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Gut dysbiosis in Thai 
intrahepatic cholangiocarcinoma 
and hepatocellular carcinoma
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Vajarabhongsa Budhisawasdi 2,6, Nirush Lertprasertsuke 7, Anon Chotirosniramit 7, 
Chawalit Pairojkul 6, Chirayu U. Auewarakul 8, Teerapat Ungtrakul 8, Thaniya Sricharunrat 9, 
Kannikar Phornphutkul 10, Suleeporn Sangrajang 11, Christopher A. Loffredo 12, 
Curtis C. Harris 5, Chulabhorn Mahidol 2, Xin Wei Wang 4,5,13*, Mathuros Ruchirawat 2,3* & 
TIGER-LC Consortium *

Primary liver cancer (PLC), which includes intrahepatic cholangiocarcinoma (iCCA) and hepatocellular 
carcinoma (HCC), has the highest incidence of all cancer types in Thailand. Known etiological factors, 
such as viral hepatitis and chronic liver disease do not fully account for the country’s unusually high 
incidence. However, the gut-liver axis, which contributes to carcinogenesis and disease progression, 
is influenced by the gut microbiome. To investigate this relationship, fecal matter from 44 Thai PLC 
patients and 76 healthy controls were subjected to whole-genome metagenomic shotgun sequencing 
and then analyzed by marker gene-based and assembly based methods. Results revealed greater gut 
microbiome heterogeneity in iCCA compared to HCC and healthy controls. Two Veillonella species 
were found to be more abundant in iCCA samples and could distinguish iCCA from HCC and healthy 
controls. Conversely, Ruminococcus gnavus was depleted in iCCA patients and could distinguish 
HCC from iCCA samples. High Veillonella genus counts in the iCCA group were associated with 
enriched amino acid biosynthesis and glycolysis pathways, while enriched phospholipid and thiamine 
metabolism pathways characterized the HCC group with high Blautia genus counts. These findings 
reveal distinct landscapes of gut dysbiosis among Thai iCCA and HCC patients and warrant further 
investigation as potential biomarkers.

Intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) are the two main histological 
forms of primary liver cancer (PLC). They are among the leading causes of cancer-related deaths worldwide and 
the most prevalent form of cancer in Thailand to  date1. Both diseases are associated with a poor prognosis, and 
patients often present at an advanced, non-resectable stage. The risk factors for Thai iCCA patients include liver 
fluke (Opisthorchis viverrini – OV) infection, biliary tract disorders, and hepatitis B virus (HBV) or hepatitis 
C virus (HCV)  infection2. A recent survey showed that environmental factors, combined with certain genetic 
polymorphisms, could also increase the risk of iCCA 3. Risk factors for HCC in Thai patients include HBV and 
HCV  infection4,5, alcohol  consumption6, cirrhosis from any  cause4,6, dietary aflatoxin  B1 and other environmental 
exposures, with HBV alone accounting for 49% of  cases4. To improve our understanding of disease susceptibility, 
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progression, and patient outcomes among PLC in the Thai population, the Thailand Initiative in Genomics and 
Expression Research for Liver Cancer (TIGER-LC) Consortium was  established7.

Using stored biospecimens from the TIGER-LC cohort, we previously identified several prognostic biomark-
ers specific to the Thai population that defined the molecular subtypes of iCCA and HCC, which suggested the 
possible involvement of the gut  microbiome7,8. Given that there is a connection between the liver and intestine 
via the portal vein, and that individuals with chronic liver disease experience gut bacterial translocation to the 
 liver9, gut microbes could be involved in the pathogenesis and progression of cancer in the liver. Previous studies 
on the microbiome of Thai PLC patients have focused on CCA with OV or Helicobacter pylori  infection10 using 
 tissue11 and bile fluid  samples12. The gut microbiome has an advantage over tumor tissue and bile fluid microbi-
ome because fecal matter yields higher microbial DNA biomass; hence, it is less susceptible to false positives from 
exogenous DNA  contamination13. Several studies in Chinese patients have compared the gut microbiomes of 
iCCA and HCC  directly14–17. However, most gut microbiome studies in iCCA and HCC to date have performed 
microbiome profiling using 16S rRNA genes (or amplicon) sequencing with different variable regions, which have 
biases towards certain  taxa18 and often cannot accurately identify bacteria at the species  level19. Therefore, we 
aimed to comprehensively characterize the gut microbiome of Thai PLC patients and healthy controls matched 
by age, sex, and region. To do so, we performed whole-genome metagenomic shotgun (WGMS) sequencing and 
identified different patterns of dysbiosis in the gut microbiome of iCCA and HCC patients in a Thai population.

