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Better prediction of clinical 
outcome in clear cell renal 
cell carcinoma based on a 6 
metabolism‑related gene signature
Zhixian Yu 1,2, Yating Zhan 3, Yong Guo 2 & Dalin He 1*

It has been reported that metabolic disorders participate in the formation and progression of clear 
cell renal cell carcinoma (ccRCC). However, the predictive value of metabolism‑related genes (MRGs) 
in clinical outcome of ccRCC is still largely unknown. Herein, a novel metabolism‑related signature 
was generated to assess the effect of MRGs on the prognosis of ccRCC patients. Important module 
MRGs were selected by differentially expressed analysis and WGCNA. Subsequently, the hub MRGs 
were screened via univariate cox regression as well as LASSO regression. A new metabolism‑related 
signature of 6 hub MRGs (PAFAH2, ACADSB, ACADM, HADH, PYCR1 and ITPKA) was constructed, 
with a good prognostic prediction ability in the TCGA cohort. The prediction accuracy of this signature 
was further confirmed in both GSE22541 and FAHWMU cohort. Interestingly, this MRG risk signature 
was highly correlated with tumor mutation burden and immune infiltration in ccRCC. Notably, lower 
PAFAH2, a member of 6 MRGs, was found in ccRCC. Knockdown of PAFAH2 contributed to renal 
cancer cell proliferation and migration. Collectively, a 6‑MRG prognostic risk signature is generated to 
estimate the prognostic status of ccRCC patients, providing a novel insight in the prognosis prediction 
and treatment of ccRCC.

Renal cell carcinoma (RCC) is known as a common human renal malignancy, especially in  adults1. In compari-
son with other RCC subtypes, clear cell renal cell carcinoma (ccRCC) has a worse survival  outcome2,3. Radical 
nephrectomy is an important intervention for localized RCC, while systemic therapy is the main therapy for 
patients with advanced RCC 4. Due to RCC resistance in radiotherapy and chemotherapy, immunotherapy has 
been developed for treating RCC patients. The use of immune checkpoint inhibitors (ICIs) alone or combination 
has exhibited good therapeutic effects on ccRCC 5. However, ccRCC patients generally exhibit different thera-
peutic effects due to individual differences. As a result, an effective signature is needed to generate to evaluate 
the prognosis of ccRCC patients with effective ICIs or drugs.

Metabolism disorder has been found in multiple  tumors6. Imbalance of various metabolites has been reported 
to be highly related with ccRCC tumorigenesis and progression. For instance, it has been found that disorder 
of glucose/fatty acid metabolism as well as tricarboxylic acid cycle often contributes to the initiation of ccRCC 
7. Hiromi et al. revealed that RCC cells mainly depend on aerobic glycolysis (Warburg effect), and glycolysis-
relevant metabolites are increased with higher  grade8. Moreover, enhanced cholesterol ester storage is found in 
patients with ccRCC 9. Therefore, an in-depth study of metabolism-related signature may contribute to compre-
hending the potential roles of metabolism-related genes (MRGs) in the prediction of ccRCC prognosis.

Herein, a 6-MRG prognostic risk signature was constructed to evaluate ccRCC prognosis. Patients with low-
risk were shown to have a better overall survival (OS). The accuracy and specificity of our signature was further 
validated in the GSE22541 cohort and the First Affiliated Hospital of Wenzhou Medical University (FAHWMU) 
cohort. The immune status of ccRCC patients with different risk score was further explored. Furthermore, the 
targeted treatment of potential chemotherapeutic agents and ICIs therapies in ccRCC was investigated. Several 
chemotherapeutic agents and ICIs were shown to have a good performance in the high-risk group. Therefore, our 
study demonstrates the potential prognostic value of the 6-MRG prognostic risk signature, which may provide 
a novel insight in ccRCC treatment and be promising biomarkers for ccRCC progression.
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Results
Identification of survival‑related differentially expressed MRGs (DEMRGs). The overall work 
flow was shown in Fig.  1.  To explore the role of metabolism pathway in ccRCC, a total of 948 MRGs were 
obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway related with kinds of substance 
metabolism. Then, the mRNA expressions of 948 MRGs were extracted from the Cancer Genome Atlas (TCGA) 
and 318 DEMRGs were obtained. The corresponding heatmap and volcano plot were shown in Fig. 2a,b. The 
detailed information of 318 DEMRGs were listed in Table S1. Then, weighted gene co-expression network analy-
sis (WGCNA) was performed to identify key survival-related modules in 948 MRGs. The soft threshold power 
was considered as 5 according to scale-free topology  R2 and mean connectivity (Fig. 2c). Then, the clustering 
dendrograms were used to display the results of the combined 7 modules (Fig. 2e). The relationships between 
modules and clinical factors demonstrated that there was a positive correlation between green module and sur-
vival status, and a negative correlation between brown module and survival status (Fig. 2d). Additionally, cor-
relations between other clinical factors and green as well as brown module were similar with the above results. 
Next, 225 genes, extracted from green and brown modules, were used to be intersected with DEMRGs. Finally, 
95 survival-related DEMRGs were selected (Fig. 2f).

