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Recurrence quantification analysis 
for fine‑scale characterisation 
of arrhythmic patterns in cardiac 
tissue
Radek Halfar 1*, Brodie A. J. Lawson 2,3, Rodrigo Weber dos Santos 4 & Kevin Burrage 2,5

This paper uses recurrence quantification analysis (RQA) combined with entropy measures and 
organization indices to characterize arrhythmic patterns and dynamics in computer simulations 
of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the 
human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral 
wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, 
fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the 
main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could 
differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the 
combination of two RQA metrics, the length of the longest diagonal string of recurrence points and 
the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active 
elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on 
the mean value and spatial correlation of metrics calculated from membrane potential time series, we 
identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia 
into distinct regions of the feature space, and thus might be used for automatic classification, in 
particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a 
persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.

Cardiac arrhythmias are a prevalent disease worldwide and a leading cause of death. The onset of these arrhyth-
mias is complex and remains difficult to anticipate. In 1952, Hodgin and Huxley presented the first mathematical 
model of cell action potential (AP)1, which is a critical component of furthering our understanding of arrhyth-
mia in a mechanistic way2,3. Some more modern examples include the pairing of simulations of mathematical 
models of cardiac activity with data to inform the study, and treatment, of atrial flutter4,5 and atrial fibrillation5–7.

A particular topic of interest is ablative surgery, in which small scars on the heart muscle are created, blocking 
off regions thought to be producing or sustaining arrhythmogenic dynamics4,8. Given this treatment’s inconsistent 
success rate and invasive nature, there has been much interest in learning how to identify regions for ablation. 
One common idea is to target complex fractionated atrial electrograms (CFAEs), especially as a supplementary 
treatment if the pulmonary veins (a common trigger zone for atrial fibrillation) have already been electrically 
isolated9. Precise definitions of CFAEs vary, but the goal is to identify regions of conduction slowing/block, 
anchor points for re-entrant activation, sites of wavebreak or other pro-arrhythmic phenomena from electro-
grams. The issue is that simple criteria for identifying CFAEs are also prone to incorrectly labelling large regions 
of tissue not critical for atrial fibrillation maintenance as dangerous10.

A natural path forward, then, is to improve the identification of ablation targets via more sophisticated 
analysis of electrograms. In this work, we use recurrence quantification analysis (RQA) combined with entropy 
measures and organization indices to characterize arrhythmic patterns in computer simulations of cardiac tis-
sue. RQA has emerged as a tool with great potential in electrophysiology, owing to its established history in 
capturing the regular movements of nonlinear dynamical systems, identifying transitions between regular and 
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chaotic states, and enabling the study of unstable periodic orbits11,12. In the past, RQA has been used to analyze 
the relationship between atrial rate and spectral centre frequency13, to quantitatively analyse CFAEs14,15, to clas-
sify atrial electrograms as normal, fractionated or temporally unstable16–18, and to examine dynamics before and 
after ablative treatment19. This is possible even for short electrogram sequences17,20.

Most similar to our study, RQA has been used, together with sample entropy, to distinguish between areas with 
or without rotors21, by applying RQA to bipolar electrogram readings that can identify wavefront direction. Sites 
behaving actively or passively in the context of fibrillation have been identified using 15 s22 or 5 s23 signals. In this 
work, we examine a variety of RQA and related metrics applied to much shorter (1 s) AP traces. These traces form 
cardiac activation maps, which are an essential tool for the treatment of cardiac arrhythmias24. Furthermore, the 
method’s advantages for finding residual conduction after ablation of the mitral isthmus and thus ensuring its 
complete blockage are shown25 and thanks to the constant technological development of this method, new pos-
sibilities for its use are constantly being found26. We demonstrate that by appropriately combining RQA metrics, 
along with their spatial correlation, we can identify the changing nature of electrical signalling. In particular, we 
show how samples of single-site AP traces can be monitored for the presence of a stable rotor. We also demon-
strate the use of RQA-based features to differentiate regular activation due to spiral waves (including separation 
of anchored and meandering spirals) and fibrillation (including separation of self-sustained and rotor-driven 
fibrillation) when high-resolution spatial data is available. These techniques also could serve as powerful tools 
for automated analysis of in silico simulation data, where full spatial AP data is available.

Materials and methods
Electrophysiological scenario simulation.  The propagation of the action potential (AP) in cardiac tis-
sue is modeled using the monodomain equation in terms of a dimensionless transmembrane potential, u,

Membrane potential diffuses with isotropic conductivity D, representing the flow of ions between myocytes 
through their gap junctions. Membrane potential also changes with the flow of ions in and out of cells, Jion , and 
any externally provided stimulus current, Jstim . Here, Jion is represented by the model of Fenton and Karma27. 
This is a phenomenological model that simplifies ion transport to single currents representing the fast inward, 
slow inward, and slow outward flow of positive ions through the cell membrane ( Jfi , Jsi and Jso , respectively),

Further information on the definition of this model, including parameter values used, can be found in the Sup-
plementary material (Table S1).

We consider two different scenarios relevant to cardiac arrhythmia. In the first scenario, we simulate a two-
dimensional slice of tissue of dimension 12.5× 12.5 cm , this large size is chosen to allow single simulations to 
contain multiple dynamical behaviours in accordance with other similar studies23. No-flux boundary conditions 
are applied to domain edges. To produce the type of chaotic dynamics observed during fibrillation, we provide 
a rapid pacing stimulus, with a period of 31 ms. Numerical discretisation parameters for this scenario are grid 
spacing �x = 0.25mm and timestep �t = 0.1ms.

