attention due to their ability to concisely capture important graph properties. Degree-based 
topological indices specifically utilize the degrees of vertices in a graph to quantify its structural  characteristics9.

Degree based indices, such as the Randić index, the atom-bond connectivity index, and the Harary index, 
capture the connectivity and branching patterns in a graph by considering the distances between pairs of verti-
ces in relation to their  degrees10–14. These indices have found wide applications in drug design, chemical graph 
theory, and network  analysis15–18.
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The Zagreb indices, including the first and second Zagreb indices, measure the sum of the vertex degrees 
and the product of vertex degrees,  respectively19–21. These degree-based indices have been successfully applied 
in chemistry, network analysis, and mathematical chemistry. Variants of Zagreb indices, such as the geometric-
arithmetic indices and the atom-bond connectivity indices, have been developed to enhance their discriminatory 
 power22–24.

Randic-type indices, such as the augmented Zagreb index, the Randic connectivity index, and the atom-bond 
connectivity indices are derived from degree sequences and capture information regarding vertex  degrees25. These 
indices have found applications in chemical graph theory, network analysis, and  bioinformatics26,27.

Degree-based topological indices have found numerous applications across different disciplines, including 
chemistry, biology, materials science, and social network analysis. They have been utilized for drug design, 
chemical property prediction, molecular structure–property relationships, protein classification, community 
detection, and modeling complex  networks28–30.

Recent research has focused on developing new degree-based topological indices with enhanced discrimina-
tive capabilities and exploring their applications in emerging areas, such as social networks, biological networks, 
and complex systems. Efforts have also been made to combine degree-based indices with other topological indices 
to capture more comprehensive structural information. Future directions involve investigating the theoretical 
properties of degree-based indices, developing efficient algorithms for their computation, and exploring their 
applications in further real-world  problems31–33.

The application of Quantity Structure Activity Relationship (QSAR), which links biological structure and 
activity with certain constraints and properties of molecules as a result, is extensive in biology as well as in the 
pharmaceutical and medical  fields34,35. Carbon nanotubes have an intriguing role because of its special application 
in chemical sciences. The chemical graph theory has found significant role in thousands of topological indicators. 
The irregularity topological indices are listed in Table 1.

Motivated by the above formulas, we have introduced some new neighborhood version of irregular topologi-
cal indices in Table 2.

Numerous efforts have been made to investigate the topological indices for various nanotubes and nanosheets 
in the literature. The topological invariants of Pent-Heptagonal nanosheets and TURC 4C8(S) are studied respec-
tively  in44,45. The topological indices of V-phenylenic type nanotori and nanotubes have been discussed  in46, and 
armchair polyhex type nanotube  in47. For detailed insights into the investigations on topological modeling and 
analysis of micro and nanostructures, one might consult  refs27,30,32,48–62. Despite all these investigations, the Nano 
structural topology has not yet been unveiled completely. In this study, we derived closed formulae for some 
neighborhood version of irregular topological indices of the nanotubes HAC5C7[p, q] and HAC5C6C7[p, q] , and 
performed a comparative analysis based on the numerical results.

The  HAC5C7[p, q] nanotubes (p, q > 1)
A trivalent adornment has remained complete by joining C5 and C7 and recognized as C5C7 net. It has been 
utilized to conceal both a tube and a torus. As a C5C7 net, the HAC5C7[p, q] nanotube can be studied. In 2007, 
Iranmanesh and Khormali calculated the vertex–Szeged index of HAC5C7 nanotube. The two dimensional lattice 
of HAC5C7 has been explained consistently. In the entire lattice, the number of heptagons and period are repre-
sented by p and q in row. There are 8pq+ p vertices and 12pq− p edges, respectively . The three rows of HAC5C7 
is said to be  mth period (Fig. 1). Consider the graph of HAC5C7 is represented by G . The cardinality of vertex set 
is 8pq+ p and edge set is 12pq− p for the graph G. The vertex set is divided into three categories based on their 
degrees. The order of vertex V1 is 8pq. Similarly, |V2| = 2p+ 2 , |V3| = 8pq− p− 2 . In the whole study, we denote 

Table 1.  List of the irregular topological indices.

