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A diagnostic classification of lung 
nodules using multiple‑scale 
residual network
Hongfeng Wang 1, Hai Zhu 1, Lihua Ding 3 & Kaili Yang 2*

Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic 
efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules 
in CT imaging remains challenging. This study aims to develop a multiple‑scale residual network 
(MResNet) to automatically and precisely extract the general feature of lung nodules, and classify 
lung nodules based on deep learning. The MResNet aggregates the advantages of residual units and 
pyramid pooling module (PPM) to learn key features and extract the general feature for lung nodule 
classification. Specially, the MResNet uses the ResNet as a backbone network to learn contextual 
information and discriminate feature representation. Meanwhile, the PPM is used to fuse features 
under four different scales, including the coarse scale and the fine‑grained scale to obtain more 
general lung features of the CT image. MResNet had an accuracy of 99.12%, a sensitivity of 98.64%, 
a specificity of 97.87%, a positive predictive value (PPV) of 99.92%, and a negative predictive value 
(NPV) of 97.87% in the training set. Additionally, its area under the receiver operating characteristic 
curve (AUC) was 0.9998 (0.99976–0.99991). MResNet’s accuracy, sensitivity, specificity, PPV, NPV, and 
AUC in the testing set were 85.23%, 92.79%, 72.89%, 84.56%, 86.34%, and 0.9275 (0.91662–0.93833), 
respectively. The developed MResNet performed exceptionally well in estimating the malignancy risk 
of pulmonary nodules found on CT. The model has the potential to provide reliable and reproducible 
malignancy risk scores for clinicians and radiologists, thereby optimizing lung cancer screening 
management.

The International Agency for Research on Cancer’s most recent global cancer report showed that lung cancer 
accounts for 11.4% (second only to breast cancer) of new cancer cases and 18.0% (the highest of all cancers) of 
new cancer deaths worldwide in 2020, representing a significant disease burden  globally1,2. Despite advancements 
in surgical, radiotherapeutic, and chemotherapeutic methods, the long-term survival of lung cancer still  dismal3. 
Early diagnosis has been proved to be an effective approach to improve lung cancer outcomes, with 5-year rela-
tive survival increasing from 6% for distant-stage disease to 33% for regional stage and 60% for localized-stage 
 disease4. According to the studies of the National Lung Screening Trial (NLST) and the Dutch-Belgian Lung 
Cancer Screening, screening high-risk individuals with low-dose chest computed tomography (CT) can reduce 
lung cancer mortality by 20% and 26%,  respectively5.

Despite the fact that the widespread use of CT has improved the diagnostic efficacy of lung cancer and the 
treatment outcomes for patients, the vast number of CT images has increased the radiologists’ burden. Currently, 
the classification of pulmonary nodules in CT is highly dependent on radiologists, but the increase of radiologists 
is far below the rate of increase in medical imaging data. For instance, the annual growth rate of medical imaging 
data in the United States is 63%, while the annual growth rate of the number of radiologists is only 2%. Due to 
the tremendous workload, physicians often become exhausted, which affects their work efficiency and leads to 
missed examinations and misdiagnosis. Additionally, it can be challenging for even the most skilled radiologist 
to accurately classify small nodules. Particularly as section thickness decreases, distinguishing pulmonary lesions 
from adjacent normal vascular structures becomes more difficult. Since it depends solely on the radiologist, 
nodule classification is subjective and challenging to generalize.

To improve efficiency and reduce the rate of misdiagnosis, numerous investigators have proposed computer-
aided diagnosis (CAD) systems to assist radiologists in classifying pulmonary  nodules6. Currently, candidate 
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nodule discovery and false-positive reduction are the two main components of CAD systems. In the first stage, 
a relatively coarse scan is usually performed to extract suspected nodal regions with high sensitivity. These 
suspected nodal areas are then sent to a second, more rigorous screening process to reduce the false-positive 
rate. Despite the significant advancements made by conventional CAD systems, they nevertheless have several 
shortcomings. Conventional CAD systems usually rely on the low-level descriptive features to classify disease. 
However, the shape, size, and texture of actual nodules are highly varied, and low-level descriptive characteristics 
are not indicative of these nodules. The second problem is that the detection approach employed by typical CAD 
systems consists of three sub-steps: lung segmentation, candidate nodule extraction, and false positive reduc-
tion. The entire detection procedure is time-consuming, fail to end-to-end, and has poor levels of automation 
and detection effectiveness.