Figure 1.  Flow diagram of the data analysis procedure.
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Selection of prognostic MRGs. To identify the prognostic value of MRGs in ccRCC, we included 95 
survival-related DEMRGs into univariate cox regression analysis. Then, 54 prognostic MRGs (including 21 dan-
gerous MRGs and 33 protective MRGs) were obtained according to p < 0.05 (Table S2). To further investigate 
the underlying functions and pathways of the 54 prognostic MRGs, Gene Ontology (GO) and KEGG analyses 
were performed. The results of GO indicated that prognostic MRGs were mainly enriched in molecule-related 
catabolic processes (Fig.  S1a). KEGG analysis disclosed that prognostic MRGs were mainly associated with 
metabolism-related pathways in ccRCC (Fig. S1b). The results of enrichment analysis indicated that prognostic 
MRGs may influence the progression of ccRCC via the above metabolic pathways. Subsequently, we analyzed 
the relationships between MRGs and tumor-related transcription factors (TFs) to uncover the potential regula-
tory mechanisms of prognostic MRGs. Then, 318 tumor-related TFs from Cistrome were performed with dif-

Figure 2.  Identification of survival-related DEMRGs. (a) Heatmap of top 100 DEMRGs. (b) Volcano plot of 
DEMRGs. (c) Network topology with different soft threshold powers. (d) Heatmap of the correlation between 
module genes and clinical factors. (e) Cluster diagram. (f) The intersection between DEMRGs and key module 
MRGs.
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ferentially expressed analysis and 60 differentially expressed TFs (DETFs) were screened (Table S3). Thus, we 
constructed a TF-MRG regulatory network to explore their underlying mechanisms (Fig. S1c).

Establishment and validation of 6‑MRG prognostic risk signature. In order to construct a robust 
MRG prognostic risk signature without overfitting genes, least absolute shrinkage and selection operator (LASSO) 
regression analysis was performed with the above 54 prognostic MRGs (Fig. S2). 6 hub MRGs with correspond-
ing LASSO coefficients were selected out for the establishment of risk score formula: Risk score = (− 0.1652 * 
PAFAH2) + (− 0.0669 * ACADSB) + (− 0.0694 * ACADM) + (− 0.2394 * HADH) + (0.1851 * PYCR1) + (0.1504 * 
ITPKA). ccRCC patients in TCGA were divided into the high- and low-risk groups according to the median 
risk score as the cut-off value. The distribution of risk score and survival status as well as expression heatmap of 
6 MRGs was shown in Fig. 3a. The results of Kaplan–Meier curve indicated that ccRCC patients in the low-risk 
group showed a better OS in comparison with patients with high-risk (Fig. 3b). Moreover, the receiver operat-
ing characteristic (ROC) curve was employed to assess the accuracy of the 6-MRG risk signature (Fig. 3c). The 
area under the ROC curve (AUC) value was 0.762 at 1-year, 0.703 at 2-year and 0.723 at 3-year, respectively, 
suggesting a good sensitivity and specificity of this risk signature. We further validated the accuracy of 6-MRG 
risk signature in the GSE22541 and FAHWMU cohorts. Consistent with the results of TCGA, the OS of patients 
with low-risk was better, with 1-year AUC value was 0.672 in the GSE22541 cohort and 0.650 in the FAHWMU 
cohort, respectively (Fig. S3).