In the second scenario, two-dimensional tissue slices of dimension 4× 4 cm are used, a size corresponding to 
the heart atrium. In this scenario, scar regions are added to make the tissue heterogeneous, creating the potential 
for spiral waves to be stabilised by the obstructed region28. The scar is created by placing two concentric circles, 
with a fixed probability of cell damage for sites within the inner circle and a linear decrease in probability to zero 
along the radius of the outer ring. This creates a border zone, known to be an important component of a scar 
regions’ arrhythmogenic impact29, as well as being a strong predictor of post-infarct mortality30. Damaged tis-
sue is modelled as non-conductive (applying no-flux boundary conditions to boundaries between damaged and 
healthy tissue). In order to generate many different types of activation dynamics, a wide range of magnitudes of 
tissue damage are simulated, from no damage to complete destruction of tissue in the scar region. This scenario 
used �x = 0.2mm and �t = 0.05ms . In the simulations, the diffusion was Dxx = Dyy = 0.25 cm2/s . If there 
was a scar in a given site, the diffusion coefficient was set to D = 0 cm2/s.

Signal analysis.  Analysis of membrane potential time series is here approached using RQA11,31, an impor-
tant method for nonlinear data analysis. RQA is based on the analysis of recurrence in a dynamic system (events 
of a dynamic system returning to a previously visited area in the phase space), as summarised by the recurrence 
plot (RP). The RP is a two-dimensional array of the values zero and one, with a value of one in position (i, j) cor-
responding to the system being in the same place in phase space at times ti and tj . That is, the non-zero elements 
in the array mark events of recurrence.

The RP is calculated using the equation

Here xi denotes the values of the system’s m dependent variables at the moment of its i-th snapshot, with N the 
total number of snapshots. The Heaviside function θ(x),

(1)
∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

− Jion − Jstim.

Jion = −Jfi − Jso − Jsi.

(2)Ri,j = θ(ǫ − ||xi − xj||), xi ∈ R
m, i, j = 1 . . .N .

(3)θ(x) :=

{

1, x > 0
0, x ≤ 0
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specifies that recurrence occurs when the difference falls under the threshold ǫ for some choice of norm � · � . 
Here, we use the Euclidean norm. Once the RP is obtained, a number of different informative quantities can 
be calculated from the arrangement of its zero and non-zero elements. Many of these quantities consider the 
occurrence of diagonal strings of non-zeroes in the RP, as these correspond to system dynamics recurring 
throughout a window of time, instead of just coinciding at a single moment. In this paper, the following RQA 
measures will be used:

RQA measure Description

REC Percentage of recurrence points in a recurrence plot

DET Percentage of recurrence points that form diagonal lines

RATIO Ratio between DET and REC

Lmax Length of the longest diagonal string of recurrence points

Lmean Mean length of the diagonal lines

DIV The inverse of Lmax

ENTR The Shannon entropy of the diagonal line lengths distribu-
tion

LAM Percentage of recurrence points that form vertical lines

Vmax Length of the longest vertical line

Vmean Mean length of vertical lines

In addition to these RQA metrics, we also consider the organization indices (OI) for these time series. Widely 
used in cardiac electrophysiology studies32–39, organization indices are a measure of order (or disorder) in a time 
series, calculated using its representation in the frequency domain. Specifically, the nth organization index is 
defined as the proportion of power in the power spectrum that is contained within the n highest-power peaks. 
A high organization index, with large proportions of the power in the power spectrum concentrated in a small 
number of peaks, corresponds to regular activation of a location at some fixed frequency(ies). Calculations of the 
power contained within a peak will sometimes also include the power associated with its harmonic frequencies, 
but here these are not included.

Finally, we analyze time series in terms of their entropy. Accurate entropy calculation requires large amounts 
of data and is very sensitive to the noise of the system under investigation, and so is not suitable here. To over-
come this limitation, Pincus et al.40 developed an approximate entropy measure (ApEnt), based on searching for 
similar subsequences in the analyzed time series. In order to avoid the occurrence of natural logarithms of zero 
in the ApEnt calculation, each sequence is counted as similar to itself, although this introduces a bias41. Rich-
man and Moorman41 proposed sample entropy (SampEnt) as a modified entropy measure that is independent of 
the length of the data, is bias-free, and also requires fewer operations to calculate42. Further information about 
the calculation and use of these entropy metrics is offered by Delgado-Bonal and Marshak43. We consider both 
ApEnt and SamptEnt in this work.

All metrics are calculated from time series of length 1000 ms, with a sampling frequency of 1000 Hz.

Spatial analysis.  As a means of automatically identifying different types of arrhythmic dynamics, we take 
together the values of the time series metrics discussed in the previous section at different spatial locations. The 
approach is based on the intuition that overall measures of order/disorder in the tissue distinguish between tach-
ycardic and fibrillatory patterns of activation, and the level of spatial similarity in these metrics then provides 
information towards the phenomena driving those dynamics. Initially, to demonstrate the potential in spatially 
analysing RQA (or other) time series metrics, we choose a fine spatial resolution with which to carry out this 
analysis. By selecting one in four node points from the discretisation used for numerical simulation, this results 
in a spacing of 0.4 mm between the locations for which a time series is considered available. We later discuss the 
effect of coarser spatial resolutions.