In recent years, deep learning has gained immense popularity due to its capacity to automatically extract 
deep features and learn features that are most significantly  representational7,8. Deep learning has become a 
prominent technique for the classification of lung nodules as a result of its substantial advantage in identifying 
potential data  patterns9–11. Currently, researchers are focusing on improving the feature extractor and classifier 
based on the convolutional neural network in an effort to more accurately classify lung cancer. For example, 
Wei et al. proposed a multi-crop convolutional neural network with condensed feature maps of various sizes for 
capturing more semantic information in lung nodule  classification12. Liu and workmates introduced center-crop 
operation into DenseNet and proposed dense convolutional binary-tree network to classify lung  nodule13,14. By 
performing fusion operations on transition layers, this technique enhanced multi-scale characteristics. Although 
existing lung nodule classification methods can address the large percentage of challenges, they are insufficient 
for capturing fine-grained features. As a result, these methods are difficult to obtain a satisfactory accuracy when 
the CT image is extremely complex.

Therefore, this study aims to provide an effective tool for the automatic classification of lung nodules, which 
holds promise for assess early risk factors facilitate, subsequent therapeutic planning and improve individualized 
patient management. In order to classify lung nodule with high accuracy and efficiency, we proposed a multiple-
scale residual network (MResNet) by combining the advantages of residual units and pyramid pooling module 
(PPM). And the largest public database founded by the Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC–IDRI) was used to verify the performance of MResNet.

Methods
Flowchart of overall study. In this study, we first collected CT images and lung nodule information from 
LIDC to IDRI that contains 1018 people. Then, the Gaussian normalization was used to norm the CT image data, 
which aimed to reduce the degradation caused by data distribution difference. After that, the proposed MResNet 
was utilized to classify lung nodules. Specially, the residual units could help the MResNet learn contextual infor-
mation and discriminate feature representation and improve optimized efficiency. The PPM was able to capture 
features with varying scales, which could be combined to obtain a more general lung feature of CT image. In this 
way, the MResNet had strong ability for modeling the context for classifying lung nodule accurately. Finally, the 
sensitivity, specificity, accuracy, AUC, PPV and NPV were employed to evaluate the performance of MResNet. 
The flowchart of overall study was shown in Fig. 1.

Subjects. The LIDC–IDRI used in this study can be accessed at https:// wiki. cance rimag ingar chive. net/ dis-
play/Public/IDRI15,16. The private information has been removed from the clinical data, and the CT images 
of lung nodules were derived from LIDC–IDRI. Each patient’s annotated data was stored in an XML file that 
includes the size (3–30 mm), borders, location and malignant level of lung nodule. All of the information were 
contributed by four medical experts. All of the images and XML files were stored as subjects of this study.

Dataset preprocessing and splitting. The location and the level information of lung nodules were 
extracted by Python. And the code is opened on https:// github. com/ mikej huang/ LungNo duleDetectionClassifi-
cation. The nodule is classified to benign or malignant according the level of malignancy of pulmonary nodules. 
In addition, the inappropriate and illegible images, such as blurred, low-quality images, and images without lung 
nodule were removed from the database. As a total, we obtained 8474 images from 1018 patients to evaluate the 
performance of proposed method. Some examples of vision CT images were shown in Fig. 2.

