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Intra‑ and inter‑brain synchrony 
oscillations underlying social 
adjustment
Unai Vicente 1,2*, Alberto Ara 3,4 & Josep Marco‑Pallarés 1,2*

Humans naturally synchronize their behavior with other people. However, although it happens 
almost automatically, adjusting behavior and conformity to others is a complex phenomenon whose 
neural mechanisms are still yet to be understood entirely. The present experiment aimed to study 
the oscillatory synchronization mechanisms underlying automatic dyadic convergence in an EEG 
hyperscanning experiment. Thirty‑six people performed a cooperative decision‑making task where 
dyads had to guess the correct position of a point on a line. A reinforcement learning algorithm was 
used to model different aspects of the participants’ behavior and their expectations of their peers. 
Intra‑ and inter‑connectivity among electrode sites were assessed using inter‑site phase clustering in 
three main frequency bands (theta, alpha, beta) using a two‑level Bayesian mixed‑effects modeling 
approach. The results showed two oscillatory synchronization dynamics related to attention and 
executive functions in alpha and reinforcement learning in theta. In addition, inter‑brain synchrony 
was mainly driven by beta oscillations. This study contributes preliminary evidence on the phase‑
coherence mechanism underlying inter‑personal behavioral adjustment.

Humans follow non-rational heuristics when making social  decisions1,2. However, in contrast to other non-
human primates (i.e., chimpanzes, bonobos), which maximize their own gains, humans are significantly more 
biased towards social leverage and  fairness3,4. Social interactions require the coordination of distinct psychologi-
cal functions resulting from diverse  computations5,6 which occur in a reduced temporal  scale7. Brain oscillations 
are the neural mechanism proposed to be suitable for information integration from different temporal scales 
and brain  regions8. These oscillations have been identified as facilitators of dynamic temporal and spatial neural 
activity coordination  mechanisms8–11 and apparently reflect distinct communication systems between areas in 
the  cortex12. Particularly in the field of social neuroscience, neural dynamics and, more specifically, synchronic 
oscillations in interacting individuals, have been studied using two-person or multi-person approaches, in what 
has been named as “hyperscanning” settings. In these studies, it has been proposed that, in addition to the coor-
dinated synchronization mechanisms of each individual’s neural networks (intra-brain synchronization), oscil-
latory coupling between people (inter-brain synchronization) reflects the organization of collective  behavior13. 
These mechanisms have been found, for example, in additive tasks (i.e., requiring joint effort;  McGrath14), like 
joint-action or temporal motor  synchronization15,16 but have also been observed in verbal  interaction17, shared 
 attention18 or  intention19,  creativity20 or decision-making21. In fact, despite ongoing debate on causality inferred 
by hyperscanning in inter-personal  interaction22–26, there is evidence suggesting inter-brain phase synchroniza-
tion is an index of collective  performance27, sometimes providing an even better description of other self-report 
 measures28. Synchronic coherence between two participants relates to other aspects of shared  processing29. In 
particular, there is evidence of synchrony at alpha (8–12 Hz) and beta (13–25 Hz) in other paradigms such as in 
verbal  interaction17 or alternating speech  tasks30. Interestingly, in a recent massive sample (N = 4800) study con-
ducted outside a lab (i.e., art installation in museums; Dikker et al.31), the authors reported inter-brain coupling 
in the beta band to be associated with joint social attention.