To quantify spatial similarity, we use the spatial autocorrelation measure known as Moran’s I44. Given a weight 
matrix, W, that defines how different spatial locations relate to one another, this measure is defined

Here N is the total number of spatial sites, and x is the quantity for which the spatial correlation is being calcu-
lated. x̄ = 1

N

∑

i xi is the mean value of this quantity, and wij are the elements of the matrix W each describing 
the level of relationship between sites i and j. So long as the weight matrix is chosen such that sites close together 
are weighted strongly and distant sites are weighted weakly, a Moran’s I value close to the maximal value of +1 
corresponds to large regions of similar values of the quantity of interest, while a value close to the minimum 
value of −1 corresponds to sharp spatial variation in the quantity (negative correlation). A value of zero repre-
sents independence between sites. In this work, the weighting matrix is defined by the Moore neighbourhood 
(surrounding eight points including diagonals), with these neighbours being given full weight and other points 
given zero weight,

I =
N

∑

i

∑

j wij

∑

i

∑

j wij(xi − x̄)
(

xj − x̄
)

∑

i (xi − x̄)2
.

wij =
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1 j ∈ Moore neighbourhood of i
0 otherwise .
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As each site is not its own neighbour, the diagonal elements of the weight matrix wii = 0 . As an example, given 
a set of values x for sites arranged in a 3 × 3 grid, we would have a 9 × 9 matrix given by

Results
RQA measures encode key facets of localised activation patterns.  We first analyse how the range 
of RQA measures we consider respond to different patterns of activation. For this purpose, we simulate the 
complex response of cardiac tissue to very fast pacing (further details in Methods), generating regions that expe-
rience regular activation, regions that experience irregular activation, and yet more intricate dynamics where 
these two phenomena interact (Fig. 1a).

Regular waves propagate outwards from the centre of the tissue (the location of the pacing stimulus), and 
continue undisturbed out towards the upper left corner. In the lower right corner, a stable rotor develops and 
persists throughout the simulation period. Two more transient rotors appear during the course of the simulation, 
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Figure 1.   (a) Membrane potential snapshots, spaced by 143 ms. Regular fast pacing in the centre of a large 
( 12× 12 cm ) slice of tissue creates regular waves radiating out toward the upper left corner. A spiral persists 
in the bottom right corner, and transient rotors appear in the lower left and upper right corners. (b) Tissue 
maps for the RQA measures from left to right, Lmax , RATIO, DET, and LAM. Lmax takes on high values where 
activation is strictly regular, in the upper left corner and where rotor cores persist. RATIO highlights similar 
regions (via lower values), but identifies both rotor tips and the regular activation dynamics surrounding 
them. Measures DET and LAM highlight (via lower values) the regions where activation dynamics are most 
chaotic, characterised by wavelets that form where the main propagating waves interact. DET emerges as most 
appropriate for this purpose, as LAM also reaches low values around the rotor tip in the lower right corner. (c) 
Blurring the original maps via 2D convolution (see main text) makes the regions identified by the different RQA 
measures more visually distinguishable. In particular, the boundaries between regions of regular and fibrillatory 
activation detected by measure DET become much more pronounced.
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in the lower left and upper right corners. The remainder of the tissue experiences the interactions of the different 
waves or wavelets created by these different rotors and the pacing site, exhibiting irregular patterns of activation 
and AP propagation characteristic of fibrillation.

We analyze the RQA measures by calculating their values for the time series of the (dimensionless) membrane 
potential, u, at many sites throughout the tissue, producing spatial maps of these measures. These maps, some 
of which are displayed in Fig. 1b, are then compared with the spatially varying activation dynamics through the 
tissue. We also consider smoothed versions of these spatial maps, obtained by averaging the value of each pixel 
and its immediate neighbours (the 2D convolution principle). This reduces noise and better highlights differences 
in value between larger-scale regions of the tissue (Fig. 1c).

The RQA measure Lmax best detects the regular waves propagating from the centre to the upper left corner, 
and the rotor tips at the bottom of the simulation domain. The measure RATIO acts somewhat oppositely to 
Lmax , taking on higher values where the activation pattern is disordered. In contrast with Lmax , however, regions 
where activation is quite regular but does not occur at a single, fixed frequency are still labelled as ordered (such 
as the lower right corner of the domain). As such, RATIO is less sensitive to regularity violations than Lmax.

The measures DET and LAM are the least sensitive to regularity violations. DET takes on high values (greater 
than 0.9) throughout the entirety of the tissue, but after spatial smoothing, it becomes visually clear that this 
measure takes lower values where the dynamics are the least predictable. That is, the portions of the tissue where 
the activation waves from the different rotors collide and interact with each other. LAM performs a similar role, 
largely matching DET in terms of where it takes on a relatively low or high value.

These different sensitivities help to guide appropriate selection of RQA measure(s), depending on the inves-
tigation being conducted. For example, DET and LAM are best suited for identifying downstream regions of 
wavebreak, unlikely to house any persistent drivers of arrhythmia. On the other hand, in the following section, 
we demonstrate the use of the most sensitive measure Lmax , along with a second RQA measure, to very accurately 
identify locations of stable functional re-entry.

Detection of rotor tips.  As Fig. 1 demonstrates, persistent functional re-entry can manifest in more cha-
otic, fibrillatory dynamics away from the rotor location. Such persistent re-entries are often termed “mother 
rotors”, and are one of the prominent theories of arrhythmias not driven by some external circumstance (for 
example structural heterogeneity due to scarring)45. Others argue that all rotors are liable to appear and disap-
pear, and that the dynamics behind these arrhythmias are better interpreted as a stochastic process of creation 
and annihilation46. Regardless, should such stable, self-sustained spiral waves exist, their accurate detection is 
critical for informing interventions such as ablative surgery. Automatic detection of rotors using spatial infor-
mation remains a topic of interest, although has concentrated more on identification of any spiral wave tips 
(including both sustained rotors and transient tips appearing in fibrillation)47. Here we consider the use of RQA 
metrics specifically for the detection of sustained, spatially-fixed rotors using only local time series information.

As discussed previously, Lmax serves as a very sensitive measure of regularity in a site’s membrane potential 
time series, and is thus an important component in the detection of spiral waves. However, to assess the fixation 
of these spiral waves, we also involve the RQA measure Lmean . By indicating the average length of diagonal lines 
in the RP, Lmean is related to the mean prediction time48 and helps to distinguish between persistent spiral waves 
and other regular dynamics, such as persistent stimulation due to waves of activation emanating from a site of 
regular pacing.

