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Intelligent large‑scale flue‑cured 
tobacco grading based on deep 
densely convolutional network
Xiaowei Xin 1*, Huili Gong 1*, Ruotong Hu 1, Xiangqian Ding 1, Shunpeng Pang 2 & 
Yue Che 3

Flue‑cured tobacco grading plays a crucial role in tobacco leaf purchase and the formulation of 
tobacco leaf groups. However, the traditional flue‑cured tobacco grading mode is usually manual, 
which is time‑consuming, laborious, and subjective. Hence, it is essential to research more efficient 
and intelligent flue‑cured tobacco grading methods. Most existing methods suffer from the more 
classes less accuracy problem. Meanwhile, limited by different industry applications, the flue‑
cured tobacco datasets are hard to be obtained publicly. The existing methods employ relatively 
small and lower resolution tobacco data that are hard to apply in practice. Therefore, aiming at 
the insufficiency of feature extraction ability and the inadaptability to multiple flue‑cured tobacco 
grades, we collected the largest and highest resolution dataset and proposed an efficient flue‑cured 
tobacco grading method based on deep densely convolutional network (DenseNet). Diverging from 
other approaches, our method has a unique connectivity pattern of convolutional neural network 
that concatenates preceding tobacco feature data. This mode connects all previous layers to the 
subsequent layer directly for tobacco feature transmission. This idea can better extract depth tobacco 
image information features and transmit each layer’s data, thereby reducing the information loss 
and encouraging tobacco feature reuse. Then, we designed the whole data pre‑processing process 
and experimented with traditional and deep learning algorithms to verify our dataset usability. 
The experimental results showed that DenseNet could be easily adapted by changing the output of 
the fully connected layers. With an accuracy of 0.997, significantly higher than the other intelligent 
tobacco grading methods, DenseNet came to the best model for solving our flue‑cured tobacco 
grading problem.

As the primary raw material of the cigarette industry, flue-cured tobacco leaves affect the quality of tobacco 
formula products. Thus, improving the economic value of flue-cured tobacco is vital to meet cigarette industry 
development needs. The grading of flue-cured tobacco will result in the quality of the leaf, which will be bargained 
finally. Meanwhile, because different grades of flue-cured tobacco leaves have different chemical composition 
contents, and the amount of toxic substance (such as nicotine or CO), varies when different chemicals are burned, 
so flue-cured tobacco grading will affect the sensory evaluation quality and the smoke index that highly related 
to the smoker’s  health1, while we should explore more explicit grading method to improve smoker’s health. 
Therefore, flue-cured tobacco grading is significant to the national economy and smoker’s  health1.

As we mentioned, it is a complicated task to realize intelligent flue-cured tobacco grading. Flue-cured tobacco 
leaves are divided into 42 grades in China according to seven factors: maturity, leaf structure, body, oil, color 
intensity, length, and waste. The traditional flue-cured tobacco grading mode mainly relies on human sensory 
methods (eyes and hands) to judge the appearance quality of tobacco leaves, which has two disadvantages: one 
is the traditional tobacco grading mode needs long-termly to train talents, which is time, cost, resources, and 
labor consuming. Another is the low classification accuracy caused by human subjectivity and instability.

All these problems seriously hinder tobacco leaf purchase and cigarette production. With the hot development 
of artificial intelligence (AI), AI technology has been applied in  agriculture2–5, traffic  engineering6 and  industry7,8. 
For instance, in agriculture, feature enhancement and DMS-Robust Alexnet were used to identify maize leaf 

OPEN

1Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, 
China. 2School of Computer Engineering, Weifang University, Weifang 261061, Shandong, China. 3Exhibition 
Department, Qingdao Revolutionary Martyrs Memorial Hall, Qingdao 266071, Shandong, China. *email: 
xinxiaowei91@163.com; huiligong@163.com

http://orcid.org/0000-0002-2448-0091
http://orcid.org/0000-0003-0303-3097
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38334-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11119  | https://doi.org/10.1038/s41598-023-38334-z

www.nature.com/scientificreports/

 disease9, ABCK-BWTR and B-ARNet were combined to identify tomato leaf  diseases10, and  reference11 utilized 
CASM-AMFMNet to classify grape leaf diseases.