Further, by random sampling, the total dataset was partitioned into training and testing datasets in a ratio of 
3:1, respectively. To reduce the degradation caused by data distribution difference, the Gaussian normalization 
is used to norm the CT image data.

where the X denotes the value of CT image, µ is the mean value of all CT image and σ is the variance of all CT 
image. X̂ represents the normalization data of X.

Multiple‑scale residual network. In this section, we introduced the MResNet to learn key features of CT 
for lung nodule classification. Key features tended to map features in original space into a new low-dimensional 
space, which would support effective learning intrinsic data  distribution17. The architecture of MResNet was 
shown in Fig. 3.

In detail, the MResNet used  ResNet18 to encode the features from CT images. The ResNet consisted of multiple 
stacked residual units, and each residual unit was illustrated as a general form

X̂ =
X − µ

σ

https://wiki.cancerimagingarchive.net/
https://github.com/mikejhuang/LungNo
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Figure 1.  The flowchart of overall study.

Figure 2.  The example of lung nodules.

Figure 3.  The architecture of MResNet.
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where xl and xl+1 denoted the input and output of the l-th residual unit, F  was the residual function, f  was the 
activation function. Figure 4 showed the difference between a plain and the residual unit. Compared with plain 
structure, there were multiple combination of batch normalization (BN), rectified linear unit (ReLu) activation, 
and convolutional layer in a residual unit, which benefited obtaining more generic features of lung nodules. 
Besides, the skip connection between low and high levels was designed in residual unit to facilitate information 
propagation without degradation. Because of these advantages, the residual units allowed to design a neural 
network with fewer parameters while yet achieving higher performance in image classification.

In MResNet, the detail of ResNet for generating general features was described as Table 1. The ResNet consists 
of five layers. To be simple, we just listed the convolution layer and filter number in each unit, leaving out the 
BN and ReLu layers. And the final column showed the number of residual units in each layer. The first layer was 
a standard convolution layer that encoded the input CT image into compact representations. Then, the residual 
units Con2_x to Conv5_x was used to extract deep features. Because skip connection in the residual units could 
improve the information propagation, the ResNet was easier to be optimized.

Further, the MResNet coupled  PPM19,20 with ResNet to obtain more general feature of lung nodules. The 
detail of PPM was shown in Fig. 5. To begin, the 6× 6 pooling level were used to obtain the coarsest features. 
Then, 2× 2 and 3× 3 were used to separates the feature map into different sub-regions, resulting in a pooled 
representation for various locations. The coarse scale pooling in PPM was used to emphasize in the global features 
and the fine-grained scale pooling focuses on the local features. After that, the bilinear  interpolation21 was then 
used to unsample the low-dimension feature map to same size, and these resample maps were concatenated to 
form the final pyramid pooling global feature. As a result, the PPM could capture feature of varied scales, and 
these features could be fused to obtain more general feature of lung nodules.

Finally, the MResNet used the global average  pooling22 and softmax to produce the classification scores. This 
step was described with following formula.

(1)yl = xl + F(xl ,Wl)

(2)xl+1 = f (yl)

Figure 4.  Plain neural units (a) and residual units (b).

Table 1.  The detail of ResNet.

Layer name Kernel Number

Conv1 7 × 7, 64, stride 2 1

Conv2_x

3 × 3 max pool, stride 2 1

3 × 3, 64
3

3 × 3, 64

Conv3_x
3 × 3, 128

4
3 × 3, 128

Conv4_x
3 × 3, 256

6
3 × 3, 256

Conv5_x
3 × 3, 512

3
3 × 3, 512
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where Ik(x, y) represented the k-th channel features obtained by PPM at spatial location (x, y) and the Fk was 
the feature obtained by global average pooling. Sk , k ∈ {0, 1} was the classification score. And the 0 denoted the 
benign category and the 1 denoted the malignant category.