To enable automatic detection using these measures, we select restrictive thresholds for their values that 
pick out only the most evident examples of the types of dynamics they characterise. The regions identified using 
threshold values for these two RQA measures are shown in Fig. 2, together with the intersection of these two 
sets of regions that serves as a detector of stable rotor cores. Here, this identifies the rotor in the bottom right, 
the only one that persists throughout the pictured time window in the simulation. The transient rotors that form, 
but are then annihilated, fail to reach the critical Lmax value. Meanwhile, regions of highly regular dynamics not 
reflective of a rotor are removed by failing to meet the threshold value of Lmean.

Notably, as the value of Lmax represents the longest period of time the system remains in a periodic pattern, 
the threshold value selected for this RQA measure also reflects how long a rotor must persist before it will be 
labelled as stable by the detection process. This provides a degree of control over the detection process to the 
user. As we demonstrate in Figure S1, reducing the threshold value of Lmax presents a means of also identifying 
regions that are occupied by a stable rotor for a reduced amount of time.

Considering the spatial maps seen in Fig. 2, a further potential role for RQA in the detection of sustained 
rotors emerges when there is even limited access to spatially-distributed time series data. As discussed in the 
previous section, RATIO serves as a measure of irregularity, that is less sensitive to minor disruptions of a peri-
odic activation pattern. This allows it to identify (with low values, indicating regularity), the region immediately 
surrounding the stable rotor (second column in Fig. 2b,c). Distant from the rotor (top left), the RATIO value is 
similarly low, as this region is also activated in a regular fashion. The key feature distinguishing a stable rotor, 
at least in the presence of fibrillation, is a region of low RATIO surrounded by considerably higher values, and 
this could be detected by RQA applied to only a few time series collected from locations with the appropriate 
spatial separation. 

Use of RPs of AP traces to classify arrhythmia dynamics.  We next consider a series of simulations 
using smaller slices of tissue (comparable to the size of the human heart atrium), each including a region of 
scarring of varying size and severity. In contrast to the study described in previous sections, characterised by a 
range of different dynamics and their interactions, these simulations using a smaller domain produce activation 
dynamics corresponding to tachycardia or fibrillation that can be classified on the tissue scale (Fig. 3).
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For each simulation, RPs are generated from the membrane potential time series at different locations using 
the approach described in the Methods. The time lag and embedded dimension are found using the nonlin-
earTseries package for the R programming language49. These parameters are used for phase space reconstruc-
tion. According to Takens theorem50, it is possible to use the time series that comes from a dynamic system to 
reconstruct a trajectory using time lag and embedding. Reconstructed trajectories will have the same dynamic 
properties as the original dynamic system. An RP is then constructed from these trajectories. For example, the 
time series X1,X2,X3, . . . ,X10 with time delay 3 and embedding dimension 2 will be reconstructed into a two-
dimensional phase space as (X1,X4), (X2,X5), (X3,X6), . . . , (X7,X10) . The nonlinearTseries package computes the 
time lag using the first zero crossing of the autocorrelation function, and the embedding dimension using L. Cao’s 
algorithm51. The threshold ǫ for recurrence detection is determined to be 3% of the range of the analyzed time 
series. The resultant RPs are pictured in Fig. 4, where they are seen to capture successfully some of the features 
of the different types of activation pattern.

Tachycardia driven by a stable rotor.  Where the re-entry anchors to the region of fibrosis, and the wave does 
not exhibit breakup away from the rotor core, this produces a regular but tachycardic pattern of activation, see 
Fig. 4a. AP morphology is consistent throughout the tissue (except the damaged site), similar to sinus rhythm, 
except for the pacing frequency. The RPs in this case consist of diagonal lines that reveal the periodic nature of 

Figure 2.   Snapshots (spaced by 143 ms) of AP propagation, with regions for which the membrane potential 
timeseries produces an RQA measure ( Lmax , Lmean , or both at the same time) exceeding a threshold value 
highlighted in bright green. These measures correspond to the duration of patterns of periodic activation 
(indicated in an RP by the length of diagonal lines), and as such the value of the Lmax threshold selects how long 
a regular activation pattern must persist to be identified. In this case, the threshold value Lmax ≥ 800 detects 
only the tip of the spatially pinned rotor, when combined also with a threshold Lmean > 15 (fifth and sixth rows, 
highlighted region in the lower right corner within the light blue circle).
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activation. Patterns are superimposed on these lines at regular intervals, created by the portions of the time series 
where the tissue is at rest.

Tachycardia driven by a wandering rotor.  Re-entries that do not fix to a heterogeneity in the tissue and do not 
produce wavebreak also result in tachycardic activation of the tissue. The path of the rotor tip follows a twist-
ing pattern, resulting in inconsistent lengths of time between activation events and as a result, differences in 
morphology between individual APs, see Fig. 4b. RPs associated with these dynamics do not show the many 
regularly spaced diagonal lines indicating periodicity. However, as each completion of the rotor’s twisting path 
does represent a single period, diagonal lines may still appear far away from the main diagonal, with consistent 
spacing.

Fibrillation driven by wavelets.  Fibrillation may also be sustained by many individual wavelets, created and 
annihilated by their unpredictable interactions with each other, see Fig. 4c. In these circumstances, membrane 
potential time series show highly varied AP morphology and activation timing, resulting in RPs consisting only 
of lines along the main diagonal, possibly with distinct blocks corresponding to prolonged periods of rest (exam-
ple in Fig. 4).

Fibrillation driven by a stable rotor.  Wave break can occur distant from an anchored spiral wave re-entry, result-
ing in disordered activation of the surrounded tissue, see Fig. 4d. This results in very distinct membrane potential 
time series depending on the region of the tissue from which readings are taken. RPs distant from the anchored 
re-entry are chaotic, consisting mostly of a line along the main diagonal. In contrast, RPs at the location of the 
spiral wave show many evenly-spaced diagonal lines, characteristic of consistent, regular activation. Owing to 
minor disruptions by the surrounding chaotic dynamics, however, these lines are interrupted in a fashion not 
seen for tachycardia driven by a stable rotor.