Despite its importance in understanding social  behavior6, relatively few studies have investigated the adapta-
tion resulting from socially induced adjustments such as conformity (see, e.g., Yu and  Sun32). Conformity is a 
social adaptation that consists of adjusting one’s perspective and behavior to that of other  people33 regardless of 
their  rationale34. Furthermore, conformity is not only limited to norm  deviation33 but may also be driven by the 
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integration of different social sources of  information35 that are related to individual or social contingencies (i.e., 
norms) or to potential gains in informational  foraging5,6,35. According to this view, conformity may entail the 
convergence of responses to adapt to others’ decisions or views. This requires detecting discrepancies between 
one’s and another’s perspective, action selection, and mentalizing, among other social learning  mechanisms6, as 
well as prediction and learning if this behavior is  repeated36. Previous studies have shown the key role of oscilla-
tory activity in these cognitive functions. For example, frontocentral theta oscillatory activity (4–8 Hz) has been 
proposed as a crucial neural mechanism of conflict and prediction error (PE)  computation37–39. In this line, a 
study on MEG oscillatory dynamics of conformity has shown that theta oscillations track mismatched opinions 
between an individual and a  group40.

Despite the importance of behavioral adjustments associated with social conformity, the oscillatory syn-
chronization mechanisms involved in the processes necessary for aligning behavior with another person have 
yet to be discovered. To the best of our knowledge, no previous studies have investigated intra- and inter-brain 
synchronization in an experimental setting in which social conformity appears spontaneously. To fill this gap, 
we propose a novel experimental paradigm in which two people converge spontaneously in estimating a value 
without being instructed or extrinsically rewarded. To track expectations and prediction errors in the behavior 
of others’, we used a reinforcement learning (RL) algorithm that allowed assessing parameters on a trial-by-
trial basis, as in previous research on social conformity (see e.g., Klucharev et al.41, Toelch and  Dolan5, Bogdan 
et al.42). We hypothesized that theta oscillatory activity, which, as stated above, has been previously related to 
the computation of PE and cognitive  control37–39 would be associated to synchronization of areas involved in 
cognitive control and behavioral adjustment. In addition, we hypothesized that alpha and beta bands, which 
have been consistently found when describing the neurophysiological correlates of social interaction behaviors, 
would be responsible for intra- and inter-brain synchronization.

Results
Trial‑by‑trial contrast analysis. Connectivity between electrodes was computed for each trial in three 
frequency bands (theta, alpha, and beta) and two time-ranges (0–500 ms. and 500–1000 ms. after stimuli). We 
report connections that present credible evidence of differences in coherent synchrony between conditions, 
both intra-personal and inter-personal. The intra-personal contrasts in the first feedback (FB) adjustment, the 
extraction of first feedback to second feedback (FB2-FB1), showed a credible change. In the first time range 
(0–500  ms.) we found credible connectivity associated with positive or increased activity in the alpha band 
(Fig. 1; 114/300 connections in  HDINHCT(95%) + ROPE). Inter-brain connections in the first adjustment were 
credibly and negatively related in beta (Fig. 2; 9/625 connections in  HDINHCT(95%) + ROPE). We found no suf-
ficiently credible evidence of activity change regarding the second adjustment (FB3–FB2).

In the second time range (500–1000 ms.), the results also showed credible intra-personal frequency coherence 
related to a positive change in the first adjustment in alpha (4/300 connections in  HDINHCT(95%) + ROPE). In 
inter-brain data, we also found enhanced activity in alpha (2/625 connections in  HDINHCT(95%) + ROPE). Again, 
the second adjustment did not show a credible change in any of the studied frequency bands.

We also inspected adjustment ( FBrep × Adjustment ), differentiating the lowest-adjustment trials (low-
low contrast FB3–FB2) and the highest-adjustment trials (high-high contrast FB3–FB2). We only used 
the second adjustment contrast because FB2–FB1 was the reference in the identification of the adjustment 
level of the trial. The results did not reveal any credible or strong enough evidence related to the adjustment 
model ( FBrep × Adjustment ) in any of the studied frequencies according to our proposed evidence criterion 
(HDI + ROPE rule).