We implemented proposed method on the PyTorch (https:// pytor ch. org/), a well-known and open-source 
deep learning platform. For training of MResNet, we used the cross-entropy23 to obtain the loss and the train-
ing kept running until the loss stable. We conducted different experiments to analyze the influence of learning 
rate. And, in the experiment section, the batch size was also examined. The dropout rate was set to 0.3. All the 
training was conducted on a Pytorch platform and the NVIDIA GeForce 1080TI graphics processing unit was 
used to accelerate the training speed.

Performance evaluation and statistical analysis. After training the MResNet models, the perfor-
mance was evaluated using the testing dataset. The performance was evaluated by estimating AUC. Further-
more, the sensitivity, specificity, PPV, NPV and accuracy were used to express the evaluation metrics.

Results
Dataset description. A total of 8474 images were used to conduct experiment for evaluating the perfor-
mance of proposed method. The images with benign lung nodules accounted for 38.46% of the dataset. The 
training dataset contains 6355 photos, while the testing dataset contains the remaining 2119 images. Table 2 
showed the data details of the training and testing datasets.

Parameter optimization for the proposed method. The learning rate was an important optimiza-
tional parameter for deep neural networks. Consequently, we evaluated the performance of the suggested tech-
nique with various learning rates. Initial learning rates of 0.001, 0.0001, 0.00001 and 0.000001 will be split by 
10 after 5 epochs of polynomial decay with 0.9 power. Figure 6A shown that the developed algorithm achieved 
the highest accuracy when the learning rate used during training was set to 0.00001. This indicates that setting 
the learning rate to this specific value may have been optimal for the model to learn the patterns in the training 
data and generalize well to unseen data. The batch size in relation to the performance of the proposed approach 
was also a significant consideration. In order to investigate the impact of batch size, we carried out an experi-
ment using a range of different training batch sizes. According to the results presented in Fig. 6B, batch size of 4 

(3)Fk =
∑

x,y

Ik(x, y)

(4)Sk =
exp(Fk)∑
k

exp(Fk)

Figure 5.  The detail of PPM.

Table 2.  The description of the datasets for testing and training.

Whole dataset Training Testing

Overall 8474 6355 2119

Benign 3259 2444 815

Malignant 5215 3911 1304

https://pytorch.org/
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resulted in the highest performance for the developed algorithm, surpassing the performance obtained by other 
batch sizes. The results further shown that the optimizer used during training had a significant impact on the 
learning effectiveness and overall performance of the proposed algorithm. Specifically, Fig. 6C shows that when 
optimized using the Adam optimizer, the proposed algorithm achieved the highest level of accuracy. These find-
ings suggest that selecting the appropriate batch size and optimizer can greatly impact the performance of deep 
learning models. Therefore, the optimal learning rate, batch sizes and optimizer in this study were 0.00001, 4 
and Adam, respectively.

To verify the effectiveness of ResNet, we replaced it with  Squeezenet24 to extract general features from input 
CT image. The experimental results were reported as Table 3. The statement suggests that ResNet34 achieved the 
highest accuracy of 85.23% in a lung nodules classification task, outperforming Squeezenet. Additionally, the 
study found that a lighter version of ResNet, ResNet18, did not perform as well in this task. The reason for this 
underperformance was attributed to ResNet18 having fewer residual units, which may have led to weaker feature 
extraction capabilities compared to ResNet34. It’s worth noting that model performance can also be affected 
by various other factors such as the size and quality of the dataset, and other hyperparameters chosen during 
training. Furthermore, the more residual units will increase the computation and lead to slowly learn efficiency. 
Therefore, the ResNet34 architecture was chosen as the encoder of MResNet due to the fact that ResNet34 had 
shown better performance in a previous lung nodules classification task.

Performance evaluation of the algorithm. The confusion matrix of proposed method in lung nodule 
classification for both training dataset and testing dataset were presented in Fig. 7. As we can see, for the training 
set, there were 3858 malignant and 2441 benign lung nodules can be classified correctly. And 3 benign and 53 

Figure 6.  Accuracy of the proposed method with different learning rate (A), batch size (B) and optimizer (C). 
The optimal learning rate, batch sizes and optimizer were 0.00001, 4 and Adam, respectively.