Using the membrane potential time series from just two locations, each different class of arrhythmic dynam-
ics can be identified using the RPs leveraging the summarised distinguishing features. However, this relies upon 
qualitative observation and an appropriate selection of the locations to ensure capture of both regularly activated 
and irregularly activated tissue, in the case both are present. Such important locations will not generally be 
known prior to data collection. Consequently, we now examine whether these different arrhythmia dynamics 

Figure 3.   Snapshots (spaced by 100 ms) of each group of AP propagation modelled on a smaller tissue square 
(with the size of 4× 4 cm ). At each tissue site, the time series is analyzed using RQA, OI, RP eigenvalues and 
entropy. Examples of individual time series at the points in red and magenta are given in Fig. 4. The dynamic 
parameters of these time series are then used to classify individual propagations. (A) A spiral wave anchored 
to a highly fibrotic region resulting in sustained re-entry. (B) Meandering spiral wave. (C) Tissue experiencing 
fibrillatory activation. (D) Spiral wave anchored to a scar region (bottom right), that breaks up into wavelets 
away from the main rotor.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11828  | https://doi.org/10.1038/s41598-023-38256-w

www.nature.com/scientificreports/

on the tissue scale can be identified automatically, using the membrane potential time series recorded at many 
points throughout the tissue.

Spatial behaviour of metrics for different arrhythmia mechanisms.  To achieve our goal of distin-
guishing these four important types of arrhythmia in an automated fashion, we first consider how a large range 
of RQA metrics, along with OI and entropy as other measures of time series regularity, vary spatially throughout 
the tissue. We rely on the sophistication of these metrics to capture the intricacies of the different activation pat-
terns and use relatively simple means to characterise this spatial variation. Specifically, we consider the mean 
value of each metric across all measurement locations in the tissue and the spatial correlation of each metric as 
evaluated by Moran’s I. This provides an interpretable and lower-dimensional model for the automatic classifica-
tion we will suggest.

Figure 4.   Membrane potential traces from two distinct locations (depicted in Fig.3) in the tissue (left side) and 
its recurrence plots (right side). (A) A spiral wave anchored to a highly fibrotic region resulting in sustained 
re-entry. The spiral wave regularly stimulates the tissue at both sites. This phenomenon is manifested in RPs 
by long uninterupted diagonal lines. On these diagonals there are small squares created by the plateau phase. 
(B) The regular meandering of the spiral wave manifests by repeating patterns in the time series. Due to the 
long period, uninterrupted lines are not visible in the RP as in the case of an anchored spiral wave. (C) Tissue 
experiencing fibrillatory activation. The time series created by this activation does not contain any regular 
patterns. Therefore long uninterrupted lines are not visible in the RP. The large black square visible in the right 
RP is due to the membrane potential remaining in the resting state between 200 and 400 ms (in the right time 
series). (D) Spiral wave anchored to a scar region (bottom right), that breaks up into wavelets away from the 
main rotor. This propagation manifests irregular patterns (left time series) and regular AP waveforms (right time 
series). However, the surrounding fibrillatory activation disrupts the regularity of these waveforms. As a result, 
the diagonal lines are interrupted.
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In Fig. 5, spatial maps of some of the different RQA measures are displayed, demonstrating how each can be 
used to identify or distinguish the features of the different types of arrhythmia. Across all the metrics, tachycardia 
driven by localised re-entry results in values of the metrics that are spatially homogeneous, suggesting that very 
high values of spatial correlation may identify this pattern of behaviour. In the case of a rotor in a wandering 
orbit around a location, this region is highlighted by both RATIO and LAM. Some metrics also produce multiple 
teardrop shapes around this region, indicating the points where the rotor tip turns around to continue its orbit.

In fibrillatory arrhythmias, the spatiotemporal chaos results in far more irregular spatial maps of the different 
RQA metrics. When fibrillation is driven by an anchored rotor, larger contiguous regions of similar values appear, 
suggesting the possibility that spatial correlation might allow the two different causes of fibrillation considered 
here to be distinguished. To explore this, we now consider how our summarisation measures for the spatial RQA 
maps vary within a larger set of simulations, thus demonstrating the potential for automated classification. We 
give a detailed characterisation of a number of our measures in Table 1.

Figure 5.   Example of calculated tissue maps (with the size of 4× 4 cm ) depicting the spatial distribution of 
selected RQA measures. Rows: A) anchored rotation, B) traveling rotor, C) fibrillation, D) fibrillation with 
anchored rotation. Columns: RQA measures 1) RATIO, 2) LAM, 3) ENTR, and 4) DET. A pattern indicating 
the type of analyzed propagation can be found in all maps. In anchored rotation (A), a spiral created by the 
rotational movement of the AP can be seen. Three spirals formed by the meandering rotor can be found (B) 
(in each spiral, the AP re-entries the tissue). The region around which the AP rotates is highlighted in the 
middle of these spirals. Fibrilatory activation (C) is manifested in maps by irregular, chaotically distributed 
shapes. Fibrillation associated with anchored rotation (D) in the maps (especially in measure RATIO) shows 
larger contiguous regions created by regular propagation made by anchored rotation. If we compare the mean 
values of individual RQA measures, we can see a lower mean value of RATIO (Ratio between DET and REC) for 
anchored rotation (see boxplots in Fig. 6). This phenomenon is caused by the higher value of the RR measure 
due to diagonal lines manifesting periodic motion in RP (see Fig. 4). There is also a high mean value for measure 
LAM (percentage of vertical lines in RP). A regular resting phase causes this phenomenon during anchored 
rotation (manifesting as black squares in RP). This phase can also be partially found in the meandering rotor, 
as its average value in the tissue is the second highest (see Fig. 6). The average value of the ENTR measure is 
the highest for anchored rotation. ENTR achieves high values, as RPs of this type of propagation are the most 
complex (due to diagonal lines and their connected patterns). The Mean value of the DET measure is highest for 
anchored rotation due to the repetitive nature of this propagation. The irregularity of fibrillatory activation is 
reflected in the lowest value of this measure for all the types of analyzed propagation.
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Classification of arrhythmic patterns in cardiac tissue.  In Figs. 6 and 7, boxplots indicate how the 
spatial summaries of a wide range of metrics vary across simulations of the different classes of arrhythmia. 
Numerical values for the four cases used as examples (those depicted in Figs. 3, 4 and  5) are also given in Sup-
plementary Tables S2 and S3. Examining these results, some of the RQA-derived metrics emerge as compelling 
choices for distinguishing fibrillation from tachycardia, and identifying the presence of anchored re-entry. From 
these figures, we see that it is straightforward to distinguish between anchored rotation and fibrillation, which 
any of the presented metrics can differentiate. In particular, the repetitive nature of tachycardia driven by an 
anchored rotor results in much higher mean values for REC. Mean values for RATIO and LAM also capture this 