Reinforcement‑learning analysis. For each participant, a RL algorithm operationalized the willingness 
to cooperate with their peer, and the reward was modeled in three different ways (see Methods section), fol-
lowing the same update rule. We extracted the PE from these models to correlate it to phase connectivity, that 
is, changes at a single-trial level were contrasted with the connectivity measures. The results revealed a cred-
ible positive relationship with brain synchronization only in the first time range (0–500 ms.) for model 1 (M1; 
14/300 connections in  HDINHCT(95%) + ROPE), which defines as a reward, the willingness to converge by the 
participant, and 3 (M3; Positive: 6 out of 300 connections in  HDINHCT(95%) + ROPE), which considers a reward 
as the degree of convergence continuously (Fig. 3). By contrast, we did not find any credible change in con-
nectivity regarding the second model (M2), which considers reward as an adjustment, neither in the first nor 
in the second time range. Additionally, all the credible activity change after feedback related to PE ( FBrep × PE ) 
was restricted to the theta frequency band in the second adjustment (FB3-FB2). Here, PE was associated with 
increased theta connectivity mainly in frontal areas according to M1 and M3, particularly in F8 and Fp2 elec-
trode sites, plus a centroparietal cluster. Therefore, the results showed PE tracking in FB3-FB2, where responses 
can relate to previous adjustment learning. However, to test for differences between M1 and M3, we conducted 
a Tuckey pairwise analysis. We only found significant differences in the contrast between M1 and M3 with M2 
(Table 1). BIC for the models is:  BICM1 = 275,38;  BICM2 = 285,26;  BICM3 = 274,98).

Discussion
In the present study, we explored the intra- and inter-brain oscillatory phase-based connectivity in dyads during 
spontaneous behavioral adaptation in a social decision-making paradigm. At the intra-personal level, our results 
suggest local and distal neuronal population connectivity mechanisms in the alpha frequency band and a learn-
ing mechanism towards convergence tracked in the theta band. We also found inter-brain synchrony change 
in the dyads in the beta band. Lastly, we found credible differences in inter-personal oscillatory phase-based 
connectivity in alpha in the second time range.
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Credible increased intra-personal brain frequency coherence changes in the first adjustment (FB2–FB1) were 
mainly and widely tracked in alpha in the first time-range (0–500 ms.), and a solid remanent was still tracked 
in alpha in the second time range (500–1000 ms.). We interpret this alpha synchronization change as caused 
by the broad inter-regional communication required for a multi-layered valuation, which could involve social 
(mirror neuron system, mentalizing) as well as non-social (attention, visual assessment, response planning, 
motor control, etc.) processes, or also both simultaneously. Differences in the phasic coherence were especially 
prominent in the first time-range (0–500 ms.), which supports its association with attention and cognitive con-
trol computations. Research shows that the alpha band plays a role in the top-down modulation of cognitive 
control functions (see Sadaghiani and  Kleinschmidt43, for a review) and engagement in working  memory44. In 
social neuroscience studies, alpha band involvement has also been reported to be associated with social cogni-
tive  processing45,46 and interactive decision-making47,21. The primarily cento-parietal alpha coupling activity 
remaining in the second-time range (500–1000 ms.) could also be associated with the proposed role of alpha in 
communicating task-relevant areas by inhibiting task-irrelevant  ones48, which might help in the encoding, reten-
tion or recognition of information to transform sensory input into action preparation  processes49. Significantly, 
while the first studied time range showed widespread alpha connectivity, the second time range was restricted 
to some fronto-centro-parietal electrodes. This could indicate either a progressive reduction of the role of the 
alpha oscillations as the main inter-regional communication mechanisms for longer latencies or a contribution 
in a more specialized function (e.g., selecting relevant information and inhibiting irrelevant ones, Park et al.50).

Recent evidence suggests alpha coherence is a large-scale rhythmic communication system between distant 
brain  regions51. The results further support alpha’s role in orchestrating neural mechanisms underlying social 
adjustment.