Hence, intelligent tobacco grading will be the trend in the future development of the tobacco industry. At 
present, the research on intelligent tobacco grading technology has achieved significant growth, mainly includ-
ing three aspects:

(1) The first way is using  infrared12 and hyperspectral techniques, combined with stoichiometry to construct 
a classification model to achieve rapid and nondestructive tobacco  classification13–15. However, the near-
infrared equipment cost is high, and the spectrum it scans is more sensitive to environments (such as 
temperature and humidity), making classification results inaccurate.

(2) Another way to realize tobacco grading is to establish decision rules based on fuzzy mathematics and 
chemical  composition16,17. For example, in  reference16, the classification accuracy was about 0.94 for the 
trained tobacco leaves, and the accuracy of the non-trained tobacco leaves was about 0.72. But this method 
has low accuracy because of the complex repeated reasoning.

(3) The last way is computer vision solved by machine learning  algorithms18–22, such as traditional machine 
learning methods (e.g. support vector machines (SVMs), random forests (RFs))23, deep learning 
 methods19,24, and neural  network25. Specially, due to the important economic status of tobacco, the indus-
tries have accumulated a large amount of tobacco data in the production process. But how to fully use 
these data and explore their value has become the trend of intelligent development in the tobacco industry. 
Deep learning can learn the rich internal rules and interpret information from the  data26 and convolu-
tional neural network (CNN) has strong feature extraction  ability27. Therefore, deep learning is a crucial 
technology based on many labeled data for tobacco grading. Among them, the deep CNN has become 
the most critical technology to solve image  recognition28–31. Due to the high effectiveness of CNN, such 
as Highway  Networks32, Residual Networks (ResNets)33,  Alexnet28,  VGG31 etc., many scholars have done 
groundbreaking tobacco grading works through its variant  structures34,35. For instance, in  reference19, they 
fine-tuned a VGG16 network structure for tobacco grading. In  reference25, a CNN classifier was used for 
tobacco grading leaves, and the accuracy was 0.9625. In  reference36, a FDANet was proposed for flue-cured 
tobacco grading.

The methods mentioned above, although previously acknowledged, are still inadequate in terms of accuracy, 
rendering their practical application a challenge. Moreover, a predicament emerges wherein the accuracy dwin-
dles as the number of classes increases. This phenomenon can be attributed to the insufficient feature extraction 
ability of deep convolutional neural networks caused by traditional connection mode of layers.

Hence, propelled by the large-scale flue-cured tobacco grade data accumulated by tobacco industries, we pro-
posed an intelligent tobacco grading method based on DenseNet, surmounting the aforementioned quandaries. 
Namely, to extract tobacco grade characteristics deeply, we utilized  DenseNet37 as a backbone. By concatenating 
preceding tobacco feature data, the connection mode of DenseNet is more conducive for extracting fine-grained 
specific visual information about tobacco leaves. The proposed method can make deep model thoroughly learned 
the sample distribution of each grade, thereby unlock the full potential of deep learning.

Moreover, based on the high-resolution professional data, we verified that the DenseNet structure performs 
better than other deep CNN structures on our high-quality tobacco grading datasets, improving the accuracy 
of tobacco grading.

In summary, our work is as follows:

(1) We collected and sorted out large amounts of flue-cured tobacco grade data with high resolution and high 
usability that can support follow-up work. Meanwhile, we aim to reach enterprise-level publish for boosting 
industrial development.

(2) We pre-processed the data using affine transformation, normalization, exponential moving average, etc., 
providing smoother data for better training. Then we designed the experiments for our dataset based on 
DenseNet.

(3) We evaluated various classical methods on our flue-cured tobacco grade data, where the competitive experi-
mental results demonstrated the high performance of DenseNet.

Our work can significantly reduce the use of the workforce and provide theoretical and technical support for 
the intelligent grading of tobacco leaves in the tobacco industry. Meanwhile, applying deep learning in tobacco 
can impact other industries such as agriculture and botany.

The remainder of this paper is structured as follows: “Methods” Section introduces the process of our method 
in detail. In “Experiments and results” Section, the experimental setup is given and the related results are dis-
cussed. Finally, “Conclusions” Section provides a summary of this paper as well as the scope of future work.