Introduced by Notation Formula

In36, Albertson defined the Albertson index (AL) AL(G)
∑

uvǫE |du − dv |

Vukicevic and Gasparov defined the IRL index  in37 IRL(G)
∑

uvǫE|lndu − lndv |

Abdo et al. defined the total irregularity index (IRRT)  in38 IRRT(G) 1
2

∑

uvǫE |du − dv |

Gutman introduced the IRF(G) irregularity  index39 IRF(G)
∑

uvǫE
(du − dv)

2

The Randić index (Li and Gutman)40 IRA(G)
∑

uvǫE

(

d
−1
2

u − d
−1
2

v

)2

Reti et al.41

IRDIF(G)
∑

uvǫE|
du
dv

− dv
du
|

IRLF(G)
∑

uvǫE
|du−dv |√

dudv

LA(G) 2
∑

uvǫE
|du−dv |
(du+dv )

  

IRDI(G)
∑

uvǫEln{1+ |du − dv |}

Chu and M. Abid have defined the IRGA(G)  in42 IRGA(G)
∑

uvǫEln
du+dv
2
√
dudv

The bond- additive index is described  in43 IRB(G)
∑

uvǫE

(

d
1
2
u − d

1
2
v

)2
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the adjacent vertices by p and q, i.e. pq ∈ EG . The edge set is divided into the subsequent sections according to 
their sum of neighborhood degree, called the frequency, which is shown in Table 3.

Theorem 1 Assume that G ∈ HAC5C7[p, q] then, NAL(G) = 10p

Proof By definition of NAL(G) and from the neighborhood edge partitions in Table 3, one has

Theorem 2 Assume that G ∈ HAC5C7[p, q] then, NIRL(G) = 1.3705867p

Proof Similar to the proof of theorem 1, one has

NAL(G) =
∑

pqǫE

∣

∣δp − δq

∣

∣

=
(

12pq− 9p
)

|9− 9| +
(

2p
)∣

∣9− 8
∣

∣+p
∣

∣9− 7
∣

∣+p
∣

∣8− 8
∣

∣+
(

2p
)

|8− 6| +
(

2p
)

|7− 6|

= 2p(1)+ p(2)+ 2p(2)+ 2p(1)

= 2p+ 2p+ 4p+ 2p

NAL(G) = 10p

NIRL(G) =
∑

pqǫE

| ln δp − ln δq|

=
(

12pq− 9p
)

|ln9− ln9|+2p
∣

∣ln9− ln8
∣

∣+p
∣

∣ln9− ln7
∣

∣+p
∣

∣ln8− ln8
∣

∣+2p|ln8− ln6|+2p|ln7− ln6|

= 2p(2.197224− 2.079441)+p(2.19724− 1.94591)+2p(2.07944− 1.79175)+2p(1.945910− 1.79175)

Table 2.  List of the neighborhood version of irregular topological indices.

Notation Formula

NAL(G)
∑

uvǫE |δu − δv |

NIRL(G)
∑

uvǫE|lnδu − lnδv |

NIRRL(G) 1
2

∑

uvǫE |δu − δv |

NIRF (G)
∑

uvǫE
(δu − δv)

2

NIRA(G)
∑

uvǫE

(

δ
−1
2

u − δ
−1
2

v

)2

NIRDIF (G)
∑

uvǫE|
δu
δv

− δv
δu
|

NIRLF (G)
∑

uvǫE
|δu−δv |√

δuδv

NLA(G) 2
∑

uvǫE
|δu−δv |
(δu+δv )

  

NIRDIG)
∑

uvǫEln{1+ |δu − δv |}

NIRGA(G)
∑

uvǫEln
δu+δv
2
√
δuδv

NIRB(G)
∑

uvǫE

(

δ
1
2
u − δ

1
2
v

)2

Table 3.  The neighborhood edge partitions of HAC5C7[p, q].

(δp, δq) Frequency

(9, 9) 12pq − 9p

(9, 8) 2p

(9, 7) p

(8, 8) p

(8, 6) 2p

(7, 6) 2p
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Theorem 3 Assume that G ∈ HAC5C7[p, q] then, NIRRT (G) = 5p

Proof Based on Table 3 and the definition of NIRRT we have

Theorem 4 Assume that G ∈ HAC5C7[p, q] then, NIRF(G) = 16p

Proof Together Table 3 with the definition NIRF(G) =
∑

pqǫE

(

δp − δq

)2 , one has

Theorem 5 Assume that G ∈ HAC5C7[p, q] then, NIRA(G) = 0.0106268538p

Proof By definition NIRA(G) =
∑

pqǫE

(

δ

−1
2
p − δ

−1
2
q

)2

= 2p(0.1177835)+ p(0.25133)+ 2p(0.28769)+ 2p(0.15416)