Results
The landscape of gut dysbiosis in Thai PLC patients and healthy individuals. The demographic 
and clinical characteristics of the iCCA and HCC groups were generally matched, including age, sex, BMI, and 
common cancer risk factors (Supplementary Table S1). There were no discernible differences in lifestyle factors 
known to affect the gut microbiome, such as antibiotic and antifungal use, among the three groups of subjects. 
We found that the gut microbiome profiles of patients with iCCA, patients with HCC, and healthy individuals 
were similar at the phylum level. Specifically, the phylum Firmicutes was the most abundant bacteria overall, 
followed by Bacteroides, Proteobacteria, Actinobacteria, and Fusobacteria (Fig. 1a). However, the relative abun-
dance of Proteobacteria in iCCA patients was significantly higher than that in healthy individuals (Fig. 1b), with 
a similar trend in HCC patients. A full list of comparisons between the disease groups of these phyla is shown 
in Supplementary Table S2. Although alpha diversity measures between the three groups of subjects were not 
statistically different, the ranges of the Shannon–Wiener diversity index and inverse Simpson index at all taxo-
nomic levels for iCCA were consistently larger than those for HCC (Fig. 1c), indicating a higher heterogeneity 
of the gut bacterial community in iCCA. In terms of beta diversity among the samples, there were no statistically 
significant differences between the cancer and healthy control groups, based on the Bray–Curtis distance metric, 
using non-negative multidimensional scaling and principal coordinates analysis (Fig.  1d). Stratified analyses 
based on sex and region of residence showed no bias from sex (Supplementary Fig. S1a and Table S3) or region 
(Supplementary Fig. S1b and Table S4). In summary, our results demonstrated that while there were no signifi-
cant differences in alpha and beta diversity among iCCA, HCC, and healthy control groups, there was a trend 
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Figure 1.  Gut dysbiosis between Thai iCCA and HCC patients have different patterns. (a) Relative abundance 
of top five phyla in stool samples from healthy controls, HCC and iCCA groups. (b) Relative abundance of top 
five phyla comparing among groups of subjects. (c) Alpha diversity measures among groups of subjects. (d) Beta 
diversity measures among groups of subjects based on Bray–Curtis distance metric.
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towards higher diversity in iCCA. Additionally, at the phylum level, patients with iCCA exhibited a higher rela-
tive abundance of Proteobacteria than healthy individuals.

Linear discriminant analysis identifies taxa that are specific to patient conditions. To identify 
taxa that could differentiate cancer groups from healthy controls, we utilized an alternative approach, as the 
phylum-level data were insufficient. We applied linear discriminant analysis (LDA) to metagenomic reads with 
disease condition labels using LDA Effect Size (LEfSe)20 and identified 61 taxa, mainly from the phyla Firmi-
cutes, Actinobacteria, and Proteobacteria, which were uniquely present in each group of subjects with  log10[LDA 
score] > 2 (Fig. 2a and Supplementary Table S5). The families Veillonellaceae, Lactobacillales, Actinomycetaceae, 
Streptococcaceae, and Neisseriaceae were found to differentiate iCCA samples from other groups (Fig. 2b). Mean-
while, the families Lachnospiraceae, Eubacteriaceae, and the order Clostridiales were able to distinguish healthy 
control samples from cancer groups (Fig. 2c). Notably, there were no microbe at the family level that could dis-
tinguish the HCC samples from other groups. However, the genus Flavonifractor has been identified as an HCC-
specific taxon. The complete list of taxa identified by LEfSe is presented in Supplementary Fig. S2a and Table S5.

At the species level, the top five enriched species in the iCCA group were Veillonella atypica, Bacteroides sp 
CAG530, Streptococcus parasanguinis, Veillonella parvula, and Megasphaera micronuciformis (Supplementary 
Fig. S2b). The top five enriched species in the healthy control group were Bacteroides uniformis, Anaerostipes 
hadrus, Blautia wexlerae, Roseburia intestinalis, and Phascolarctobacterium faecium (Supplementary Fig. S2c). 
Finally, the top five enriched species in the HCC group were Ruminococcus gnavus, Bifidobacterium longum, Ligi-
lactobacillus salivarius, Streptococcus anginosus group, and Bacteroides finegoldii (Supplementary Fig. S2d). These 
results underscore the potential of using the gut microbiome at the family level to differentiate patient groups, 
especially patients with iCCA, and reveal distinct patterns of species-level composition for each group of subjects.