Methods
In this section, we first introduce data acquisition, including experimental instruments and image acquisition 
method, and then propose the detailed pre-processing process for our dataset. Finally, we illustrate the idea of 
intelligent flue-cured tobacco grading based on DenseNet. Figure 1 shows the framework of our method.

As Fig. 1 shows, the tobacco grading process based on DenseNet includes training and test phases. In the 
training phase, the data was processed by pre-processing, feature extraction, classification, and prediction. While 
in the test phase, we first froze the parameters of the DenseNet model obtained in the training phase, then the 
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test images were pre-processed and processed by the entire DenseNet model, including the feature extraction 
and classification. Finally, the model outputted the prediction results.

Data acquisition. To collect tobacco images, we chose the CMOS BV-C5400 line array industrial camera 
and the shot of BV-L1024 in our experiment. Table 1 shows the detailed configuration of our equipment and 
Fig. 2 illustrates the pipeline of tobacco data acquisition process.

We can learn that data acquisition process includes image acquisition and label acquisition. Specifically, the 
tobacco samples were unfolded and laid flat on the conveyor belt first, and then the images were collected when 
the conveyor belt was running. Subsequently, industry experts marked the actual grading of tobacco samples 
according to the GB 2635–1992, a flue-cured tobacco grading standard in China.

We chose 20 flue-cured grades that are the most widely used among 42 grades, including B1F, B1K, B2F, 
B2K, B2V, B3F, B4F, C1F, C1L, C2F, C2L, C3F, C3L, C3V, C4F, CX1K, CX2K, X1F, X2F, and X3F. Due to the 
significance of those grades, they can solve most flue-cured grading problems. We selected 21,113 representative 
tobacco images from the 20 grades to form our experimental dataset. Figure 3 shows some samples of the dataset.

Our dataset is a significant improvement both in quantity and quality compared to other datasets and it has 
been applied in the cigarette factory, produced specific effects, and improved grading efficiency.

Data pre‑processing. We divided the dataset into the train set and test set with the proportion of 8:2. 
Table 2 details the information on sample division.

To make the original data more suitable for neural network processing and fully extract features, the original 
data must undergo pre-processing operations, including rotation, translation, normalization, and others before 
model training. Figure 4 shows the image pre-processing process, and Fig. 5 visualizes some tobacco leaf images 
after preprocessing.

In our experiment, the input size of the original image was 2456 × 2058, and the image was scaled to 500 × 250 
as actual input for better training. Subsequently, we operated the image by an affine transformation, horizontal 
random rotation, vertical flip, and transformation to a grayscale image. We used the Cross-Entropy (CE) as the 
loss function, which mainly describes the distance between the actual and expected output probabilities. In other 
words, the smaller the Cross-Entropy value is, the closer the two probability distributions are. Assuming that 
the probability distribution p(x) is the expected output and the probability distribution q(x) is the actual output, 
then the solution of Cross-Entropy Loss is shown in Eq. (1):

Figure 1.  The framework of the tobacco grading process based on DenseNet.

Table 1.  The parameter configuration of our equipment.

Equipment Parameter types Parameter settings

Industrial camera (BV-C5400)

Resolution Ratio 2456 × 2058

Line Frequency 18.03 kHz

Pixel Size 7 μm

Sensor CMOS

Color R, G, B

Exposure Time 9.52 μs–100 ms

Shot (BV-L1024)

Sensor Length 30 mm

Focal Length f = 24 mm

Aperture Range F2.8–F22

Focusing Range 0.4–2.0 m

Applicable Pixel Size 7 μm
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Figure 2.  Pipeline of tobacco data acquisition.

Figure 3.  Data display of partial tobacco samples.
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The normalization operation is required to facilitate subsequent data processing and ensure faster convergence 
during program run time.

Exponential moving average (EMA), also called weighted moving average, is an averaging method that gives 
more weight to recent data. The significance of EMA lies in using moving average parameters to improve the 

(1)L
(

p, q
)

= −
∑

x
p(x)logq(x)

Table 2.  The information on tobacco samples division.  * indicates: According to China’s current flue-cured 
tobacco grading standard, we divide flue-cured tobacco leaves into 42 grades. The grades of our dataset are the 
subset of the 42 grades.