Figure 6.   Boxplots of mean RQA measures for anchored rotation (1st box, purple), fibrillation with anchored 
rotation (2nd box), fibrillation (3rd box, blue), and travelling rotor (4th box, orange). Depicted values are 
the mean value of the RQA measure, averaged across spatial locations throughout the tissue. The most 
distinguishable of these is anchored rotation, with almost all measures distinguishing this type of propagation. 
The travelling rotor is also easily differentiable. This propagation can be distinguished from other types by 
RATIO, LAM, SampEnt and both OIs. It is most challenging to differentiate between fibrillation and fibrillation 
with anchored rotation. However, these can be distinguished by DET and Lmean . Detailed description of all 
depicted boxplots is given in Table 1.
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distinction whilst differentiating the next most regular type of arrhythmia (tachycardia driven by a wandering 
rotor) from the fibrillatory cases.

Across the many metrics considered, none except perhaps DET can clearly identify the driver for fibrillation 
using its mean value. This is the motivation for also incorporating a measure of spatial correlation, where the 
spatial correlation of both REC and DET emerge as the most compelling means of separating fibrillation driven 
by a fixed “mother” rotor or by many transient wavelets. The most complicated aspect is distinguishing com-
binations of fibrillation and anchored rotation (this last pattern most often reaches the same statistical metric 
values as pure fibrillation). This pattern can be indicated by the mean value of the RQA measure DET and the 
spatial correlation of REC (for this metric a gradual decrease can be observed as fibrillation passes into anchored 
rotation). The travelling rotor also achieves similar values in the measures as in fibrillation. However, it can be 
distinguished from this type of pattern mainly by the spatial correlation of the RQA measure of DET.

Figure 7.   Boxplots of spatial correlation between values of different RQA measures throughout the tissue, as 
measured by Moran’s I, for anchored rotation (1st box, purple), fibrillation with anchored rotation (2nd box), 
fibrillation (3rd box, blue), and travelling rotor (4th box, orange). Anchored rotation can best be distinguished 
using Moran’s I. The most valuable benefit of this analysis can be seen in measures REC and DET. These 
measures indicate fibrillatory activation (DET) and fibrillation with anchored rotation (REC). In most other 
cases, Moran’s I reach similar values.
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In Fig. 8, we demonstrate how by taking the spatial correlation of one of these RQA measures, together with 
an appropriately chosen second summary measure of the spatial RQA map, clear clustering of the different types 
of tachycardia and fibrillation is achieved. Anchored rotation can be easily distinguished from other types of 
cardiac arrhythmia. As can be seen in Fig. 6, this fast and regular motion of AP is differentiable using the mean 
value of almost any RQA measure in the tissue and spatial correlation of RQA measures REC and DET (see 
Fig. 7). Separation of other activation patterns is less straightforward but can be achieved, primarily through 
Moran’s I of REC and DET (Fig. 8).

DET is the overall most promising quantity for this purpose of distinguishing different types of arrhythmia. 
In essence, it serves as a measure of the predictability of a system. In this case, although the monodomain model 
provides a deterministic description of how electrical activity in the tissue evolves, each “system” being analysed 
via RQA is a single spatial point in the tissue. The dynamics at individual points consist of deterministic behaviour 
defined by the ionic model together with a component that is non-deterministic in terms of only local informa-
tion, namely the diffusive transfer of electric potential in/out of the site. The dominance of the deterministic 
component manifests in values of DET close to unity in the bulk of the tissue, and the mean value is highest for 
anchored rotors as their regularity makes the diffusive transfer of membrane potential also become essentially 
deterministic. Where a rotor persists, even if it meanders, this creates distinct regions of higher or lower DET, 

Table 1.   Detailed description of boxplots showing the distribution of analyzed measures in Figs. 6 and 7.

REC : Regular anchored rotation is reflected in the high average value of REC. The value is also slightly increased for the traveling rotor (see Fig. 6 and Supplementary 
Table S2). The spatial correlation of this measure is low for anchored rotation (as opposed to fibrillation and travelling rotor). Spatial correlation can also distinguish the 
combination of fibrillation and anchored rotation from other types of propagation (see Fig. 7 and Supplementary Table S3)

RATIO : This measure reaches a low value for anchored rotation. The measure is also able to distinguish a traveling rotor from fibrillation, including its combination with anchored 
rotation (see Fig. 6 and Supplementary Table S2). The spatial correlation reaches lower values for anchored rotation (see Fig. 7 and Supplementary Table S3). In the traveling rotor, 
RATIO reaches high values in regions between rotor meandering (see Fig. 5)