LDA-identified species were verified by sequence alignment and assembly-based metagen-
omic methods. To confirm the accuracy of the LDA results, additional approaches are necessary, as the 
marker gene-based method tends to sacrifice accuracy for speed. We employed two verification approaches for 
the list of species that were uniquely present in each group of subjects. First, the top three LDA-identified spe-
cies from each group were selected and metagenomic reads were aligned to their complete and/or representative 
genomes. The presence of all nine selected species in their respective sample groups was confirmed (Fig. 3a–c). 
Three species specific to iCCA, namely V. atypica, V. parvula, and S. parasanguinis, exhibited the highest mean 
read coverage in iCCA samples, particularly Veillonella species, when compared to both HCC and healthy con-
trol samples (Fig. 3a–c). The full list of the mean sequencing coverage of all nine species is shown in Supple-
mentary Table S6. The mean read coverage of all samples along the full genome is shown in Supplementary 
Fig. S3. In the second validation approach, metagenomic reads were subjected to assembly based metagenomic 
analysis to obtain metagenome-assembled genomes (MAGs). Fourteen MAGs were called and matched all LDA-
identified species, except for Bacteroides finegoldii (Supplementary Table S8). Based on the absolute abundance 
of MAGs, five out of eight iCCA-specific MAGs were able to distinguish iCCA from the other groups (Fig. 3d 
and Supplementary Table S9). Notably, two MAGs, MAG320 and MAG408, matching V. atypica could differenti-
ate iCCA samples from both HCC and healthy control groups. Two out of the three HCC-specific species could 
differentiate HCC samples from the other groups (Fig. 3e and Supplementary Table S9). All four MAGs called 
for control-specific species distinguished healthy control samples from other groups (Fig. 3f and Supplementary 
Table S9). Although the results from the two verification methods did not match perfectly at the statistical sig-
nificance level, the trends and direction of change were consistent. Therefore, these results validate the presence 
of species identified by LDA, including disease-specific species, and their ability to differentiate diseased samples 
from healthy control samples.

Pathway analysis reveals differently enriched metabolic pathways between iCCA and 
HCC. Functional analysis of iCCA and HCC samples was conducted using microbial read and serum metabo-
lite data. The genus Blautia was found to be associated with four microbial pathways (M1-M2) enriched in HCC, 
whereas six microbial pathways (M3-M6) associated with the genus Veillonella were enriched in iCCA (Fig. 4a). 
Six serum metabolic pathways overlapped with microbial pathways, with two pathways (S1-S2) associated with 
HCC, and four pathways (S3-S6) associated with iCCA (Fig. 4b). Phosphoglycerolipid metabolism (M1.1-M1.3 
and S1) and thiamine metabolism pathways (M2 and S2) were enriched in HCC, while amino acid metabolism 
(M3.1-M3.3 and S3, and M4 and S4), nucleotide metabolism (M5 and S5), and glycolysis pathways (M6 and S6) 
were enriched in iCCA (Supplementary Table S10).

We also investigated differences in the contribution of microbial genes in the HCC and iCCA groups. As 
shown in Fig. 4c, the relative abundance of microbial gene contribution from the genus Blautia was statisti-
cally higher in HCC, while Veillonella displayed a higher relative abundance in the iCCA group. Furthermore, 
we observed similar trends in the absolute abundance of serum metabolites in the serum metabolic pathways, 
albeit to a lesser degree. Specifically, the glycerophospholipid metabolism (S1) pathway had an equal number 
of metabolites that were statistically different between HCC and iCCA, whereas the thiamine metabolism (S2) 
pathway had only one metabolite (cysteine), which was statistically higher in HCC (Fig. 4d). In contrast, path-
way S3 had metabolites that were only statistically higher in the HCC group, whereas most of the metabolites 
in pathways S4, S5, and S6 were statistically higher in the iCCA group (Fig. 4d and Supplementary Table S10). 
Furthermore, analysis of covariance (ANCOVA) using disease status and risk factors as covariates to predict the 
metabolite outcomes showed that none of the risk factors listed in Table S1 were found to be confounding factor 
for any metabolite (Supplementary Table S11). Taken together, these results suggest that the gut microbiome 
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may have metabolic consequences in patients, and our findings provide further insights into the differences 
between iCCA and HCC.
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Discussion
Previous studies examining the gut microbiome in Chinese cohorts with iCCA, HCC, high-risk and healthy 
control subjects have demonstrated significant differences in alpha and beta diversity between  groups14–17. While 
alpha diversity measures and relative abundance of the main phyla of the gut microbiome did not show statisti-
cal differences between early HCC and control  group21, HBV-related HCC and control  group22,23, and primary 
CCA and control  group24, the relative abundance of the gut microbiome at the phylum level, particularly phyla 
Firmicutes and Bacteroidetes, have been shown to differ between diseased and control groups in studies using 
16S rRNA sequencing, a finding that was not observed in our data.