Grades* Training set Test set Total number

B1F 1102 276 1378

B1K 770 192 962

B2F 1016 254 1270

B2K 699 175 874

B2V 677 169 846

B3F 974 244 1218

B4F 763 191 954

C1F 943 236 1179

C1L 621 155 776

C2F 1102 275 1377

C2L 589 147 736

C3F 1030 258 1288

C3L 1070 267 1337

C3V 653 163 816

C4F 950 237 1187

CX1K 746 187 933

CX2K 535 134 669

X1F 664 166 830

X2F 1091 272 1363

X3F 896 224 1120

Figure 4.  The process of pre-processing data includes resize, affine transformation, horizontal flip, vertical flip, 
grayscale, color jitter, normalization, and EMA.
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model on the test data of robustness. The moving average can be considered the mean value of the variables in 
the past period. Compared with direct assignment for a variable, getting the value of the moving average on the 
image is smoother, less jittered, and reduces fluctuations.

For instance, for the variables of [θ1, θ2, θ3, . . . , θn] , where θ1, θ2,θ3, . . . θn represent the pixel values of tobacco 
images. The ordinary way to get the average is as follows:

In Eq. (2),avr represents the average of n variables. However, avrk in EMA is computed as follows:

In Eq. (3),avrk represents the average of the first k pieces of data, α is the weight value (generally set as 
0.9–0.999), which is set as 0.999 in this paper. Consequently, the avrk is the input for the neural network.

Deep convolutional neural network. Convolutional neural network. DenseNet is one of the convolu-
tional neural networks, and the structure of the convolution process is illustrated in Fig. 6. Processing by multi-
convolution and pooling layers, the images are transformed into helpful feature maps, then fully a connected 
layer combined with the Softmax layer results in the grade prediction.

Flue‑cured tobacco feature extraction based on DenseNet. Traditional connection mode of a deep convolutional 
neural network summarizes preceding feature data when the data pass into a network layer. This mode can lead 
to vanishing-gradient and poor reuse of feature data problems. These problems result in the insufficiency of 
feature extraction ability for different grades of tobacco leaves. In contrast to other methods, DenseNet com-
bines data by concatenating them. So traditional convolutional networks with L layers have L connections—one 
between each layer and its subsequent layer—while DenseNet has L(L+1)

2  direct connections. The detailed process 

(2)avr = 1
n

n
∑

i=1
θi

(3)avrk = α · avrk−1 + (1− α) · θk

Figure 5.  Visualization of some tobacco leaf images after preprocessing.

Figure 6.  The structure of convolutional neural network. ①, ③ indicate convolution operation, ②, ④indicate 
pooling, ⑤ indicates fully connecting, ⑥ indicates softmax process.
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of proof is shown in  reference37. As a result, flue-cured tobacco feature extraction based on DenseNet alleviated 
the vanishing-gradient problem, encouraged feature reuse, and substantially strengthened the feature extraction 
ability. Therefore, we utilized DenseNet as a backbone to extract tobacco leaf features and automatically classify 
tobacco leaves.

The details of the DenseNet connection are as follows: assume that X0 is the input single tobacco leaf image, 
the output of layer L is Xl , and the neural network has L layers totally, and each layer will go through a transition 
layer such as Batch Normalization (BN), rectified linear units (ReLU), Pooling, or Convolution (Conv), then 
we define the nonlinear transformation operation layer is Fl(·) . In Fl(·) , l  denotes the index number of layers.

In a traditional deep convolutional neural network, take the output of layer lth as the input of layer (l + 1)th . 
The layer transition calculation method of lth layer and (l − 1)th layer is shown in Eq. (4), so the lth layer only 
receives the output from one previous layer.

This information flow mode may impede the data transmission in the network. However, DenseNet has a 
different connectivity pattern. They connect any layer to all subsequent layers directly. Figure 7 illustrates the 
connection pattern of layers and information flow.

As Fig. 7 shows, the lth layer receives the feature maps of all preceding layers. This connection mode can better 
carry out feature extraction and better transmit each layer’s features, reducing the loss of feature information. 
Specifically, the feature transmission mode of DenseNet is shown in Eq. (5).

In Eq. (5), [X0,X1, ...,Xl−1] refers to the concatenation of the feature-maps produced in layers 0 to l − 1 , (i.e. 
1+ 2+ 3+ · · · L =

L(L+1)
2  ), so they introduce L(L+1)

2  connections to the network. Compared with other deep 
convolutional neural networks, the feature transmission mode of DenseNet can better extract depth image 
information features.