As for inter-personal synchrony, the results show involvement of the beta frequency band, especially in fronto-
central and centroparietal areas, in the first adjustment (FB2–FB1) and first time-range. Enhanced coupling of the 
beta band has consistently been found in social settings, such as action observation and  imitation52,53 economic 

Intra-brain coherence connection plots

Alpha (α) in phase 1 (0-500ms) adjustment 1 (FB2-FB1)

Alpha (α) in phase 2 (500-1000ms) adjustment 1 (FB2-FB1)

max. min.

node connection colormap

Figure 1.  Intra-brain coherence connection maps in the alpha frequency range in the first (0–500 ms, top) and 
second (500–1000 ms, bottom) time ranges in the first adjustment (FB2–FB1). Color and size of each electrode 
sites indicate the number of credible connections with other electrodes, and the maximum and minimum are 
specific to each representation.
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 games54 and face-to-face  interactions31. Given that some of these social settings involve joint actions, it has been 
proposed that this activity might be related to sensory-motor  processes55 because beta activity is engaged in 
motor response and  preparation56. However, even if a dyadic interaction and its regime of expectations require 
a particular sensorimotor engagement towards convergent action, this interpretation must be completed to 
explain situations that do not involve direct movement synchronization, as in the present study. Interestingly, a 
large-sample face-to-face hyperscanning  study31 found that social traits like empathy and social closeness within 
partners predicted beta-band synchronization between dyads of people. The authors proposed that this activity 
could also be related to engagement and expectations about others’ actions. In the present study, participants 
generated expectations based on previous interactions with their peers, even if they could not stare at each other 
or talk. Despite such limited communication, we found inter-brain connectivity in the beta band at frontocentral 
and parietal sensors. This suggests that this activity goes beyond joint action and is relevant when evaluating 
others’ intentions and expectations. Aligned with this idea, Wang et al.57 found that frontal activity in the beta 
band during option evaluation predicted cooperative behavior in a computerized version of the Chicken  Game58, 
where two players independently choose if they want to cooperate. Incidentally, Betti et al.59 presented evidence 
showing beta might have a role in integrating prior inferences with incoming information, which applies to the 
activity the mental activity of the participants at this moment. The authors suggested that the parietal attentional 
addition to a predictive comparison process in the frontal cortices might explain this frontal-parietal connectivity. 
Therefore, we suggest that our findings can be interpreted in light of this beta-driven socially related predictive 
computation, which does not necessarily require joint action or face-to-face interaction, even if it might enhance 
the engagement of these oscillatory mechanisms.

Another inter-brain coherent oscillation happens in the second interval with alpha involving connectivity 
between right frontocentral and right parietal electrodes. Dumas et al.60 were the first to report evidence of an 
inter-brain right centroparietal alpha oscillatory activity related to cooperation in face-to-face social communica-
tion. Interestingly, in our setting, such direct communication is blocked by a separator. Still, the inter-brain alpha 
coherence remains in a cooperation setting, suggesting that this activity could be associated with cooperative 
behaviors without requiring direct communication. This interpretation would be supported by the results of 
Szymansky et al.27, also showing an increase in alpha inter-brain coherence in cooperative conditions. However, 
although current results are coherent with previous literature, they should be interpreted cautiously as we only 
found an alpha inter-brain connection between two electrodes.

Inter-brain coherence connection plots 

Beta (ß) in phase 1 (0-500ms)

Alpha (α) in phase 2 (500-1000ms)