Table 3.  The performance comparison between Squeezenet and ResNet.

Network Acc. (%)

Squeezenet 70.46

ResNet18 70.93

ResNet34 85.23

Figure 7.  Heatmap depicting the confusion matrix for the per-category sensitivity of the proposed method for 
the classification of lung nodules in both the training set and the testing set.
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malignant lung nodules were misclassified. For the testing set, there were 1804 correctly classifiable images and 
315 misclassified images. These results indicated that the generalization ability of the proposed method is strong.

Furthermore, the accuracy, sensitivity, specificity, PPV and NPV of the proposed model in lung nodule clas-
sification were calculated. As shown in Table 4, the proposed method achieved high levels of accuracy, sensitiv-
ity, and specificity in classifying lung nodules in both the training and testing sets. Specifically, on the training 
dataset, the proposed method achieved an accuracy of 99.12%, a sensitivity of 98.64%, a specificity of 99.88%, a 
positive predictive value (PPV) of 99.92%, and a negative predictive value (NPV) of 97.87%. On the testing set, 
the method achieved an accuracy of 85.23%, a sensitivity of 92.79%, a specificity of 72.89%, a PPV of 84.56% 
and an NPV of 86.34%. These results suggest that the proposed method has good accuracy and potential clinical 
utility for classifying lung nodules.

Additionally, the AUC of the proposed method were also evaluated. The receiver operating characteristic 
(ROC) curve of the proposed method was shown in Fig. 8. It appears that the proposed model achieved high 
AUC values in both the training and testing sets, indicating strong classification performance for lung nodules. 
Specifically, the AUC values were 0.9998 (with a range of 0.99976–0.99991) for the training set and 0.9275 (with 
a range of 0.91662–0.93833) for the testing set. The AUC is a widely used metric in machine learning to evaluate 
the performance of binary classification models, and a value of 1 indicates perfect classification performance, 
while a value of 0.5 indicates random guessing. The high AUC values in the proposed model suggest that it is a 
promising approach for classifying lung nodules. Additionally, the mean time for classifying CT images using the 
proposed technique was around 0.1 s, which suggests that the method may also have the potential to be scalable 
for use in larger datasets or real-time settings.

Comparison with other methods. In this section, we compare the MResNet with other published mod-
els based on LIDC–IDRI. Firstly, the four traditional methods, K-Nearest Neighbor (KNN), Decision Tree (DT), 
Random Trees (RF) and AdaBoost, are included as comparison methods. The KNN is a non-parametric classifi-
cation algorithm that is based on similarity measures. The DT splits the data into the most homogeneous subsets 
based on some criterion and uses a tree-like structure to represent decisions for lung nodules classification. The 
RF, also known as Random Forests, creates a "forest" of decision trees, each of which is trained on a randomly 
selected subset of the training data. At each split within each tree, a random subset of features is considered to 
determine the best split. The AdaBoost starts with a base classifier that is trained on the entire dataset. It then 
assigns higher weights to the misclassified data points from the initial classifier and reduces the weights of cor-
rectly classified data points. A new classifier is then trained on the updated dataset, and the process is repeated 

Table 4.  Performance of proposed model for lung nodule classification. a PPV refers to the proportion of 
actual malignant nodules to predicted malignant nodules by MResNet. b NPV refers to the proportion of actual 
benign nodules to predicted benign nodules by MResNet.

Training set Testing set

Sensitivity (%) 98.64 92.79

Specificity (%) 99.88 72.89

Accuracy (%) 99.12 85.23

PPVa (%) 99.92 84.56

NPVb (%) 97.87 86.34

Figure 8.  The ROC curve of training set and testing set.
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for a number of rounds or until the desired accuracy is achieved. Besides, many the state-of-the-art methods that 
were developed based on deep learning were compared.