= 0.235567p+ 0.57538p+ 0.30832p+ 0.25133p

NIRL(G) = 1.3705867p

NIRRT (G) =
1

2

∑

pqǫE

∣

∣δp − δq

∣

∣

=
(

12pq− 9p
)1

2
|9− 9| + 2p

1

2
|9− 8| + p

1

2
|9− 7| + p

1

2
|8− 8| + 2p

1

2
|8− 6| + 2p

1

2
|7− 6|

= p+ p+ 2p+ p

NIRRT (G) = 5p

=
(

12pq− 9p
)

(9− 9)2 + 2p(9− 8)2 + p(9− 7)2 + p(8− 8)2 + 2p(8− 6)2 + 2p(7− 6)2

= 2p+ 4p+ 2p(4)+ 2p

= 2p+ 4p+ 8p+ 2p

NIRF(G) = 16p

Figure 1.  (a) The  HAC5C7 nanotube –mth period. (b) The  HAC5C7 nanotube with p = 4, q = 2.
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Theorem 6 Assume that G ∈ HAC5C7[p, q] then, NIRDIF(G) = 2.765846p

Proof By definition NIRDIF(G) =
∑

pqǫE|
δp

δq
− δq

δp
|

Theorem 7 Assume that G ∈ HAC5C7[p, q] then, NIRLF(G) = 1.37363426p

Proof By definition NIRLF(G) =
∑

uvǫE
|δp−δq |√

δpδq

Theorem 8 Assume that G ∈ HAC5C7[p, q] then, NLA(G) = 1.36441441p

Proof By definition NLA(G) =
∑

pqǫE
|δp−δq |
(δp+δq)

Theorem 9 Assume that G ∈ HAC5C7[p, q] then, NIRDI (G) = 6.068425221p

Proof By definition NIRDI (G) =
∑

pqǫEln(1+
∣

∣δp − δq

∣

∣)

=
(

12pq− 9p
)

(

9
−1

2 − 9
−1

2

)2

+ 2p

(

9
−1

2 − 8
−1

2

)2

+ p

(

9
−1

2 − 7
−1

2

)2

+ p

(

8
−1

2 − 8
−1

2

)2

+ 2p

(

8
−1

2 − 6
−1

2

)2

+ 2p

(

7
−1

2 − 6
−1

2

)2

= 2p(0.333333− 0.353553)2+p(0.33333− 0.37796)2+2p(0.353553− 0.408248)2+2p(0.377964− 0.408248)2

= 0.0008176968p+ 0.001991836p+ 0.00598308p+ 0.001834241p

IRA(G) = 0.0106268538p

=
(

12pq− 9p
)

∣

∣

∣

∣

9

9
−

9

9

∣

∣+2p
∣

∣

9

8
−

8

9

∣

∣+p
∣

∣

9

7
−

7

9

∣

∣+p
∣

∣

8

8
−

8

8

∣

∣+2p
∣

∣

8

6
−

6

8

∣

∣+2p
∣

∣

7

6
−

6

7

∣

∣

∣

∣

= 2p(1.125− 0.88889)+p(1.28571− 0.77778)+2p(1.33333− 0.75)+2p(1.166667− 0.857142)

= 0.47222p+ 0.50791p+ 1.1666667p+ 0.619056p

NIRDIF(G) = 2.765846p

=
(

12pq− 9p
) |9− 9|
√
9× 9

+
(

2p
) |9− 8|
√
9× 8

+ p
|9− 7|
√
9× 7

+ p
|8− 8|
√
8× 8

+ 2p
|8− 6|
√
8× 6

+ 2p
|7− 6|
√
7× 6

= 2p
1

√
72

+ p
2

√
63

+ 2p
2

√
48

+ 2p
1

√
42

= p(0.23570226)+ (0.251976)+ p(0.57735)+ p(0.308606)

NIRLF(G) = 1.37363426p

=
(

12pq− 9p
)

2
|9− 9|
(9+ 9)

+
(

2p
)

2
|9− 8|
(9+ 8)

+
(

p
)

2
|9− 7|
(9+ 7)

+
(

p
)

2
|8− 8|
(8+ 8)

+2p(2)
|8− 6|
(8+ 6)

+2p(2)
|7− 6|
(7+ 6)