Interestingly, the high-risk group had a significantly higher percentage of ccRCC patients with worse clin-
icopathological characteristics, such as an advanced tumor stage and a later histological grade (Fig. 3d,e,f,g). 
Kaplan–Meier curve analysis demonstrated that the prognosis of patients with high-risk was worse than those 
with low-risk in all the clinical subgroups (Fig. 3h,i,j,k). In addition, the mRNA expressions of 6 MRGs were 
associated with OS of ccRCC patients (Fig. S4). Overall, the above results demonstrate that our signature may 
be useful for predicting prognosis in patients with ccRCC.

Functional enrichment analysis of 6‑MRG prognostic risk signature. 628 differentially expressed 
risk genes (DERGs) were obtained via differentially expressed analysis between the high- and low-risk groups. 
The enrichment analysis of GO and KEGG was conducted to identify the potential biological function and 
signaling pathways of DERGs. Results of GO indicated that DERGs were significantly enriched in immuno-
globulin-mediated immune response, B cell-mediated immunity and humoral immune response, which were 
strongly associated with immune system (Fig. 4a). Results of KEGG demonstrated the involvement of DERGs 
in NF-κB signaling pathway, PPAR signaling pathway and PI3K-Akt signaling pathway (Fig. 4b). The results 
of Gene Set Enrichment Analysis (GSEA) indicated the enrichment of metabolism-related pathways such as 
adipocytokine signaling pathway, butanoate metabolism, inositol phosphate metabolism, insulin signaling path-
way, propanoate metabolism, pyruvate metabolism, regulation of autophagy and tryptophan metabolism in the 
low-risk group (Fig. 4c). Overall, our risk signature may be associated with immune processes and metabolism 
pathways in ccRCC.

Construction of a nomogram signature. The results of univariate cox regression showed that clinical 
features (age, grade, stage, T, M, and N) and risk score were related with OS (Fig. S5a). Moreover, age and risk 
score were considered as the independent prognostic factors in ccRCC via multivariate cox regression analysis 
(Fig. S5b). Then, a nomogram including age and risk score was established to launch more accurate personal-
ized prediction in ccRCC prognosis (Fig. S5c). The results of calibration curve demonstrated that the predictive 
outcome of nomogram was consistent with the actual outcome (Fig. S5d).

Immune‑related analysis in 6‑MRG prognostic risk signature. It has been reported that tumor 
microenvironment (TME) is involved in the progression of ccRCC 10. Therefore, the relations between risk signa-
ture and TME scores (immune score, stromal score as well as ESTIMATE score) were further investigated. Our 
results showed that increased TME scores were observed in patients with high-risk compared with those with 
low-risk (Fig. 5a). Then, analysis of relations between immune subtypes and risk score indicated lower risk score 
in C2 (IFN-gamma Dominant), C3 (Inflammatory), C4 (Lymphocyte Depleted) and C6 (TGF-beta Dominant) 
in comparison with C1 (Wound Healing) (Fig. 5b). No ccRCC patients were included into C5 immune subtype. 
Recently, immunotherapy has been performed a good effect in ccRCC  patients11. It is important to explore levels 
of immune checkpoints in ccRCC patients. As shown in Fig. 5c, higher levels of PD-1, LAG3 and CTLA4 were 
found in patients with high-risk, indicating a positive correlation between risk score and immune checkpoints. 
Our results suggest that immune checkpoints may be potential therapeutic targets of immunotherapy for ccRCC 
patients. Next, the infiltration levels of immune cells were further investigated. Higher levels of plasma cells, 
T cells regulatory (Tregs) and macrophages M0 were observed in patients with high-risk. Moreover, patients 
with low-risk were correlated with monocytes, macrophages M1, resting dendritic cells and resting mast cells 
(Fig. 5d). The above results reveal that this MRG risk signature may be associated with immune system in the 
development of ccRCC.

Correlation between tumor mutation burden (TMB) and 6‑MRG prognostic risk signa‑
ture. Gene mutation is considered as a key factor in tumorigenesis and process. Level of TMB in the high- 
and low-risk groups was analyzed. Waterfall plot displayed the top 20 genes of highest mutation frequency in 
the high- and low-risk groups (Fig. 6a). Notably, the patients with high-risk had higher gene mutation frequency 
compared with those with low-risk. Moreover, the level of TMB was remarkably higher in the high-risk group 
(Fig. 6b). Obviously, the OS of patients with high TMB was worse (Fig. 6c). Furthermore, patients with high-
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TMB and high-risk score showed the worst OS among all the groups, suggesting that this 6-MRG prognostic risk 
signature is correlated with TMB in ccRCC progression (Fig. 6d).