Figure 2.  Inter-brain coherence connection maps in the beta frequency range (first time-range, 0–500 ms., top) 
and alpha (second time-range, 500–1000 ms., bottom) bands in the first adjustment (FB2-FB1).
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One prominent finding in the present study is the involvement of theta oscillations in computing PEs. We 
used an RL algorithm to model peer behavior predictions according to three distinct models. However, we 
only found credible evidence when defining reward as a cooperative change towards convergence, where PEs 
reflect the discrepancy from expected behavior (e.g., no convergence after trials of convergence; M1), and when 
defining reward as the closeness to convergence between participants (M3). Crucially, even when M1 shows 
broader frontocentral connectivity in the early time range (Fig. 3), the differences between both models are not 
significant according to their log-likelihood scores (Table 1). Notably, only theta coupling was engaged in this 
contrast. It was found in the first studied time range (but not in the latest), that is when usually the frontocentral 
theta oscillatory activity associated with performance monitoring and PE computation appears (e.g., Christie 
and  Tata61; Cavanagh et al.62; Mas-Herrero & Marco-Pallarés38; van de Vijver et al.39). In addition, theta oscilla-
tions are involved in tracking complementary information in high-level RL  computations63,64 and other low-level 
aspects like context  uncertainty62,38. In addition, theta activity has been proposed as a critical brain mechanism 
in cognitive  control37 regarding the comparison of expected with tangible outcomes and the synchronization of 
brain networks engaged for increased cognitive control. In the present study, the RL models allow us to assess the 
expectancies about the peers’ behavior affecting participants’ behavior. Therefore, if participants seek to converge, 

max. min.

node connection colormap

RL parameter coherence connection plots

Theta (θ) Increase correlated to Pred. Error in Model 1 (0-500ms; FB3-FB2)

Theta (θ) Increase correlated to Pred. Error in Model 3 (0-500ms; FB3-FB2)

Figure 3.  Intra-brain coherence connection maps showing an enhanced synchronization in theta band in the 
first phase (0–500 ms) of the second adjustment (FB3–FB2) for PEs (top) for Models 1 and 3. Color and size 
indicate the number of credible connections with other electrode sites, and the maximum and minimum are 
specific to each representation.

Table 1.  Pairwise contrasts between Log-Likelihood scores of models 1 (M1), 2 (M2) and 3 (M3).

Contrast Estimate SE Df T-ratio p-value

M1–M2 − 9.884 3.2 70 − 3.089 0.008

M1–M3 0.401 3.2 70 0.125 0.991

M2–M3 10.284 3.2 70 3.215 0.005
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the estimation change largely depends on the previous convergence history between the participants. Deviations 
in peers’ behavior would require updating the current model and enhancing cognitive control mechanisms and 
coordination of brain areas through theta  coupling37. Future studies with varying degrees of cognitive control 
allocation would contribute to understanding the functional role of these networks.

The present study is not exempt from limitations. First, although convergence was neither instructed nor 
directly induced, participants could feel that they should conform, likely due in part to the task structure (three 
repetitions of the same trial). A complementary explanation is that participants generally converge with their 
peers when they are embedded in social settings. It would be interesting to test this behavior when people are 
explicitly instructed to converge or are obliged to seek convergence. A second limitation is the high number of 
statistical tests performed in each condition and frequency (multiple-comparisons problem). We proposed a 
two-level statistical approach to study brain connectivity to tackle this issue. This allows using an accurate dis-
tribution of the data (beta distribution) besides attenuating the multiple-comparisons  problem65. However, the 
hybrid use of a frequentist approach in the first level hampers its complete mitigation.

Furthermore, independent replications of the present results are necessary to support further or refute these 
results. In addition, we purposefully chose a dichotomous measure to guide our temporal difference in reward 
computation. Although the study aimed to investigate willingness to adjust to the peer to explain the behavioral 
adaptation of conformity, we acknowledge it is indeed a simplification of the participants’ regimes of expecta-
tions. Another possible factor that could influence the connectivity associated with the RL model could be the 
reaction times and/or the delays between the responses of the two participants. However, in the present experi-
mental design, the feedback was not presented until the two participants wrote their estimations and pressed 
the intro button, making the interpretation of differences in reaction time not straightforward, and in addition, 
participants were not instructed about being fast or slow, only on being precise. Therefore, it would be interesting 
to explore the role of time in the connectivities found in the present paper with other experimental paradigms 
with greater control of the time that allow their inclusion as a random effect in the model. Furthermore, other 
individual differences have not been considered in the current manuscript and could be explored in future stud-
ies. Finally, the number of trials for a RL model is limited, as evidenced by the high BIC values. Notwithstanding 
caution in interpreting the results, these suggest enhanced theta phase synchronization related to PE in our task 
coherent with evidence as mentioned  earlier38,39,61,62. Finally, we tried to be cautious in our interpretations of 
the inter-brain coherence results, as we acknowledge that the mechanical nature of this phase synchrony still 
needs to be clarified.