Several technical issues may have contributed to the discrepancies in the gut microbiome studies. Utiliza-
tion of 16S rRNA sequencing and sequencing of different variable regions can yield different taxa recovery and 
accuracy rates of taxa  identification25, resulting in conflicting evidence. Additionally, differences in the databases 
used for calling the taxa can affect the accuracy of taxon recovery from 16S rRNA  sequencing26. In contrast, 
WGMS sequencing may be more accurate in terms of the number of recovered taxa and  accuracy19,27. A previ-
ous study found that different sequencing methods alone can explain the discrepancy in the alpha diversity 
of the human infant gut  microbiome18. Furthermore, the gut microbiome is known to be influenced by  diet28, 
as has been observed in the Thai  population29,30. Although differences in etiology between geographical areas 
can lead to inconsistencies in  studies31, we did not observe differences between regions within Thailand, which 
are associated with different food intake  patterns30. Thus, further assessment of the gut microbiome of healthy 
cohorts from various regions in Thailand using WGMS will provide a clearer understanding of the relationship 
between diet and the gut microbiome.

Veillonella sp. has been identified in the gut microbiome of patients with biliary tract diseases such as pri-
mary sclerosing cholangitis (PSC)32, biliary  atresia33, and liver fluke  infection34. In our study, we also observed 
increased Veillonella sp., specifically V. atypica and V. parvula, in the gut of patients with iCCA. Similarly, a study 
on nonalcoholic steatohepatitis (NASH) patients identified the Veillonella genus as a biomarker for treatment 
response to a hormone  analog35. Additionally, a higher relative abundance of the family Veillonellaceae was found 
in a cohort of Chinese patients with CCA, and the genus Veillonella is one of an eight-genera predictive signature 
that can differentiate CCA from HCC and healthy control  groups15. Taken together, the results from these studies 
suggest that increased Veillonella sp. in the gut, particularly V. atypica, is associated with biliary tract diseases 
and could potentially serve as a fecal biomarker for CCA. Notably, increased levels of the genera Veillonella and 
Streptococcus were reported in the saliva of CCA patients compared to healthy  controls36, suggesting that the 
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species found in the gut in our study might have migrated from the mouth to the gut of the patients themselves, 
although the underlying mechanism remains unknown.

Very few studies have performed microbial gene contribution and functional analysis on microbiome data. 
The reason might be that most of these studies used 16S rRNA sequencing, and the conclusions or interpreta-
tions that can be drawn from pathway analysis results based on 16S rRNA data are limited. The enriched micro-
bial pathways found in our study are known to be altered in various diseases, including cancer. For example, 
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Figure 4.  Microbial and serum metabolic pathways show different contributions between cancer groups from 
different genera. (a) Top 50 enriched microbial pathways. Pathways M1-M6 are overlapped with enriched 
pathways from serum metabolite pathways in panel (b). (b) Scatterplot of MSEA global test on serum metabolite 
data comparing iCCA and HCC patients from the TIGER-LC discovery cohort. Circle size reflects pathway 
impact score. Pathways S1-S6 are overlapped with enriched pathways from metagenomics data in panel (a). 
The full pathway names are listed in Supplementary Table S10. (c) Relative abundance of gene contribution 
from genus associated with the enriched microbial pathways in panel a. Pathways M1 and M2 are from genus 
Blautia, while pathways M3-M6 are from genus Veillonella. (d)  Log2[absolute abundance] of serum metabolites 
from enriched metabolic pathways in panel (b). The metabolites shown in the figures are statistically different 
metabolites based on FDR-adjusted p-values.
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several serum metabolites from the glycerophospholipid metabolism (S1) pathway were identified as HCC-
specific metabolites in our previous study, that is, stearoyl-linoleoyl-glycerophosphocholine, palmitoyl-linole-
oyl-glycerophosphocholine, 2-palmitoylglycerophosphocholine, and 1-arachidonoylglycerophosphocholine8. 
The enrichment of Veillonella sp. in the gut is correlated with enhanced marathon running performance via V. 
atypica’s capacity to metabolize serum lactate that entered the gut lumen, resulting in the generation of acetate 
and  propionate37. However, we can only infer an association between serum and microbiome data, as they were 
obtained from different patients. While some studies have profiled the microbiome and metabolites together 
in the same fecal samples, the class of metabolites measured has been limited to one class of  metabolites14. 
Therefore, comprehensive metabolomic profiling directly from fecal samples together with microbiome profil-
ing of the same patients is needed to better understand the association between the microbiome and metabolic 
consequences in cancer.