Figure 3.  Construction of the 6-MRG prognostic risk signature with OS of ccRCC. (a) Distribution of risk 
score (upper), survival status (middle) and 6-MRG expression profiles (bottom) for all patients in the TCGA 
cohort. (b) Kaplan–Meier curve of OS in the TCGA cohort. (c) ROC curve for the TCGA cohort. (d–g) Box 
plots of the correlation between risk score and different clinical features (age, gender, grade and stage). (h–k) 
Survival analysis.
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Analysis of drug sensitivity. To explore the effective chemotherapeutic drugs in ccRCC patients, the anal-
ysis of drug sensitivity was applied to predict the potential chemotherapy response of 8 comment drugs between 
the high- and low-risk groups. It was found that 6 chemotherapeutic drugs (Docetaxel, Paclitaxel, Sorafenib, 
Sunitinib, Vinblastine and Vorinostat) had a lower inhibitory concentration (IC50) in patients with high-risk 
(Fig. 7). Our data suggest that Docetaxel, Paclitaxel, Sorafenib, Sunitinib, Vinblastine and Vorinostat may be 
potential chemotherapeutic drugs for the high-risk group.

Roles of PAFAH2 in ccRCC . Our 6-MRG prognostic risk signature is composed of PAFAH2, ACADSB, 
ACADM, HADH, PYCR1 and ITPKA. It is known that the roles of ACADSB, ACADM, HADH, PYCR1 and 
ITPKA have been explored in cancers, whereas PAFAH2  not12–16. Therefore, the mRNA expression and role of 
PAFAH2 in ccRCC were further investigated. As shown in Fig. 8a, the mRNA expression level of PAFAH2 was 
reduced in ccRCC cell lines. Clearly, PAFAH2 was inhibited by knockdown of PAFAH2 in 786-O cells (Fig. 8b). 
Notably, silencing PAFAH2 led to the promotion of cell migration (Fig. 8c,d). Moreover, ccRCC cell proliferation 
was increased by knockdown of PAFAH2 (Fig. 8e). Combined with these, PAFAH2 may act as a tumor suppres-
sor in ccRCC.

Figure 4.  Functional enrichment analysis of 6-MRG prognostic risk signature. (a) GO analysis. (b) KEGG 
analysis. (c) GSEA analysis.
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Figure 5.  Association between risk score and immune characteristics. (a) Distribution of TME scores. (b) 
Relation between immune subtypes and risk score. (c) Expression levels of 4 immune checkpoints (PD-1, LAG3, 
CTLA4 and VSIR). (d) Infiltration levels of 22 immune cells.
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Figure 6.  TMB analysis in the TCGA cohort. (a) Waterfall plot of mutated genes. (b) Difference analysis of 
TMB. (c) Kaplan–Meier curve of OS. (d) Kaplan–Meier curve for combined analysis of TMB and risk score.

Figure 7.  Estimation of chemotherapy response for ccRCC. Docetaxel (a), Gefitinib (b), Methotrexate (c), 
Paclitaxel (d), Sorafenib (e), Sunitinib (f), Vinblastine (g) and Vorinostat (h).
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Discussion
Increasing studies have demonstrated that metabolize dysfunction in glucose, lipid, and amino acid metabo-
lism may contribute to the progression of ccRCC 17. In addition, dysregulation of MRGs has been reported to 
be involved in the development of ccRCC. For example, VHL mutation in RCC up-regulates hypoxia-induced 
vascular endothelial growth factor and promotes nutrition supply in RCC 18. It has been reported that TP53 muta-
tion can escape RCC cell from the attack of oxidative  damage19. However, whether MRGs have potential value 
in the prediction of ccRCC prognosis is still largely unknown. In our study, TF-MRG regulatory network and 
function enrichment analysis were supplied to systematically understand the potential pathway of prognostic 
MRGs in ccRCC. Subsequently, a novel 6-MRG prognostic risk signature was generated to contribute to better 
prediction of the prognosis of ccRCC patients. Our signature indicated novel ccRCC therapeutic targets, provid-
ing candidate therapeutic strategies for ccRCC.