= 4p
1

17
+ 2p

2

16
+ 4p

2

14
+ 4p

1

13

= 0.23529411p+ 0.25p+ 0.571428p+ 0.30769230p

NLA(G) = 1.36441441p

=
(

12pq− 9p
)

ln(1+ |9− 9|)+2pln(1+ |9− 8|)pln(1+ |9− 7|)+pln(1+ |8− 8|)+2pln(1+ |8− 6|)+2pln(1+ |7− 6|)

=
(

12pq− 9p
)

ln1+ 2pln2+ pln3+ pln1+ 2pln3+ 2pln2

= 1.38629436p+ 1.098612p+ 2.19972245p+ 1.38629436p
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Theorem 10 Assume that G ∈ HAC5C7[p, q] then, NIRGA(G) = 1.26918503p

Proof By definition NIRGA(G) =
∑

uvǫE
ln|δp+δq |
2
√

δpδq

Theorem 11 Assume that G ∈ HAC5C7[p, q] then, NIRB(G) = 0.5486855p

Proof By definition NIRB(G) =
∑

pqǫE

(

δ

1
2
p − δ

1
2
q

)2

The  HAC5C6C7[p, q] nanotubes (p, q > 1)
Let G be the graph of HAC5C6C7

[

p, q
]

 nanotube. Then,

Theorem 12 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NAL(G) = 18p

Proof By definition of NAL(G) and Table 4 one has:

NIRDI (G) = 6.068425221p

=
(

12pq− 9p
)

ln
|9+ 9|
2
√
9× 9

+2pln
|9+ 8|
2
√
9× 8

+pln
|9+ 7|
2
√
9× 7

+pln
|8+ 8|
2
√
8× 8

+2pln
|8+ 6|
2
√
8× 6

+2pln
|7+ 6|
2
√
7× 6

= 2p(0.066766)+ 2p(0.696112778)+ 2p(0.001733104307)+ p(0.0070252649)

= 0.0034662086p+ 0.0070252649p− 0.133532p+ 1.392225556p

NIRGA(G) = 1.26918503p

=
(

12pq− 9p
)

(

9
1
2 − 9

1
2

)2
+2p

(

9
1
2 − 8

1
2

)2
+p

(

9
1
2 − 7

1
2

)2
+p

(

8
1
2 − 8

1
2

)2
+2p

(

8
1
2 − 6

1
2

)2
+2p

(

7
1
2 − 6

1
2

)2

= 0.058874p+ 0.125492p+ 0.287282p+ 0.0770375p

NIRB(G) = 0.5486855p

Figure 2.  (a) The  HAC5C6C7 nanotube mth period, (b) The  HAC5C6C7 nanotube with p = 4 and q = 2.
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Theorem 13 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRL(G) = 9p

Proof By definition NIRL(G) =
∑

pq∈E|lnδp − lnδq|

Theorem 14 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRRT (G) = 9p

Proof By definition NIRRT (G) = 1
2

∑

pqǫE

∣

∣δp − δq

∣

∣

Theorem 15 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRF(G) = 26p

Proof By definition NIRF(G) =
∑

pqǫE

(

δp − δq

)2

Theorem 16 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRA(G) = 0.0184628432p

Proof By definition NIRA(G) =
∑

pqǫE

(

δ

−1
2
p − δ

−1
2
q

)2

NAL(G) =
∑

pqǫE

∣

∣δp − δq

∣

∣

=
(

12pq− 9p
)

|9− 9| + 4p|9− 8| + 2p|8− 8| + 2p|8− 7| + 4p|8− 6| + 4p|7− 6|

= 4p+ 2p+ 8p+ 4p

NAL(G) = 18p

=
(

12pq− 9p
)

|ln9− ln9|+4p|ln9− ln8|+2p|ln8− ln8|+2p|ln8− ln7|+4p|ln8− ln6|+4p|ln7− ln6|

= 4p(2.197224577734− 2.07944154168)+2p(2.0794415− 1.94591014906)+4p(1.94591014906− 1.79175946)

= 0.47113214264p+ 0.26706270188p+ 1.15072832672p+ 0.61660275624p

NIRL(G) = 2.505525927p

= 4p
1

2
|9− 8| + 2p

1

2
|8− 8| + 2p

1

2
|8− 7| + 4p

1

2
|8− 6| + 4p

1

2
|7− 6|

= 2p+ p+ 4p+ 2p

NIRRT (G) = 9p

= 4p(9− 8)2 + 2p(8− 8)2 + 2p(8− 7)2 + 4p(8− 6)2 + 4p(7− 6)2

= 4p+ 2p+ 16p + 4p

NIRF(G) = 26p

=
(

12pq− 9p
)