Experiments and results
In this section, we first illustrate our experiment environment and experimental hyperparameter settings and 
then introduce our experiments and the results.

Experiments. Experiment settings. Our experiment was based on python 3.8, PyTorch 1.8 environment, 
and a GPU of Tesla V100. First, we carried out flue-cured tobacco grading experiments on the traditional ma-
chine learning methods (SVM, RF, KNN, LightGBM and XGBoost). Table 3 shows the grid search hyperparam-
eters and the optimal parameters for 20 grades of traditional machine learning methods.

Then, we used DenseNet and other deep models to verify the validity of the dataset. Table 4 is the hyperpa-
rameter settings for deep models. In deep learning, hyperparameters are parameters that need to be set manually 
before the model is trained. They are not automatically learned from the training data, but are set by humans. 
The selection and fine-tuning of these hyperparameters have an important effect on both the performance and 
training process of the model. Specifically, hyperparameters can control the complexity of model. For instance, 
in Table 5, different numbers represent different network structures of DenseNet. Moreover, Hyperparameters 
can affect the training process and convergence rate of the model. For example, the learning rate determines 
the stride size of each model parameter update. Too high or too low a learning rate may lead to instability or 
convergence difficulties in the training process. Besides, the setting of hyperparameters can help prevent the 
model from overfitting. For example, in Table 4, a normalization parameter is a common hyperparameter that 
plays an important role in data pre-processing, improving feature comparison and weight balance, accelerating 
model convergence, preventing numerical overflows, and enhancing model generalization.

Nevertheless, the selection and adjustment of hyperparameters is an iterative and time-consuming process. 
It requires comprehensive consideration and adjustment in relation to specific problems, data sets and models. 
At the same time, the optimal value of the hyperparameter is not fixed and may depend on the task.

In Table 4, Numbers from 1 to 9 are the parameter settings of image pre-processing. The main purpose of the 
operation is to eliminate irrelevant information, recover useful real information, enhance the detectability of 

(4)Xl = Fl
(

Xl−1

)

(5)Xl = Fl
(

[X0,X1, . . . ,Xl−1]
)

Figure 7.  The connection pattern of layers and the information flow of DenseNet. The lth layer receives the 
feature maps of all preceding layers.
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relevant information and simplify the data to the maximum extent, so as to better fit the deep model structures 
and improve the reliability of feature extraction and recognition. Numbers 10–13 are the parameter settings of 
model training. It is worth noting that the settings of the value are all through repeated experiments, experience 
and observations. And they are most suitable for our experimental environment and the results obtained by 
using these parameters are optimal.

Table 3.  Grid search hyperparameters and optimal parameters of traditional methods.

Methods Hyperparameters Search space Optimum parameters

SVM

C 1, 10, 100, 1000 1

Gamma 0.0001, 0.001 0.001

Kernel linear, rbf linear

RF

Criterion gini, entropy entropy

Max_depth 4, 5, 6, 7, 8 8

Max_features auto, sqrt, log2 auto

n_estimators 200, 300, 500 500

KNN
n_neighbors 2, 3, 4, 5,…,19 17

Weights Uniform, distance distance

LightGBM

Learning_rate 0.001, 0.01, 0.1 0.1

Max_depth 4, 6, 8 8

Min_child_samples 2, 3, 5 5

Num_leaves 6, 9, 12 9

Reg_alpha 0, 0.01, 0.03 0

XGBoost

Eta 0.001, 0.01, 0.1 0.01

Gamma 0.0001, 0.001, 0.01, 0.1 0.001

Max_depth 3, 6, 9,12 9

Table 4.  Hyperparameter settings of deep models.

Numbers Hyperparameters Settings

1 Resize 500 × 250

2 ColorJitter_brightness 0.4

3 ColorJitter_contrast 0.5

4 ColorJitter_saturation 0.5

5 ColorJitter_hue 0

6 Normalize_mean 0.5

7 Normalize_std 0.5

8 EMA 0.999

9 Weight_decay 0.00025

10 Initial Learning Rate 1e−3

11 Batch Size 16

12 Output Dropout 0.1

13 Epochs 150

Table 5.  The test accuracy of different DenseNet structures. Significant values are in [bold].