Figure 8.  Roles of PAFAH2 in ccRCC. (a) Expression level of PAFAH2 in HK-2, ACHN and 786-O cell lines. 
(b) PAFAH2 expression in 786-O cells with transfection of si-NC, si-PAFAH2#1 or si-PAFAH2#2. (c and d) 
Transwell assays. (e) Cell proliferation. *P < 0.05, **P < 0.01 and ***P < 0.001 compared with the control.
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This 6-MRG prognostic risk signature contained PAFAH2, ACADSB, ACADM, HADH, PYCR1 and ITPKA. 
Herein, our data suggest that 6 MRGs may be associated with the prognosis of ccRCC. Lu et al. found that 
ACADSB, an acyl-CoA dehydrogenase, inhibits the development of colorectal cancer via  ferroptosis20. ACADM, 
an enzyme that catalyzes the first step of mitochondrial fatty acid-oxidation pathway, has been shown to inhibit 
the progression of hepatocellular carcinoma via regulation of CAV1 and  SREBP121. Recently, loss of HADH has 
been found to accelerate cell migration and invasion in gastric  cancer22. PYCR1, which is often increased in vari-
ous cancers, has been found to play important roles in regulating cell metabolism including cellular energetic, 
physiological and pathological  processes23. PYCR1 has been found to serve as a new prognostic biomarker and 
therapeutic target for RCC diagnosis and  treatment24. Previously, Zhu et. al revealed that ITPKA accelerates cell 
proliferation, migration and invasion of RCC cells via  mTORC116. Recently, it has been reported that inhibition 
of PAFAH2 exacerbates TNF-α-induced lung  injury25. Due to the reason that the biological roles of PAFAH2 
have never been explored in cancers, therefore, the expression and role of PAFAH2 were investigated in ccRCC 
cells. We demonstrated that in ccRCC cells, reduced PAFAH2 promotes cancer cell proliferation and migration.

Recently, immunotherapy has been developed as an emerging strategy for cancer treatment. Blocking immune 
checkpoints is an important form of immunotherapy, contributing to activating the antitumor  immunity26. As a 
newly developed tumor biomarker, TMB has been a measure of calculating the number of somatic mutations in 
tumors. Numerous studies have demonstrated that tumors with high TMB exhibit more surface neoantigens and 
produce more powerful immune  response27,28. Additionally, high TMB shows a good sensitivity to treatment of 
 ICIs29. In this study, the levels of TMB and immune checkpoints (PD-1, LAG3 and CTLA4) were higher in the 
high-risk group. Together, compared with the low-risk group, patients with high-risk are more likely to benefit 
from immunotherapy, which provides novel insights in the therapy of ccRCC patients.

It is known that immune infiltration is involved in regulating the development and progression of ccRCC. 
Recent studies have showed that activated immune cells play key roles in the regulation of immune cells in TME 
via many metabolic  pathways30–32. For instance, the inhibition of LOX can reduce the production of CCL2 and 
IL-10 by tumor-associated macrophages in RCC, leading to the suppression of immune escape and cancer-related 
inflammation via LOX-dependent arachidonic acid  metabolism33. Tryptophan catabolism has been demonstrated 
to produce anti-inflammatory metabolites, contributing to RCC immune  suppression8. However, the correlation 
between immune cells and metabolic regulation in ccRCC is still poorly understood. In our study, it was found 
that levels of plasma cells, M0 macrophage and Tregs were increased in the high-risk group. It is confirmed that 
immune infiltration is associated with many metabolic pathways.

Docetaxel34,  Paclitaxel35,  Sorafenib36,  Sunitinib37,  Vinblastine38 and  Vorinostat39 have been demonstrated to 
have certain effects in RCC therapy. At the present study, patients with high-risk showed higher drug sensitivity 
with the mentioned 6 drugs. Therefore, our findings suggest that the above drugs may exhibit good effects in the 
therapy of ccRCC patients with high metabolism score.

Previously, the prognostic value of MRGs has been investigated in various cancers. For instance, Xu et al. 
proved the prognosis prediction value of a 12-MRG signature in glioma  patients40. Wu et al. constructed a 
11-MRG signature to predict the prognosis of ccRCC  patients41. Consistent with the previous, our signature 
was also generated at mRNA expression level. Further studies showed that ITPKA, one member of our 6-MRG 
risk signature, could not be found in the public-available proteomic data (Clinical Proteomic Tumor Analysis 
Consortium) (Fig. S6). Therefore, whether our prognostic risk signature applicable at the protein level needs to 
be explored in the future. In addition, construction of the previous signatures was based on public databases and 
lack of clinical and experimental verification. There are many advantages in our research. Firstly, a novel 6-MRG 
prognostic risk signature was established in ccRCC and this is a first report. Secondly, the prognostic value of this 
signature was validated in the GSE22541 and FAHWMU cohorts. Finally, this signature was correlated with TMB, 
immune checkpoints and immune infiltration, contributing to the improvement of immunotherapy for ccRCC.