In conclusion, we present evidence of intra- and inter-personal phasic coherence in a conformity task at 
distinct brain regions, time ranges, and frequency bands. The results suggest specific roles for different oscilla-
tory activities, with theta being primarily related to learning and cognitive control, alpha to higher-level control 
and communication between distal regions, and beta to inter-brain synchronization. This study contributes 
preliminary evidence on the phase-coherence mechanism underlying inter-personal behavioral adjustment.

Methods
Participants. 36 participants in 18 dyads (random distribution of 20 women and 16 men; median age: 
24 years old, range: 19–53 years old) took part in the study. All participants were adult volunteers and were 
rewarded with 30 euros for their participation. The experiment protocols were approved by the Institutional 
Review Board (IRB00003099) of the Bioethics Committee of the University of Barcelona. All methods were 
performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all 
participants.

Procedure. The experiment consisted of two parts (Fig. 4). First, each dyad completed cooperative tasks 
inspired by the cooperative dimension in the circumplex  model14 at a maximum of one hour to pre-activate 
cooperative tendencies (i.e., intellective task, performance task, planning task, creativity task). After the activity, 
EEG was set up to record the dyads’ brain activity in the main task. As shown in Fig. 4, both participants shared 
the same room during the initial cooperative task and the subsequent main task phase. In the first part, they were 
able to interact. In the second part, a separator was introduced to block their ability to communicate or make eye 
contact with each other during the main EEG task.

In the main task, participants had to estimate the position of a point on a line. The line, either vertical or 
horizontal, and two numbers displayed at its two ends within the range of 0 and 150 and with a distance between 
them of 40–50 units, were simultaneously presented to both participants. Additionally, a red dot was positioned 
somewhere above the line, and the participants were instructed to indicate the dot’s location using a numeric 
keypad and pressing the enter key after it. After the last participant pressed the enter key, the screen showed 
a fixation cross for a fixed 500 ms time pause. Then, the screen displayed the two participants’ estimations of 
the dot’s position until both participants pressed the return key (Feedback 1, FB1). Following this, participants 
repeated the same procedure two more times, observing the same line, numbers, and dot placement, providing 
their estimations, and viewing those of their peers (Feedback 2, FB2, and Feedback 3, FB3 for the second and 
third iterations). The moments of feedback (FB), wherein both participants had the opportunity to compare 
their estimations, were the key focus of the current study. It is important to note that participants were free to 
modify their estimates based on their peers’ responses; however, this was not explicitly instructed or rewarded. 
The experiment consisted of four blocks of 25 trials each, with three repetitions per trial.

Data collection. EEG was continuously recorded at a sampling rate of 1024  Hz using an ANT Neuro 
ASALab EEG amplifier from 25 scalp electrodes (Fp1/2, Fz, F3/4, F7/8, Fc1/2, Fc5/6, Cz, C3/4, Cp1/2, Cp5/6, 
Pz, P3/4, P7/8, POz, Oz) plus one on each mastoid (left and right) and two electrodes recording eye movements. 
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A reference electrode was set on the tip of the nose. The electrode impedance was kept below 5kΩ throughout 
the experiment.

