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A weighted‑sum chaotic 
sparrow search algorithm 
for interdisciplinary feature 
selection and data classification
LiYun Jia 1, Tao Wang 1, Ahmed G. Gad 2* & Ahmed Salem 3

In today’s data‑driven digital culture, there is a critical demand for optimized solutions that essentially 
reduce operating expenses while attempting to increase productivity. The amount of memory and 
processing time that can be used to process enormous volumes of data are subject to a number of 
limitations. This would undoubtedly be more of a problem if a dataset contained redundant and 
uninteresting information. For instance, many datasets contain a number of non‑informative features 
that primarily deceive a given classification algorithm. In order to tackle this, researchers have 
been developing a variety of feature selection (FS) techniques that aim to eliminate unnecessary 
information from the raw datasets before putting them in front of a machine learning (ML) algorithm. 
Meta‑heuristic optimization algorithms are often a solid choice to solve NP‑hard problems like FS. 
In this study, we present a wrapper FS technique based on the sparrow search algorithm (SSA), a 
type of meta‑heuristic. SSA is a swarm intelligence (SI) method that stands out because of its quick 
convergence and improved stability. SSA does have some drawbacks, like lower swarm diversity and 
weak exploration ability in late iterations, like the majority of SI algorithms. So, using ten chaotic 
maps, we try to ameliorate SSA in three ways: (i) the initial swarm generation; (ii) the substitution 
of two random variables in SSA; and (iii) clamping the sparrows crossing the search range. As a 
result, we get CSSA, a chaotic form of SSA. Extensive comparisons show CSSA to be superior in 
terms of swarm diversity and convergence speed in solving various representative functions from 
the Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolutionary Computation 
(CEC) benchmark set. Furthermore, experimental analysis of CSSA on eighteen interdisciplinary, 
multi‑scale ML datasets from the University of California Irvine (UCI) data repository, as well as three 
high‑dimensional microarray datasets, demonstrates that CSSA outperforms twelve state‑of‑the‑art 
algorithms in a classification task based on FS discipline. Finally, a 5%‑significance‑level statistical 
post‑hoc analysis based on Wilcoxon’s signed‑rank test, Friedman’s rank test, and Nemenyi’s test 
confirms CSSA’s significance in terms of overall fitness, classification accuracy, selected feature size, 
computational time, convergence trace, and stability.

The twenty-first century has become the era of data, with data analysis and utilization visible everywhere in all 
aspects of life, and these data are frequently of high-dimensional  character1–5. However, it is inevitable that this 
data will contain a substantial number of redundant and irrelevant characteristics, increasing the computational 
overhead and risk of overfitting when handled by traditional machine learning (ML)  algorithms6–8. As a result, 
in order to make better use of the data, efficient procedures, such as feature selection (FS), must be developed 
to handle the worthless  features9–11. Wrappers, filters, and embedded FS techniques are commonly used to dif-
ferentiate them based on their evaluation for feature  subsets12. Wrapper-based approaches rely on predefined ML 
algorithms to obtain higher classification accuracy but are very expensive to compute because the ML algorithms 
must be run numerous  times13. On the contrary, while evaluating feature subsets, filter-based approaches do 
not use any ML algorithms, which reduces computing cost but may reduce classification  accuracy14. Embedded 
techniques incorporate FS into model learning, accounting for the influence of the algorithmic model while 
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lowering computational weight; however, these methods have poor generalization ability and significant com-
putational  complexity15.

Because the number of feature subsets varies geometrically due to data dimensionality, it is challenging to pro-
duce adequate results using traditional methods, especially when working on high-dimensional data. To reduce 
the high computational cost caused by the curse of dimensionality, novel feature subset selection approaches can 
be developed based on wrapper swarm intelligence (SI) algorithms due to their robustness and  adjustability16–18. 
SI algorithms have three essential characteristics: flexibility, self-organization, and resilience. These algorithms 
are often inspired by group behavior in nature, such as foraging, anti-predation, and  migration19. Typical SI 
algorithms are ant colony optimization (ACO)20, particle swarm optimization (PSO)21, grey wolf optimizer 
(GWO)22, artificial bee colony (ABC)23, whale optimization algorithm (WOA)24, grasshopper optimization algo-
rithm (GOA)25, harris hawks optimization (HHO)26, and bird swarm algorithm (BSA)27. Other optimization 
algorithms include bat algorithm (BA)28, atom search optimization (ASO)29, and henry gas solubility optimization 
(HGSO)30. In general, meta-heuristic algorithms can effectively handle FS problems, lowering computational 
complexity while achieving a greater classification accuracy, and SI approaches have, therefore, been consistently 
applied to FS  problems31–34. For instance, Hussain et al.35 integrated the sine-cosine algorithm (SCA) into HHO 
to balance the exploration and exploitation capabilities of HHO, and experimental results on several numerical 
optimization as well as FS problems revealed the competitive advantage of the proposed algorithm over other 
SI algorithms. Neggaz et al.36 first applied HGSO to solving FS problems. Experimental results on datasets with 
different feature sizes (from 13 to 15009) showed that HGSO is effective in minimizing feature size, especially 
on high-dimensional data, while preserving maximum classification accuracy.