DenseNet  Models37 Accuracy (10epoch) Accuracy (20epoch) Accuracy (50epoch) Accuracy (70epoch) Accuracy (80epoch)
Accuracy 
(100epoch)

Accuracy 
(150epoch)

DenseNet121 0.882 0.946 0.980 0.986 0.989 0.992 0.995

DenseNet161 0.961 0.984 0.995 0.996 0.996 0.996 0.996

DenseNet169 0.943 0.975 0.992 0.993 0.993 0.994 0.995

DenseNet201 0.963 0.983 0.994 0.994 0.995 0.996 0.997
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Evaluation metrics. The used evaluation metrics are computed by Eqs.  (6–9). Here, TP is “True Positive”, it 
means true is 0 and prediction is 0; FN is “False Negative”, it means true is 0 and prediction is 1, FP is “False Posi-
tive”, it means true is 1 and prediction is 0, TN is “True Negative”, it means true is 1 and prediction is 1.

① Accuracy

Equation (6) shows the overall Accuracy of the classification model (for all classes), here N is the number 
of all samples.

② Precision

Precision reflects the ability of the model to distinguish negative samples. The higher the Precision, the 
stronger the ability of the model. Precision is computed by Eq. (7).

③ Recall

On the contrary, Recall reflects the ability of the model to recognize positive samples. The higher the Recall, 
the stronger the ability of the model. Recall is calculated by Eq. (8).

④ F1-Score

Combining the metrics of Precision and Recall, the value range of F1-Score is from 0 to 1, where 1 is the best 
and 0 is the worst. The higher the F1-score, the more robust the model. The computing method of F1-Score is 
shown as Eq. (9).

Results and analysis. We first used accuracy as the evaluation indicator of different methods. Figure 8 
is the accuracy of different number of tobacco grades for traditional methods. It suggests that an increase of 
tobacco grade categories significantly decreases the classification accuracy of traditional machine learning meth-
ods (SVM, RF, KNN, LightGBM and XGBoost). Therefore, when the number of tobacco grades is large, tradi-
tional machine learning methods are not suitable for tobacco grading. However, the accuracy of DenseNet is 
significantly higher and more stable than others. Moreover, Table 5 shows the performance of flue-cured tobacco 
grading based on different DenseNet structures on the test dataset.

(6)Accuracy =
TP+TN

N

(7)Precision =
TP

TP+FP

(8)Recall =
TP

TP+FN

(9)F1− Score =
2∗Precision ∗ Recall
Precision+ Recall

Figure 8.  The accuracy of different classes for different methods on the test dataset.
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As shown in Table 5, the flue-cured tobacco grading results of different DenseNet structures are slightly dif-
ferent, but all are above 0.995, and Fig. 9 is the loss of DenseNet169 during the training process.

To verify the grading accuracy of DenseNet, we compared DenseNet with other methods, including tradi-
tional machine learning and deep learning methods, and the results are Tables 6 and 7. Here, “Accuracy without 
preprocessing” represents the experimental results without preprocessing. From Tables 6 and 7, we can learn that 
our preprocessing on the final result is positive, it can improve the accuracy to some extent. Besides, the final 
accuracy of tobacco classification based on DenseNet has reached 0.997, which is significantly higher than others. 
DenseNet can find more subtle and general features among tobacco grades and dig more individual features for 
tobacco, so flue-cured tobacco grading based on DenseNet performs better than others.

Figure 9.  The loss of DenseNet169.

Table 6.  The accuracy of DenseNet versus traditional machine learning methods. Significant values are in 
[bold].

Methods Accuracy without preprocessing Accuracy

KNN38 0.40 0.47

RF39 0.81 0.85

SVM3 0.72 0.75

LightGBM40 0.79 0.83

XGBoost41 0.78 0.82

DenseNet37 0.951 0.997

Table 7.  The accuracy of DenseNet versus deep learning methods. Significant values are in [bold].