In conclusion, we systematically explore the underlying regulation mechanism of MRGs and their roles in 
immune-relative pathways of ccRCC. Moreover, we reveal the potential prognostic value of this 6-MRG prog-
nostic risk signature, which may provide novel insights in ccRCC treatment and be promising biomarkers for 
ccRCC progression.

Materials and methods
Data collection. The mRNA data of ccRCC patients were downloaded from TCGA database (https:// 
portal. gdc. cancer. gov/.). In addition, 948 MRGs were extracted from the metabolic pathways of "c2.cp.kegg.
v7.4.symbols" in GSEA (https:// www. gsea- msigdb. org/ gsea/ index. jsp.). 530 ccRCC patients in TCGA were used 
as the training cohort (Table 1). GSE22541 with 24 primary ccRCC patients was supplied from Gene Expression 
Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ geo/.), as the validation cohort. Moreover, 70 ccRCC patients 
from FAHWMU were obtained for the accuracy verification of our risk signature. The collection of these ccRCC 
tissues was agreed by the Ethics Committee of FAHWMU. Informed consents were signed by all the patients/
participants in this study.

Identification of DEMRGs and establishment of weighted gene co‑expression networks. The 
DEMRGs were identified between ccRCC and normal kidney tissues via R package “limma” ((|log2 fold change 
(FC)|> 1, p < 0.05))42. The key modules with similar expression genes were divided according to WGCNA. In 
addition, R package "WGCNA" was performed to visualize the  modules43. Soft threshold power was identified 
with the scale-free topology  R2 nearly as 0.90 and the mean connectivity nearly as 0. Gene dendrogram with 
module colors was displayed after clustering. The module-trait relationship was shown in heatmap to identify 
clinically relevant MRGs modules. The key survival-related modules were selected based on the associations 
between modules and clinical features.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
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Functional enrichment analysis of prognostic MRGs. The intersection between DEMRGs and key 
module MRGs was selected. Then, univariate cox regression was performed for the identification of prognostic 
MRGs, which were significantly correlated with the OS of ccRCC patients. Subsequently, GO and KEGG analy-
ses were employed via R packages “clusterProfiler” and “enrichplot44”.

Construction of the regulatory network between MRGs and TFs. The relationships between MRGs 
and tumor-related TFs were analyzed to uncover the potential regulatory mechanisms of prognostic MRGs. A 
total of 318 TFs were obtained through the website Cistrome (http:// cistr ome. org/). DETFs were filtered via 
|log2FC|> 1 and adjusted p < 0.05. Then, the relationships between DETFs and prognostic MRGs were analyzed 
through correlation test with correlation coefficient > 0.4 and p < 0.001. The Cytoscape software was further 
employed to build a MRG-TF regulatory network.

Establishment and validation of 6‑MRG prognostic risk signature in ccRCC . The TCGA cohort 
was included to establish the prognostic risk signature. Moreover, the GSE22541 cohort (n = 24) as well as the 
FAHWMU cohort (n = 70) was used as external verification. Prognostic MRGs were taken into LASSO regres-
sion analysis to decrease overfitting genes via R package “glmnet”. The MRG prognostic risk signature was con-
structed via the LASSO coefficients: Risk score =

∑N
i=1

(

Exp(i) · coe(i)
)

 , in which Exp(i) represents the mRNA 
expression of each gene and coe(i) is the LASSO coefficient of each gene. Based on the risk score formula, the 
patients were distributed into the low- and high-risk groups using the median risk score as the cut-off value. R 
packages “survival” and “surviminer” were utilized to analysis the survival status of risk groups. Furthermore, 
ROC curve and AUC value were also evaluated via R package "timeROC". To confirm the prognostic precision 
of 6-MRG signature, the risk score in the GSE22541 and FAHWMU cohorts was calculated by risk formula and 
all patients were assigned into the high- and low-risk groups according to the median risk score from training 
group. The Kaplan–Meier curve and ROC curve analyses were also performed.