The scope of our study was limited by the absence of samples from intermediate- or high-risk patient groups 
such as those with OV infection and primary sclerosing cholangitis (PSC) for iCCA or HBV/HCV infection, liver 
cirrhosis, chronic liver disease (CLD), nonalcoholic steatohepatitis (NASH), and nonalcoholic fatty liver disease 
(NAFLD) for HCC. Studying microbiomes of the high-risk groups might help us discern whether certain species 
are indeed associated with primary liver cancer. In addition, a direct comparison of our results with those of 
other studies might not be possible or meaningful due to differences in sequencing methods. Furthermore, the 
OV infection status of our samples was inferred from a questionnaire rather than a definitive test, such as ova 
and parasite stool examination. Although the diagnosis at the time of recruitment of iCCA patients suggested 
intrahepatic origin of the CCA tissues, we cannot definitively exclude the presence of OV infection in the fecal 
samples. Since the OV-PCR test requires a substantial amount of fecal material and modified DNA extraction 
protocols to obtain OV-DNA by breaking the OV-egg, the thin smear stool collection method employed in this 
study using an FOBT card lacks sufficient material for the OV-PCR test. Finally, the number of samples from the 
cancer groups was limited, and further analyses with a larger sample size are needed.

In conclusion, our study indicates that gut dysbiosis landscapes and disease-specific fecal microbial species 
differ between iCCA and HCC patients. As such, these microbial species may hold potential as noninvasive 
biomarkers for the early detection of primary liver cancer.

Materials and methods
Patient recruitment and specimen collection. Stool samples from 120 patients were collected from 
4 clinical centers in northern, northeastern, and central Thailand. The cohort consisted of 19 iCCA, 25 HCC, 
and 76 healthy individuals that were matched by age, sex, and region of residence to cancer cases. Clinical, 
socioeconomic, and demographic data were extracted from the comprehensive questionnaires and medical 
records collected at the time of recruitment. Patients with iCCA were diagnosed using a combination of imag-
ing and histological investigations. HCC patients were diagnosed using combinations of imaging studies, tumor 
size, alpha-fetoprotein (AFP) levels, and histological investigations. Healthy controls were individuals without 
a history of cancer who were mostly recruited during regular physical checkups and other routine procedures. 
Informed consent was obtained from all patients included in this study, and the protocols were approved by the 
Institutional Review Boards of the respective institutions (NCI protocol number 13CN089; CRI protocol num-
ber 18/2555; Chulabhorn Hospital protocol number 11/2553; Thai NCI protocol number EC163/2010; Chiang 
Mai University protocol number TIGER-LC; Khon Kaen University protocol number HE541099). Fecal samples 
were collected prior to any treatment on a Hema-Screen Occult Blood Rapid Test card (Stanbio Laboratory, 
Boerne, TX, USA), according to the manufacturer’s instructions. The cards were kept at − 80 °C without further 
processing.

DNA extraction and WGMS sequencing. One square of fecal occult blood test card containing a thin 
smear of stool sample was placed into bead-beating tubes and microbial DNA was extracted using the Zymo-
BIOMICS DNA Miniprep Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol. 
Sequencing library construction of microbial DNA was prepared by random fragmentation followed by 5’ and 
3’ adapter ligation using the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA). WGMS 
was performed on one lane of the flow cell using the NovaSeq platform (Illumina) at a read length of 150 base 
pairs (bp) in paired-end mode. The average yield per sample was approximately 40 million reads.

Data pre-processing. MultiQC38 was used for sequence quality checks, and  Trimmomatic39 was used for 
sequencing adapter trimming steps. The average number of reads that passed Q30 was approximately 39 million 
per sample. The host-genome removal step was performed by aligning the reads to the human genome version 
 GRCh3840 using  Bowtie241, which yielded an average of 18 million reads per sample and was then used for all 
downstream analyses. The data were deposited in the NCBI SRA with accession number PRJNA932948.