(

9
−1

2 − 9
−1

2

)2

+ 4p

(

9
−1

2 − 8
−1

2

)2

+ 2p

(

8
−1

2 − 8
−1

2

)2

+ 2p

(

8
−1

2 − 7
−1

2

)2

+ 4p

(

8
−1

2 − 6
−1

2

)2

+ 4p

(

7
−1

2 − 6
−1

2

)2

Table 4.  The neighborhood edge partitions of  HAC5C6C7 nanotube.

(δp , δq) Frequency

(9, 9) 12pq− 9p

(9, 8) 4p

(8, 8) 2p

(8, 7) 2p

(8, 6) 4p

(7, 6) 4p
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Theorem 17 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRDIFG) = 5.051528p

Proof By definition NIRDIF(G) =
∑

pqǫE|
δp

δq
− δq

δp
|

Theorem 18 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRLF(G) = 2.510484p

Proof By definition NIRLF(G) =
∑

pqǫE
|δp−δq |√

δpδq

Theorem 19 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NLA(G) = 2.495499845p

Proof By definition NLA(G) =
∑

pqǫE
|δp−δq |
(δp+δq)

Theorem 20 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRDI (G) = 8.553331516p

Proof By definition NIRDI (G) =
∑

pqǫEln(1+
∣

∣δp − δq

∣

∣)

= 4p(0.33333− 0.353553)2+2p(0.353553− 0.37796)2+4p(0.353553− 0.408248)2+4p(0.37796− 0.408248)2

= 4p(0.00040896)+ 2p(0.0005957016)+ 4p(0.00299154)+ 4p(0.00091736)

= 0.00163584p+ 0.0011914032p+ 0.01196616p+ 0.00366944p

NIRA(G) = 0.0184628432p

=
(

12pq− 9p
)

∣

∣

∣

∣

9

9
−

9

9

∣

∣

∣

∣

+ 4p

∣

∣

∣

∣

9

8
−

8

9

∣

∣

∣

∣

+ 2p

∣

∣

∣

∣

8

8
−

8

8

∣

∣

∣

∣

+ 2p

∣

∣

∣

∣

8

7
−

7

8

∣

∣

∣

∣

+ 4p

∣

∣

∣

∣

8

6
−

6

8

∣

∣

∣

∣

+ 4p

∣

∣

∣

∣

7

6
−

6

7

∣

∣

∣

∣

= 4p(1.125− 0.888889)+2p(1.14285− 0.875)+4p(1.3333− 0.75)+4p(1.1666667− 0.85714)

= 0.9444p+ 0.5357p+ 2.333332p+ 1.238108p

NIRDIF(G) = 5.051528p

=
(

12pq− 9p
) |9− 9|
√
9× 9

+ 4p
|9− 8|
√
9× 8

+ 2p
|8− 8|
√
8× 8

+ 2p
|8− 7|
√
8× 7

+ 4p
|8− 6|
√
8× 6

+ 4p
|7− 6|
√
7× 6

= 4p(0.117851)+ 2p(0.1336)+ 4p(0.28867)+ 4p(0.15430)

= 0.471404p+ 0.2672p+ 1.15468p+ 0.6172p

NIRLF(G) = 2.510484p

=
(

12pq− 9p
)

2
|9− 9|
(9+ 9)

+4p(2)
|9− 8|
(9+ 8)

+2p(2)
|8− 8|
(8+ 8)

+2p(2)
|8− 7|
(8+ 7)

+4p(2)
|8− 6|
(8+ 6)

+4p(2)
|7− 6|
(7+ 6)

= 8p
1

17
+ 4p

1

15
+ 8p

2

14
+ 8p

1

13

= 0.47058823p+ 0.266667p+ 1.142857p+ 0.615384p

NLA(G) = 2.495499845p

=
(

12pq− 9p
)

ln(1+ |9− 9|)+ 4pln(1+ |9− 8|)+ 2pln(1+ |8− 8|)
+ 2pln(1+ |8− 7| + 4pln(1+ |8− 6|)+ 4pln(1+ |7− 6|)

= 4pln(1+ 1)+ 2pln(1+ 1)+ 4pln(1+ 2)+ 4pln(1+ 1)