Functional enrichment analysis of 6‑MRG prognostic risk signature. R package “limma” was used 
to determine DERGs between the high- and low-risk groups in the TCGA cohort (|log2FC|> 1, p < 0.05). GO and 
KEGG analyses were performed based on DERGs. R package “clusterProfiler” and “enrichplot” were used for GO 
and KEGG analyses. GSEA software (GSEA, version 4.0.3) was used for GSEA analysis.

Table 1.  Correlations between metabolism signature and clinicopathological parameters of 530 patients in 
TCGA-ccRCC cohort.

Category Cases (n = 530)

Metabolism signature

Low risk (n = 265) High risk (n = 265)

Status
Alive 364 (68.68%) 218 (59.89%) 146 (40.11%)

Death 166 (31.32%) 47 (28.31%) 119 (71.69%)

Age
 ≤ 65 348 (65.66%) 177 (50.86%) 171 (49.14%)

 > 65 182 (34.34%) 88 (48.35%) 94 (51.65%)

Gender
Female 186 (35.09%) 112 (60.22%) 74 (39.78%)

Male 344 (64.91%) 153 (44.48%) 191 (55.52%)

Grade

G1 14 (2.64%) 11 (78.57%) 3 (21.43%)

G2 227 (42.83%) 145 (63.88%) 82 (36.12%)

G3 206 (38.87%) 95 (46.12%) 111 (53.88%)

G4 75 (14.15%) 8 (10.67%) 67 (89.33%)

Unknown 8 (1.51%)

Stage

Stage I 265 (50.00%) 171 (64.53%) 94 (35.47%)

Stage II 57 (10.75%) 29 (50.88%) 28 (49.12%)

Stage III 123 (23.21%) 44 (35.77%) 79 (64.23%)

Stage IV 82 (15.47%) 20 (24.39%) 62 (75.61%)

Unknown 3 (0.57%)

T

T1 271 (51.13%) 173 (63.84%) 98 (36.16%)

T2 69 (13.02%) 30 (43.48%) 39 (56.52%)

T3 179 (33.77%) 60 (33.52%) 119 (66.48%)

T4 11 (2.08%) 2 (18.18%) 9 (81.82%)

M

M0 420 (79.25%) 227 (54.05%) 193 (45.95%)

M1 78 (14.72%) 19 (24.36%) 59 (75.64%)

Unknown 32 (6.04%)

N

N0 239 (45.09%) 121 (50.63%) 118 (49.37%)

N1 16 (3.02%) 3 (18.75%) 13 (81.25%)

Unknown 275 (51.89%)

http://cistrome.org/
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Independent prognostic analysis. Univariate and multivariate cox regression analyses of clinical char-
acteristics and risk score were performed to determine the independent prognostic factors. R packages “survival” 
and “survminer” were applied in above analyses via R software. P < 0.05 was considered as statistically significant 
threshold. The independent prognostic factors screened by independent prognostic analysis were subsequently 
incorporated into the construction of nomogram. Nomogram was established via R package “rms”. We also 
performed the calibration curve to test the accuracy between the survival probability of nomogram and actual 
observation value.

TMB analysis. TMB, based on somatic mutation data in each tumor, is calculated as the total number of 
abnormal errors per million bases of  genes45. Mutation data were available in the TCGA database (https:// portal. 
gdc. cancer. gov/). We filtered the mutation types and removed some mutations that could not be reflected on the 
transcriptome. In addition, only ccRCC patients with both mutation data and prognostic data were included in 
this study. Perl scripts were used to calculate TMB score for each ccRCC patient. All ccRCC patients were clas-
sified into two groups based on the optimum threshold segmentation of TMB status population. We analyzed 
the relationship between risk score and TMB. Then, survival analysis between high TMB and low TMB groups 
was analyzed. The waterfall plots showed the top 20 mutation frequency genes in the high- and low-risk groups 
by R package “maftools46”.

TME and immune infiltration analysis. ESTIMATE algorithm is applied to estimate stromal and 
immune cells infiltration in TME. Immune, stromal and ESTIMATE scores of patients from TCGA cohort were 
obtained via R package “ESTIMATE”. Next, the proportions of 22 immune cells in ccRCC patients were calcu-
lated via “CIBERSORT”  algorithm47. R packages "limma" and "ggpubr" were used to analyze immune infiltration 
status between the high- and low-risk groups.