Marker gene-based metagenomic analysis. Centrifuge42 and  MetaPhlAn343 were used to perform 
marker gene-based metagenomic analyses, both with default settings. Centrifuge was run with the h + p + v + c 
database derived from the NCBI nucleotide (nt) database, which includes human, prokaryote, viral, and 106 
complete SARS-CoV-2 genomes [database dated March 29, 2020]. Approximately 50% of the reads were classi-
fied as microbial. MetaPhlAn3 was run using the ChocoPhlAn  database43 version 201901b. Linear discriminant 
analysis (LDA) was performed using LDA Effect Size (LEfSe) with default  settings20 to identify taxa that could 
differentiate samples into groups. The top three species in each group were selected for verification.
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Sequence alignment to complete and/or representative genomes. The complete and/or repre-
sentative genomes of the top three species selected by LDA for each disease condition were retrieved from the 
NCBI database. Priority was given to complete genome classification over representative genome designation. 
If no complete genome was available, the representative genome was used. The complete and representative 
genomes used in this study are listed in Supplementary Table S7. All representative or complete genome contigs 
were concatenated into one FASTA file, and metagenomic reads were aligned to the FASTA file. BWA-MEM244 
was used for the sequence alignment. The results from sequence alignment were visualized, and the mean 
sequencing depth of each species in each disease condition was calculated by Anvi’o45.

Assembly-based metagenomic analysis. Assembly based metagenomic analysis was performed using 
 ATLAS46, a collection of tools based on the Snakemake pipeline  language47. The pipeline was run sequentially 
on all samples to generate a single combined metagenome-assembled genome (MAG) library that contained all 
species present in the samples. Boxplots of absolute abundance of MAGs that matched or were closely related to 
the selected species from LDA were generated using ggplot2 package in  R48.

Microbial metabolic pathway analysis. Data from MetaPhlAn3 were further used for functional poten-
tial profiling of microbial communities using  HUMAnN343 based on the UniRef gene family  database49 and the 
MetaCyc Metabolic Pathway  Database50. The associations between the sample metadata and functional potential 
data were determined using  MaAsLin251. The HCC group was used as a reference. P-values of all associations 
were adjusted for multiple hypothesis testing using false discovery rate (FDR) correction and the Holm-Bonfer-
roni procedure, and the top 50 enriched microbial metabolic pathways were selected.

Serum metabolite data from the TIGER-LC discovery cohort in our previous  studies7,8 were used to per-
form metabolite set enrichment analysis (MSEA) between iCCA and HCC groups using Global test, an empiri-
cal Bayesian generalized linear  model52, in MetaboAnalyst 5.0  platform53 with the KEGG pathway  database54. 
The HCC group was used as the reference group. The enriched microbial (M) and serum (S) metabolic path-
ways involved in the same processes were deemed to be overlapping pathways between microbial and serum 
metabolites.

Statistical analysis. All statistical analyses were performed using R version 4.055. The Shannon–Wiener 
diversity index, inverse Simpson index (within-sample or alpha diversity), and Bray–Curtis distance (between-
sample or beta diversity) were calculated using the Vegan  package56. Stacked bar plots, box plots, non-met-
ric multidimensional scaling (NMDS), and principal coordinate analysis (PCoA) plots were generated using 
ggplot248. All reported p-values were two-sided p-values calculated by Wilcoxon rank-sum test (Mann–Whitney 
U test) between groups, using rstatix  package57 with FDR correction using the Holm-Bonferroni  procedure58. 
Confounding factor correction for serum metabolomics data was calculated by ANCOVA.

Statement of ethics. Written informed consent was obtained from all patients included in this study in 
accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. The study protocols were 
approved by the Institutional Review Boards of the respective institutions (NCI protocol number 13CN089; 
CRI protocol number 18/2555; Chulabhorn Hospital protocol number 11/2553; Thai NCI protocol number 
EC163/2010; Chiang Mai University protocol number TIGER-LC; Khon Kaen University protocol number 
HE541099).

Data availability
All data needed to evaluate the conclusions in the paper are presented in the paper and/or Supplementary Materi-
als. Additional data related to this study are available upon reasonable request from the corresponding author. 
Raw metagenomic sequences can be downloaded from SRA database with accession number PRJNA932948.
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