= 4pln2+ 2pln2+ 4pln3+ 4pln2

= 2.772588p+ 1.386294361p+ 4.3944915p4

NIRDI (G) = 8.553331516p
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Theorem 21 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRGA(G) = 0.06449422104p

Proof By definition NIRGA(G) =
∑

pqǫE
ln|δp+δq |
2
√

δpδq

Theorem 22 Assume that G ∈ HAC5C6C7

[

p, q
]

 be a graph as shown in Fig. 2. Then, NIRB(G) = 0.9130008p

Proof By definition NIRB(G) =
∑

pqǫE

(

δ

1
2
p − δ

1
2
q

)2

Numerical discussion and conclusion. In this section, we conclude our work with some important 
remarks. In Section "The  HAC5C7[p, q] nanotubes (p, q > 1)" we constructed the structures of HAC5C7[p, q] 
nanotubes for p, q > 1 . Based on Fig. 1a, b, we obtained the neighborhood edge partitions as shown in Table 3. 
With the help of these partitions, we determined the neighborhood irregularity topological indices. Moreover, 

=
(

12pq− 9p
)

ln
|9+ 9|
2
√
9× 9

+4pln
|9+ 8|
2
√
9× 8

+2pln
|8+ 8|
2
√
8× 8

+2pln
|8+ 7|
2
√
8× 7

+4pln
|8+ 6|
2
√
8× 6

+4pln
|7+ 6|
2
√
7× 6

= 4pln
17

2
√
72

+ 2pln
15

2
√
50

+ 4pln
14

2
√
48

+ 4pln
13

2
√
42

= 0.0069324p+ 0.00445435p+ 0.041238p+ 0.01186947p

NIRGA(G) = 0.06449422104p

=
(

12pq− 9p
)

(

9
1
2 − 9

1
2

)2
+4p

(

9
1
2 − 8

1
2

)2
+2p

(

8
1
2 − 8

1
2

)2
+2p

(

8
1
2 − 7

1
2

)2
+4p

(

8
1
2 − 6

1
2

)2
+4p

(

7
1
2 − 6

1
2

)2

= 4p(3− 2.828427)2+2p(2.828427− 2.645751)2+4p(2.828427− 2.449489)2+4p(2.6457− 2.4494)2

= 0.117749p+ 0.06674104p+ 0.574376p+ 0.15413476p

NIRB(G) = 0.9130008p

Table 5.  Comparison of computed indices for HAC5C7[p, q] nanotube.

[

p, q
]

NAL NIRL NIRRT NIRF NIRA NIRDIF NIRLF NLA NIRDI NIRGA NIRB

[1, 1] 10 1.37 5 16 0.01 2.76 1.37 1.36 6.06 1.26 0.54

[2, 2] 20 2.74 10 32 0.02 5.53 2.75 2.72 12.13 2.53 1.09

[3, 3] 30 4.11 15 48 0.03 8.29 4.12 4.09 18.20 3.80 1.64

[4, 4] 40 5.48 20 64 0.04 11.06 5.54 5.45 24.27 5.07 2.19

[5, 5] 50 6.87 25 80 0.05 13.82 6.86 6.82 30.34 6.34 2.74

[6, 6] 60 8.25 30 96 0.06 16.59 8.24 8.18 36.41 7.61 3.2

Figure 3.  Comparison graph for HAC5C7[p, q] nanotube.
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the numerical and graphical comparisons among all considered topological indices are given in Table 5 and 
Fig. 3. Which shows that there is a positive relation between p, q and these topological indices. That is to say, 
when we increase the values of p and q the values of topological indices also increase. Hence, from this com-
parison it is easy to see that the value of NIRF index is higher than the values of remaining topological indices.

In Section "The  HAC5C6C7[p, q] nanotubes (p, q > 1)", we constructed the structures of HAC5C6C7

[

p, q
]

 
nanotubes for p,q > 1. Based on Fig. 2a, b, we obtained the edge partitions as shown in Table 4. With the help of 
these edge partitions, we determined the neighborhood irregularity topological indices. Moreover, the numeri-
cal and graphical comparisons among all considered topological indices are given in Table 6 and Fig. 4. Which 
shows that there is a positive relation between p, q and these topological indices, when we increase the values 
of p and q, the values of topological indices also increase. Hence, from this comparison it is easy to see that the 
value of NIRF index is higher than the values of remaining topological indices.
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