Pre‑processing. We used EEGLAB 2021.1 in MATLAB R2021a for pre-processing. The data was bandpass 
filtered from 1 to 42 Hz. Epochs from − 2 to 2 s were extracted from each trial, and independent component anal-
ysis (ICA) was applied to remove the eye and muscular artifacts. A Surface Laplacian spatial  filter66 was applied 
to the data prior to angle extraction to mitigate the effect of volume conduction for electrode-level connectivity. 
We then subtracted the ERP from every single trial to ensure that frequency dynamics were task-related but not 
driven by the ERP. Subsequently, each trial was convolved using a complex Morlet wavelet. Angles of the wavelet 
coefficients were extracted for each single-trial time–frequency data point and used to compute synchronization 
between electrodes through inter-site phase  clustering66 per frequency and trial. We then averaged over fre-
quency bands (θ = 4–8 Hz; α = 8–13 Hz; β = 13–25 Hz) in two time ranges, from 0 to 500 ms. and 500–1000 ms., 
to study early and late processing, respectively. The rationale for dividing the analysis into these intervals was to 
study independently the early attentional and executive processes (which are reflected in feedback processing 
by the Feedback-Related Negativity/Reward Positivity and P3 ERPs, and by frontocentral theta oscillatory activ-
ity, which occurs approximately in the first 500 ms. after stimuli presentation, Ullsperger et al.67, Glazer et al.68, 
to the late mechanisms (indexed by, e.g., the late positive component starting at around 500 ms. after feedback 
presentation, Glazer et al.68).

Two‑level analysis. The statistical procedure followed a two-level analysis  procedure69. In the first level 
analysis, we included ISPCs as dependent variables in a mass-univariate generalized linear model (beta-distrib-
uted values) and extracted their relation to the FB repetitions (per dyad in the inter-personal analysis and per 
participant in the intra-personal analysis) using maximum likelihood estimation with the “glmmTMB” R pack-
age. Then, we used “lsmeans” R package to compute the least-squares means of the parameters of interest and 
extract their estimates and associated standard errors.

Subsequently, we used these first-level data to carry out null-hypothesis credibility testing (NHCT) in a sec-
ond-level analysis. This was done by including the first-level data from all connections—excluding the mastoids 
(i.e., 625 connections in dyadic data, 300 connections in intra-personal data)—in a hierarchical Bayesian meta-
analysis (BMA; Marsman et al.70; Kruschke and  Lidell71) assuming normality (μ: identity; prior on σ: student-t, 
μ = 0, σ = 2.5, ν = 3) and with weakly informative priors over the intercept (normal, μ = 0, σ = 10 ), and over connec-
tions as varying effects (gamma, α = 1, β = 10) using the “brms” R  package72,73). For NHCT, we consider posterior 
distributions credibly different than zero when the totality of a Region of Practical Equivalence (ROPE) around 
the null hypothesis (H0: β0 = 0), consisting of the range ± 0.01 * SDy—where SDy is the standard deviation of 
the dependent variable, completely falls outside 95% of the posterior’s Highest Density Interval (HDI)71,74,75).

For the interaction analysis and the extraction of other contrasts of interest from the model (i.e., adjustments 
FB2–FB1 and FB3–FB2), we always took the estimates and standard deviations from the first level to the second. 

Figure 4.  Diagram of experimental paradigm, which consists of two phases: the “pre-task” (first part, 1) and the 
main task with dual EEG recording (second part, 2). Below there is a representation of the room setting in these 
two phases. Participants (Part. 1 and Part. 2) shared the room in both phases, but a separator was added in the 
second phase to prevent communication. In the main task, every trial starts with an informative trial number 
(A), followed by a fixation cross for 500 ms (B), the stimulus participants used for their estimations (C) which is 
the moment when they had to use their keypads to introduce their responses, another fixation cross for 500 ms 
(D) and, finally, the feedback (E). Steps from B to E were repeated 3 consecutive times.
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This means that contrasts and interaction terms were always calculated at the first level, so we only took the 
estimates and the standard deviations to the BMA for a sample-level analysis.

We assessed contrasts between the ISPC and feedback repetition ( FBrep ). We also examined the effect of 
adjustment type (Adj; FBrep × Adj ), a dichotomization of High , (high-high, coming highly adjusted from the 
first opportunity to change their responses and continuing this way to the second) and Low (low-low) adjust-
ment, depending on the level of behavioral adjustment towards convergence effort in the trial compared to the 
median of all response adjustments by each participant in all trials. Connectivity representations were displayed 
using the BrainNet Viewer  Tool76.