As shown in Table 5, the results suggested that deep learning-based methods, such as convolutional neural 
networks (CNN), outperformed traditional methods like k-nearest neighbors (KNN), random forest (RF), and 
decision tree (DT) in a lung nodules classification task. For example, the DCA-Xception Network achieved an 
accuracy improvement of 1.06%, 5.66%, and 0.86% over KNN, RF, and DT, respectively. The Improved CNN 
outperformed traditional methods like KNN, RF, and DT, with an accuracy improvement of 1.86%, 6.46%, 
and 1.66%, respectively. Furthermore, the proposed MResNet architecture achieved an even higher accuracy 
improvement of 0.97% compared to Improved CNN. Additionally, MResNet achieved an AUC improvement 
of 1.15% compared to Improved CNN. These results suggest that the MResNet architecture, which leverages 
residual units and a pyramid pooling module, is effective in improving the classification performance of lung 
nodules compared to traditional and the most of deep learning-based methods.

Discussion
According to the most recent statistics from GLOBOCAN 2020, the number of fatalities caused by lung cancer 
was 1,796,144. This figure accounts for 18.0% of all deaths caused by malignant  tumors2. As the most lethal form 
of cancer, lung cancer is responsible for more than 350 fatalities every single day in the United  States4. As a result 
of its high incidence and high mortality rate, lung cancer is not only a grave threat to the population’s health, 
but also an urgent public health issue that raises the illness burden. The majority of lung cancer patients are cur-
rently detected at an advanced stage, and the 5-year survival rate is below 20%. Promoting early identification 
and diagnosis of lung cancer has been demonstrated to be a successful strategy for increasing the 5-year survival 
rate and enhancing the quality of life of lung cancer  patients32–35.

Currently, radiological examination, pathologic histology, bronchoscopy, and sputum testing are frequently 
used screening and diagnosis techniques for lung  cancer36. Among them, pathologic histology is considered to be 
the “gold standard” for the diagnosis of lung cancer. However, its invasive nature limits its clinical  application37. 
As lung nodules are often thought to be an important indicator of primary lung cancer, achieving speedy and 
precise identification of lung nodules is essential for the early diagnosis of lung cancer. A spiral CT is one of the 
first-line and effective imaging tools in clinical  applications38,39, and its capacity to identify tiny lung nodules is 
greater than that of chest radiography, but its exposure dose is also higher than that of chest radiography. Low-
dose CT (LDCT) has a 3/4 reduction in radiation exposure when compared to conventional CT and is especially 
appropriate for patients who require numerous CT scans in a short period of time, hence LDCT examinations are 
becoming more common in clinical practice. The NLST in the United States reported a 20% reduction in lung 
cancer mortality with LDCT screening compared to chest radiography screening in  201140. However, lowering 
the radiation dose increases image noise, which diminishes the contrast between the target and background areas, 
limiting classification accuracy. Currently, accurate assessment of the malignancy risk of pulmonary nodules 
discovered during screening CT is essential for optimizing management in lung cancer screening, but it remains 
a difficult task for radiologists. The highly physician-dependent classification of pulmonary nodules also suffers 
from time-consuming, difficult to accurately classify small nodules, high subjectivity and high false positive rates.

In order to achieve lung nodules classification with high accuracy, we proposed MResNet in this study. 
Specially, the MResNet is designed based on the ResNet and PPM network, which achieves great performance 
for natural images classification. The MResNet not only has an ability to extract the general feature about lung 
nodules, but also is powerful in capturing the multiple scales features by PPM. In this way, the MResNet has great 
advantage for modeling the context to improve the performance of classifying lung nodules.

We use the Gaussian to norm the CT image data for reducing the degradation caused by data distribution 
difference. To find the optimal experimental conditions, the accuracy of MResNet under different learning 
parameters, such as learning rate, batch size and optimizer was evaluated. First, we analyzed the accuracy under 

Table 5.  Performance of the proposed method with other methods.