Evaluation of the sensitivity of chemotherapeutic drugs. Drug sensitivity data was downloaded 
from Genomics of Drug Sensitivity in Cancer (GDSC) database (https:// www. cance rrxge ne. org/). The IC50 of 
chemotherapy drugs was calculated via R package “pRRophetic” to evaluate the sensitivity of ccRCC samples to 
8 chemotherapeutic  drugs48. Common anti-tumor chemotherapeutic drugs such as Docetaxel, Gefitinib, Metho-
trexate, Paclitaxel, Sorafenib, Sunitinib, Vinblastine and Vorinostat were included into analysis. IC50 difference 
between the high- and low-risk groups was compared using Wilcoxon signed-rank test.

Quantitative real‑time PCR (qRT‑PCR). 70 ccRCC samples were obtained from FAHWMU, which was 
accepted by the Ethics Committee of FAHWMU. Informed consents were signed by all the patients/participants 
in this study. The mRNA expressions were examined by qRT-PCR. Firstly, TRIzol reagent was supplied to extract 
the total RNA from tissues and cells. Then, TOROIVD qRT-PCR Master Mix was used to complete the reverse 
transcription of mRNA to cDNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as an internal 
reference control. The 7500 rapid quantitative PCR system was used to perform real-time PCR using SYBR 
Green master mix. The Ct values of genes were recorded, and the relative expressions of mRNA were calculated 
with the formula  2−ΔCt. Primer sequences of PAFAH2 and GAPDH were listed in Table S4.

Cell culture. The human normal kidney cell line (HK-2) and human renal cancer cell line (786-O and 
ACHN) were purchased from ATCC. HK-2 and ACHN were cultured in MEM medium with 10% fetal bovine 
serum (FBS) and 1% antibiotics. 786-O was cultured in RPMI-1640 medium with 10% FBS and 1% antibiotics. 
37 °C incubator was used for cell culture with 5%  CO2.

Cell transfection. In this study, PAFAH2 small interfering RNA (si-PAFAH2) was used to inhibit PAFAH2 
in cells and negative control RNA (si-NC) was used as the control. In brief, 786-O cells were cultured in a 6-well 
plate with 1 ×  104 cells per well. In brief, cells were transfected with si-NC, si-PAFAH2#1 or si-PAFAH2#2. The 
primer sequences of si-NC, si-PAFAH2#1 and si-PAFAH2#2 were listed in Table S4.

Cell migration assays. Transwell chambers were used for cell migration assays. Briefly, 5 ×  104 786-O cells 
in 200 μl 1640 medium without FBS were cultured in Transwell filter membrane chambers. A medium contain-
ing 20% FBS was added into the lower transwell chambers. Then, cells were cultured in a 37 °C incubator with 
5%  CO2 for 36 h. Subsequently, 4% paraformaldehyde was used for the fix of transwell chambers. After transwell 
chambers were dried, 0.1% crystal violet solution was used for the cell staining.

Cell proliferation assays. In accordance with the manufacturer’s instructions, we performed cell prolif-
eration assays using Cell Counting Kit-8 (CCK8) (Dojindo, Japan). 786-O cells were planted at a density of 
2 ×  103/100 μl per well in 96-well plate. Then, 10 μl CCK-8 reagent was used to treat cells for 2 h. Next, the optical 
density (OD)450 values of each well were measured by a microplate reader.

Statistical analysis. R software and GraphPad Prism were used for all statistical analyses in this study. All 
R packages were from R programming language. Wilcoxon test and oneway ANOVA were used for comparison 
analysis. P < 0.05 was considered as statistically significant.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerrxgene.org/
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Ethics approval and consent to participate. The studies involving human participants were reviewed 
and approved by the Human Research Ethics Committee in the First Affiliated Hospital of Wenzhou Medical 
University. The patients/participants provided their written informed consent to participate in this study. All 
authors had participated in the collection of clinical information. All methods of this study were carried out in 
accordance with the Declaration of Helsinki.

Data availability
Publicly available datasets were analyzed in this study. This data can be found here: https:// portal. gdc. cancer. 
gov/ (TCGA-ccRCC) and https:// www. ncbi. nlm. nih. gov/ geo/ (GEO- GSE22541).
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