DET : In Fig. 6 and Supplementary Table S2 it can be seen that the regular rotational movement of the AP around the scar tissue reaches high values of DET. On the contrary, chaotic 
fibrillation results in a reduction in its value (but these differences are very small). This situation is also reflected in the spatial correlation of this measure (see Fig. 7 and Supplemen-
tary Table S3). This phenomenon can be also noticed in Fig. 5. In this figure an even distribution of DET in the map for AP anchored rotation propagation is shown as opposed to 
other propagation types

DIV : Anchored rotation reaches a reduced average value. The spatial correlation of this measure cannot distinguish between different types of AP propagation

Lmax , Lmean , and ENTR : regular movement of the AP around the scar tissue results in a slightly increased value of these measures for anchored rotation. The spatial correlation of this 
measure cannot distinguish between different types of AP propagation

LAM : the average value of LAM is increased not only for anchored rotation but also for the travelling rotor. As a result, these two types of APs can be distinguished from propagation 
where fibrillation is present. Spatial correlation is comparable for all types of APs. RQA maps of individual AP propagations are very similar to the measure RATIO, the region around 
which the traveling rotor meanders is highlighted (see Fig. 5)

Vmax , and Vmean : anchored rotation can be very well distinguished by both the mean value (see Fig. 6 and Supplementary Table S2) and the spatial correlation (see Fig. 7 and Sup-
plementary Table S3). Other types of AP propagation cannot be distinguished from each other

OI1 , and OI2 : using the mean value, the traveling rotor and anchored rotation can be well distinguished (see Fig. 6 and Supplementary Table S2). Regular rotation results in a large 
amount of power placed in the first two highest peaks in the frequency spectrum. This phenomenon is manifested in high OI1 and OI2 anchored rotation. In contrast, the very low 
value of these measures for the traveling rotor indicates irregular AP propagation. Due to the analysis of the short time series of the modeled AP (1 s), this irregularity is not observed. 
Spatial correlation of these measures indicates the ability to distinguish between all analyzed types of AP propagation (see Fig. 7 and Supplementary Table S3). These differences are 
relatively small

eigen1 , and eigen2 : the mean value of the first and second highest eigenvalue of the recurrence plot for anchored rotation ( < 40 ) achieves the highest discrimination from other 
AP types ( > 10 ) among all measures tested. Other types of AP propagation can also be distinguished using this measure. However, the differences in the mean values of eigen1 and 
eigen2 between these types of propagation are minor (approximately 1). Spatial correlation of these measures provides distinction only for anchored rotation measured at eigen1

ApEnt , and SampEnt : the mean approximate entropy calculation is able to distinguish all analyzed types of AP propagation, except the traveling rotor. However, this type of AP prop-
agation can be distinguished by SampEnt. SampEnt and ApEnt show the opposite direction of entropy increase. SampEnt reaches the lowest level for anchored rotation and the highest 
for travelling rotor, while for ApEnt, this trend is reversed (see boxplots in Fig. 6). These boxplots suggest that SampEnt is more appropriate for this data type. It can be assumed that 
regular movement of the AP around the scar should achieve less complexity than irregular fibrillation or a more complex rotor meandering. This assumption is also supported by the 
work of Montesinos et al.54 In this paper, the authors examined the time series of centres of the pressure during a posturography test of different groups of adults. They found that 
SampEnt is more appropriate to distinguish these groups. Spatial correlation of any entropy is the same for all types of APs

Figure 8.   Scatter plots of selected parameters (fibrillation-blue; anchored rotation-purple; fibrillation with 
anchored rotation-green; traveling rotor-orange). These plots show the classification of individual types of 
propagation into clusters. Although Moran’s I achieved similar values for most RQA measures, the evaluation of 
REC and DET using this method contributed significantly to this clustering.
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which are then detected by the Moran’s I value for this metric. In the self-sustaining chaos of fibrillation not 
driven by a rotor, although all points in the tissue become functionally the same, the variance-normalized nature 
of Moran’s I allows it to correctly detect chaotic fluctuations around some baseline value. Self-sustaining fibril-
lation is thereby characterised by particularly low values of spatial correlation of DET.

The first two scatterplots in Fig. 8 demonstrate that it is possible, using only two different measures, to dif-
ferentiate between the different activation patterns. Adding another measure should make it possible to sepa-
rate these clusters even further and thus would be expected to improve performance of a classifier. Given the 
strong visual separation of each class of dynamics, automatic classification with widely-used techniques such 
as k-means52 or support vector machines53 may be feasible. Of course, a full demonstration of classification 
accuracy would require a more numerous set of simulations with good representation of each class, something 
difficult to achieve here due to the high rarity with which some behaviours (in particular fibrillation driven by 
a stable rotor) were observed.

Effects of spatial resolution.  The use of RQA metrics obtained from spatially-distributed time series to 
distinguish different classes of arrhythmia invites the question of what spatial sampling resolution is required 
to achieve this. The spatial mean features can be considered as estimates of the integral expectation over the 
spatial domain, such that their calculation at different spatial resolutions corresponds to different quadrature 
estimates of the same underlying quantity. In contrast, the use of an adjacency-based weight matrix in Moran’s 
I calculations means that a weight of unity is assigned to sites a different distance away when the spatial resolu-
tion changes. As such, the spatial correlation features change more fundamentally when the sites for which time 
series are available become more distant.