Methods Accuracy (%) AUC 

K-Nearest neighbor (KNN)25 82.4 0.87

Decision tree (DT)25 77.8 0.75

Random trees (RF)25 82.6 0.88

AdaBoost25 81.5 0.89

Autoencoder12 80.29 0.86

Massive-feat12 83.21 0.89

Convolutional neural network (CNN)9 84.2 0.91

Hybrid neural  network26 82.2 0.877

Support vector machine (SVM)27 68.4 0.905

EDICNet28 74 –

Improved  CNN29 84.26 0.916

Deep  learning30 81.3 0.851

DCA-Xception  network31 83.46 0.929

Proposed MResNet 85.23 0.9275
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different learning rates, the result as shown in Fig. 6A. It was obvious that the MResNet achieves the best lung 
nodules classification performance when learning rate was 0.00001. And the accuracy tended to decrease with 
large or small learning rate. The main reason for this phenomenon is that the large learning rate may cause the 
fluctuation during learning process, which can harm the convergence of model learning. By contrast, the small 
learning rate may lead to slowly learning speed and thus needs to cost more time to achieve optimal performance. 
As an important optimal parameter, the batch size decides the amount of input feature in each learning itera-
tion. From the Fig. 6B, we can see that the MResNet was not sensitive to the parameter of batch size because the 
MResNet has strong ability in feature extraction due to massive transformer layers. In this case, the MResNet 
can extract beneficial feature for classification when the batch size is small. The last analyzed parameter was 
optimizer. The appropriate optimizer can help the MResNet escape the local optimal solution and achieve higher 
performance. We can see that the MResNet obtained the best performance using the Adam with accuracy of 
0.8282 (Fig. 6C).

Second, we conduct a large number of experiments to evaluate the performance of MResNet. The quantifi-
cation results of MResNet were presented in Table 4, Figs. 7 and 8. As shown in Table 4, for the testing set, the 
sensitivity, specificity and accuracy were 92.79%, 72.89% and 85.23%, respectively. The sensitivity reflects the 
ability of the MResNet to predict malignant, while the specificity reflects the MResNet of the model to predict 
benign. Therefore, the proposed MResNet can better classify lung nodules and drop the false-negative rate, which 
satisfies the normal requirement for screening test of lung cancer.

Besides, in terms of PPV and NPV, the MResNet achieved 99.92% and 97.87% on training dataset, while the 
corresponding values were 84.56% and 86.34% on testing dataset. These results showed that the MResNet can 
significantly reduce the error classification for lung nodules. The AUC of MResNet was also evaluated. Gener-
ally, an AUC = 0.9–1.0 represents excellent, AUC = 0.8–0.9 good, AUC = 0.7–0.8 fair, and AUC = 0.6–0.7 poor 
discriminate ability. It can be seen from Table 4 and Fig. 8 that MResNet can achieve the higher AUC, above 
0.9998 and 0.9275 on training and testing dataset. We can also find from Table 5 that the MResNet can achieve 
state-of-the-art performance among compared methods. According to the general rule of AUC, we can con-
clude that the proposed method has a strong ability to classify lung nodules with high accuracy. In Summary, 
the developed model is effective in classifying lung nodules, which can help monitor and guide the health status 
of the population.

Conclusion
Developing deep learning models for the automatic and accurate classification of lung nodules will not only 
improve the sensitivity of lung cancer diagnosis and lower the false negative rate, but will also reduce the burden 
of radiologists. In this article, we developed a novel approach, named MResNet, for the classification of lung 
nodules that possesses excellent levels of sensitivity as well as specificity. The MResNet is designed based on 
the ResNet and PPM, which has the ability to extract general features from CT images in order to classify lung 
nodules. The experiments carried out on LIDI–IDRI demonstrate that the proposed method is beneficial to 
assess lung cancer risk for general popularity.

Data availability
The data that support the findings of this study are openly available in Cancer Imaging Archive at https:// wiki. 
cance rimag ingar chive. net/ pages/ viewp age. action? pageId= 19662 54.
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