We analyzed differences between the first (FB1), second (FB2), and third feedbacks (FB3). It is worth not-
ing that for differences between FB1 and FB2, we use FB2–FB1 contrast instead of FB1–FB2. The same applies 
to differences between FB2 and FB3. Bayesian hypothesis testing via parameter estimation has a fundamental 
advantage: we can compare the hypothesis to the region of a posteriori most probable values for the parameters 
the hypothesis targets. We sought to match the sign in the limits of HDI with the ongoing signal activity from 
one feedback to the other (i.e., a negative sign for a decrease in activity and a positive sign after an enhancement). 
Hence, we consider a relationship positive when the activity has increased in relation to its reference: e.g., a posi-
tive relationship in the contrast FB2-FB1 would indicate an increase in the synchronization of FB2 compared to 
FB1, whereas a negative relationship would be interpreted oppositely.

Reinforcement learning analysis. In order to determine the expectancies of peers’ adjustment based on 
previous trials, we used a reinforcement learning (RL)  algorithm77 to fit three different models, each considering 
a different reward ( r ) calculation to guide learning. At each time ( t  ), the algorithm updated the subsequent Q 
value using a simple Rescorla-Wagner78 learning rule where the value of the option ( k ) updates in response to r:

In the model fit, the Q function was updated by the outcome (decision to cooperate or not by the peer, see 
below), but represented a state where the agent acts. With the intention of keeping the state representation simple, 
we used a dichotomous label per choice throughout the three models.

In the first model, we considered a choice as convergent ( r = 1) if the participant maintained their response 
and it was the same as their peers, or if the participant decided to change their response in pursuit of convergence 
with their partner for diverging responses; and a non-convergent ( r = -1) choice otherwise. This model focuses 
on the pursuit of convergence and rewards when agents’ action seeks convergence.

In the second model, we assessed the participants’ level of adjustment or change, assuming that reward 
was associated with a greater degree of adjustment while penalizing uncooperative or less adjusting behavior. 
Therefore, if the analyzed participant had changed more than their partner, the behavior was rewarded ( r = 1); 
if the user changed less than their partner, the model penalized the behavior ( r = -1); if the two participants did 
not change, reward was set to 0 ( r = 0).

In the third and last model, the degree of convergence at every repetition defined the reward. Therefore, a 
decrease in convergence in the dyad was penalized ( r = − 1), and an increase in convergence was rewarded ( r 
= 1). In addition, if convergence in the following feedback was the same because the convergence was maximal 
(equal number in the two participants) reward was also maximum ( r = 1); and if the convergence was the same 
but not maximal, the reward was set to 0 ( r = 0).

For all values, the learning rate ( α) and the temperature ( r ) were calculated via non-linear optimization 
(using fmincon function in MATLAB) per participant. τ controls the level of stochasticity, being τ = 0 completely 
random and τ = ∞ a totally deterministic choice. This parameter is used in the Softmax ( S ) choice rule, which 
converts values into action probabilities. Importantly, we decided to upper bound it to 2 (0 < τ ≤ 2) to maintain 
the monotonic relationship between α and τ as suggested in Zhang et al.79.

For the correlations with phase coherence, RL parameters were assessed in relation to the signal with the 
feedback repetition in interaction with the prediction error ( FBrep × PE ). For model comparison, we used the 
Bayes Information Criterion ( BIC ), as suggested by Wilson and  Collins80, using the following equation:

Here, L̂L refers to the log-likelihood value at the best parameter fitting, km is the number of parameters in the 
model ( m ) for the individual and T is the number of trials.

Data availability
All data and the code to replicate the results reported in this manuscript are available at: https:// doi. org/ 10. 3886/ 
E1833 01V3.
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