In practise, we find that regardless of the type of feature (mean or spatial correlation), the most useful met-
rics displayed in Fig.  8 begin to degrade in their ability to separate the different categories of arrhythmia as the 
sampling sites become more distant, as seen in Figure S2. The mean and spatial correlation of DET values still 
provide a pair of metrics that achieves separation for a separation of spatial sites of �x = 1.2mm . Beyond this, 
it becomes difficult in particular to distinguish meandering rotors from self-sustaining fibrillation. The mean 
value of ENTR throughout the tissue remains a very good means of identifying the regular activation patterns 
produced by an anchored spiral wave, at least up to �x = 4mm , although we expect this to be the easiest case to 
distinguish. Assuming that tachycardic and fibrillatory dynamics can be separated by more easily available, larger-
scale approaches (consider for example the typical electrocardiogram), perhaps most interesting is the separa-
tion of fibrillation that is self-sustained, and fibrillation arising due to wavebreak away from a stable rotor. The 
results in Figure S2 suggest this may still be possible for time series collected from sites separated by �x = 4mm , 
given the consistent and considerable separation of these two classes in terms of the spatial correlation of DET.

Discussion and conclusions
The prevalence of atrial fibrillation is 0.51% of the worldwide population55. Although this disease does not 
immediately endanger patients’ lives, it significantly reduces their quality of life. In addition to pharmacological 
treatment, this disease can also be treated with catheter ablation with the pulmonary vein isolation ablation strat-
egy as its gold standard56. Ablation using CFAEs can also be used as a supplementary treatment. This technique 
aims to define regions in the tissue where pro-arrhythmic phenomena occur.

We simulate the action potential (AP) propagation in cardiac tissue of two sizes. The first scenario is a tissue 
of 12.5× 12.5 cm . In this tissue, we have produced a simultaneous propagation of regular waves, irregular wave 
breaks, and rotational movement of AP. We show that RQA can identify these propagations and find re-entrant 
regions. In particular, via a combination of RQA measures Lmax and Lmean we detect sustained, spatially fixed 
rotors, which are active elements in maintaining atrial fibrillation. We demonstrate how rotors with a lower dura-
tion of fixation to one location can also be detected by reducing the the required threshold for measure Lmax . 
Our results also suggest limited spatial information (time series taken from a few surrounding points) might be 
enough to detect regions occupied by a stable rotor (as opposed to precise detection of its centre), at least in the 
context of fibrillation. Unfortunately, as the spatial map of RATIO in Fig. 5d demonstrates, this usage does not 
generalise to rotors anchored to a complex fibrotic obstacle, as this disrupts measures of regularity.

In the second scenario, we simulate 4× 4 cm sized tissue corresponding to the size of a human heart atrium. 
In these simulations, we observe four types of AP propagation: rotor anchored to fibrosis, rotor moving around 
the tissue, fibrillation, and anchored rotor with fibrillation taking place in its vicinity. We analyze these simula-
tions by RQA, the organizational indices (OI), and the eigenvalues associated with the recurrence plots (RP). We 
investigate these features by their mean value and spatial distribution using Moran’s I and show that combining 
these features makes it possible to distinguish these types of AP propagation in tissue. Spatial correlation has 
proven to be particularly useful in terms of the RQA measure DET (the percentage of recurrence points that form 
diagonal lines). Although the mean value of DET is almost the same for all analyzed types of propagation, their 
spatial correlation differs. Moran’s I reaches the highest value for anchored rotation. If fibrillation also occurs in 
the tissue, this value is reduced. The lowest value is then reached in fibrillation.

The presented methodology reveals a new perspective on the automatic detection of pro-arrhythmic regions 
in cardiac tissue, as the availability of cardiac data continues to improve57. With mapping of a sufficient spatial 
resolution, we can use tissue-averaged values of RQA measures, and their spatial correlation, to uncover the 
extent of spatial organisation of cardiac activity on the tissue scale. This proves to be a key property in distin-
guishing fibrillation driven by self-sustaining chaos, and that produced by an anchored re-entry exhibiting 
wavebreak. Limiting the problem to specifically distinguishing these two classes of arrhythmia, the spatial cor-
relation of the RQA measure DET appears suitable up to a separation of measurement locations of 4 mm. The 
technology of high-resolution voltage mapping is advancing rapidly, with new innovations continuously being 
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developed. For example, in a recent study58, the use of a new high-definition multi-electrode mapping catheter 
with inter-electrode spacing of just 3mm resulted in significant improvements in ventricular tachycardia ablation 
procedures. Additionally, another study25 used a high-resolution multi-electrode mapping catheter with inter-
electrode spacing of only 2mm to accurately pinpoint areas of residual endocardial and epicardial conduction 
across myocardial infarcts, leading to successful myocardial infarction block with ablation. As these technologies 
continue to advance, we can expect further improvements in the accuracy and effectiveness of cardiac mapping.

A limitation of our study is that the membrane potential time series has been treated as available free of noise, 
whilst practical use of such an approach for arrhythmia classification would involve dealing with noisy signals. 
Noise spuriously reduces measures of predictability such as DET, and can hence compromise the differentiation 
of arrhythmia categories presented here. One compelling option to address this is to pre-process the membrane 
potential time series before attempting to calculate any RQA measures, and indeed automated noise removal that 
preserves action potentials has been recently demonstrated59. Options for making RQA robust to any residual 
noise after pre-processing are also available. Careful selection of the recurrence detection threshold, ǫ , in equa-
tion (2) can reduce the influence of noise60, and noise-robust variants of some of the most useful RQA measures 
(in particular DET) are available61.

Our studies use a fixed ionic model, and treat tissue properties (such as conductivity) as homogeneous. 
This is a simplification, as cardiac tissue is naturally heterogeneous62, and variability in cell electrophysiological 
properties is well-established both spatially within a heart chamber63, and between members of a population64. 
RQA is appealing in that its metrics quantify fundamental properties such as the extent of order or periodicity 
evident in a time series, qualities that are expected to remain similar even if the AP changes shape (although 
changes in AP duration might affect periodicity measures). Additionally, our spatial analysis calculates RQA 
quantities separately for each individual location’s time series, and each calculation thus perceives only a single 
conductivity value. Given these observations we anticipate that the RQA-based approach we take here is relatively 
robust to variability in cell and tissue properties, although of course validating this intuition is an important 
direction for future research.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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