Deep models Epoch Accuracy without preprocessing Accuracy

ResNet-1833 600 0.683 0.729

ResNet-3433 600 0.910 0.953

Resnext50_32 ×  4d33 400 0.901 0.939

ResNet-10133 300 0.943 0.984

Resnext101_32 ×  8d33 300 0.932 0.975

ResNet-15233 300 0.968 0.985

VGG1631 200 0.674 0.710

VGG1931 260 0.872 0.939

MobileNet42 600 0.840 0.936

Fine-tuned  VGG1619 300 0.868 0.947

DarkNet19 & K-Means24 400 0.812 0.854

DRSN12 300 0.918 0.934

FDANet36 500 0.807 0.856

DenseNet37 150 0.951 0.997
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From Tables 6 and 7, we can see deep learning methods perform better than traditional machine learning 
methods. Besides, as the number of network layers increases, the convergence is faster and the grading perfor-
mance becomes better.

In order to prove the advantages of our proposed method from different views, we utilized more evaluation 
indicators, including precision, recall and F1-score. Table 8 illustrates the results. We can learn that tobacco 
grading based on DenseNet still significantly outperforms the other methods.

Hence, we can conclude that DenseNet has almost entirely learned the image features of different grades of 
flue-cured tobacco leaves, so it can accurately identify each flue-cured tobacco grade.

Discussion. Although our proposed method outperforms other tobacco grading approaches, it has its limi-
tations. Firstly, our method requires a large amount of labeled data, but obtaining enough supervised data is 
laborious and time-consuming and sometimes it is almost impossible due to privacy, safety or ethic issues. 
Therefore, the scarcity of data poses a significant challenge for constructing an excellent model. Furthermore, 
deep neural networks have requirements in terms of hardware and computation time, which leads the model 
is not as easy to implement. Nonetheless, we remain confident that with the right resources and expertise, our 
method will make contributions to the tobacco grading.

Conclusions
This paper used DenseNet to fully extract flue-cured tobacco image information and achieved intelligent tobacco 
grading with high accuracy. Compared with traditional intelligent tobacco leaf classification technologies, such 
as SVM, RF, KNN, and other deep learning models, the efficiency and stability have significantly improved.

Our research has provided a promising solution for large-scale flue-cured tobacco grading and yielded 
remarkable results that have theoretical and practical implications. From a theoretical standpoint, our research 
enriches the existing theoretical system of tobacco grading and provides new insights into the fundamental 
methods and models. Besides, our work has a deeper understanding of the relationship between deep neural 
networks and their connection mode with model performance, which provides an idea for subsequent research 
in theory. For example, when the accuracy of tobacco leaf grading is not ideal, more samples or changing con-
nection mode of the network can be attempted. On the other hand, the practical implications of our research are 
significant. For instance, our method can be used by tobacco enterprise to develop new grading tools that can 
improve the efficiency and effectiveness of their work. Meanwhile, it can also promote the standardization and 
unified development of tobacco leaf purchase to a certain extent, which can save costs and improve the economic 
benefits of enterprises ultimately. Besides, it can also provide new ideas for other fields, such as the agriculture, 
planting industry and medical domain, and promote the landing of artificial intelligence technology.

In future work, we plan to investigate other advanced tobacco grading methods and study more lightweight 
networks to reduce the computational time when training models, ensuring the balance between the accuracy 
and computational cost. On the other hand, we will promote the practical applications of our method for tobacco 
enterprise such as online intelligent grading system to improve efficiency. Furthermore, we will try to apply our 
proposed algorithm to more applications such as medical images identification and agricultural disease detection.

Data availability
The datasets generated and/or analysed during the current study are not publicly available because the raw data 
is currently private, but it is available from the corresponding author on reasonable request.
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Table 8.  The precision, recall and F1-score of DenseNet versus other methods. Significant values are in [bold].

Models Precision Recall F1-score

KNN38 0.476 0.451 0.439

RF39 0.853 0.846 0.861

SVM3 0.762 0.756 0.758

LightGBM40 0.844 0.827 0.829

XGBoost41 0.832 0.871 0.826

ResNet-15233 0.970 0.963 0.982

VGG1931 0.931 0.923 0.935

MobileNet42 0.940 0.916 0.932

Fine-tuned  VGG1619 0.945 0.912 0.941

DarkNet19 & K-Means24 0.856 0.840 0.861

DRSN12 0.927 0.914 0.938

FDANet36 0.859 0.871 0.846

DenseNet37 0.981 0.989 0.996
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