Nevertheless, SI algorithms tend to fall into local optimization due to: (i) the imbalance between exploration 
and exploitation; and (ii) super  stochasticity37,38. Numerous studies have shown that chaos theory can defeat 
such an issue owing to its characteristics of semi-stochastic, ergodicity, and sensitivity to the initial  swarm39,40. 
Khosravi et al.41 incorporated a new local search strategy and the Piecewise chaotic map, in order to make their 
teaching optimization algorithm capable of tackling high-dimensional FS problems. Zhang et al.42 integrated 
the Gaussian’s mutation and the Logistic chaotic map into the fruit fly algorithm (FFA) to avoid premature con-
vergence and hence strengthen the exploration capability. Sayed et al.43 optimized the crow search algorithm 
(CSA) by using ten chaotic maps to improve its performance in tackling FS problems in terms of classification 
accuracy, number of selected features, and convergence speed. Altay et al.44 replaced the random parameters in 
BSA with ten chaotic maps to boost the exploration ability.

The sparrow search algorithm (SSA) is one of many recently developed SI algorithms. In it, the sparrow is 
a dexterous species that forages through collective collaboration and can effectively escape natural predators. 
SSA was proposed by Xue et al.45 by emulating such properties. When compared to its counterparts, SSA has 
garnered a lot of attention because of its fast convergence, great search efficiency, and  stability46–51. However, SSA 
suffers from the same flaws as other SI algorithms in that swarm diversity and exploratory abilities decrease as 
the algorithm  progresses47,52. As a result, significant enhancements have been made to SSA. To make SSA more 
thorough in exploring the solution space, Xue et al.53 utilized a new neighbor search approach. Gao et al.52 added 
a chaotic map and a mutation evolution technique to SSA to improve its robustness and convergence speed. Gad 
et al.54 binarized SSA using S- and V-shaped functions and included a random relocation approach for transgres-
sive sparrows as well as a new local search strategy to balance its exploration and exploitation capabilities. Lyu 
et al.55 used the Tent chaotic map and the Gaussian mutation technique to improve SSA and apply it to simple 
image segmentation challenges. Furthermore, Yang et al.56 improved SSA with the use of the Sine chaotic map, an 
adaptive weighting approach, and an adaptive t-distribution mutation operator, and then applied the suggested 
technique to numerical optimization problems. However, no one has yet used a chaos-improved SSA to solve 
FS problems. SI algorithm performance can generally be improved in three ways: (i) adjusting their parameters; 
(ii) altering their mechanisms; and (iii) combining them with other  algorithms57. In light of this, this work aims 
to improve SSA by redefining its random parameters and procedures through the use of a chaotic map. The fol-
lowing are the main contributions: 

1. The initial swarm, transgressive positions, and random variables in SSA are processed by using chaotic maps 
to simultaneously boost its swarm diversity and make a good trade-off between exploration and exploitation 
in it. Comparing twenty different chaos-improved SSA variants yields the best chaotic SSA (CSSA).

2. CSSA is compared against twelve peer algorithms, including SSA, ABC, PSO, BA, WOA, GOA, HHO, BSA, 
ASO, HGSO, success-history based adaptive differential evolution with linear population size reduction 
(LSHADE)58 and evolution strategy with covariance matrix adaptation (CMAES)59, on some representa-
tive functions from the Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolutionary 
Computation (CEC) and eighteen multi-scale datasets from the University of California Irvine (UCI) data 
repository as a scaffold to verify its competitiveness. Furthermore, this study also selects seven recently pro-
posed FS methods from the literature to verify that CSSA still has advantages over several state-of-the-art 
algorithms.

3. The capability of CSSA is further tested on three high-dimensional microarray datasets with a number of 
features/genes (dimensions) up to 12500.

4. We empirically and theoretically measure the strengths and weaknesses of CSSA against different algorithms 
to solve FS problems under evaluation metrics, such as overall fitness, classification accuracy, selected feature 
size, convergence, and stability.

5. A post-hoc statistical analysis, including Wilcoxon’s signed-rank test, Friedman’s rank test, and Nemenyi’s 
test, is conducted at a 5% significance level to verify the statistical significance of CSSA over its peers.
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Following that, this article is organized as follows. Section Preliminaries introduces the SSA principle and the 
ten chaotic maps that have been tested with it, whereas Sect. Proposed chaotic sparrow search algorithm (CSSA) 
presents the proposed CSSA. Section Experimental results and discussion compares CSSA to twelve peer algo-
rithms and seven popular FS approaches in the literature, and experimental data on eighteen UCI datasets and 
three high-dimensional microarray datasets are provided and analyzed. Section Discussion discusses CSSA’s 
strengths and limitations. Finally, Sect. Conclusion concludes the paper.

Preliminaries
Sparrow search algorithm (SSA). This section presents a brief history of SSA and its mathematical for-
mulation. SSA is a recently developed SI algorithm that in a mathematical language mimics the foraging and 
anti-predatory behaviors of sparrows. In general, sparrows are classed as producers or scroungers based on their 
fitness values, which are assessed on a regular basis using individuals’ current positions. Producers are largely 
responsible for supplying food to the swarm, whereas scroungers often use producers as a means to get a source 
of food. In addition, as predators approach the swarm, some scouters modify their positions to protect them-
selves and the entire swarm. As a result, the sparrow swarm can continuously gather food while also ensuring 
security for the swarm’s reproduction under various strategies. Different species of sparrows have different roles, 
and the following are the components of SSA and its algorithmic process. 

Step 1  The swarm is initialized. SSA first randomly generates the initial positions of a group of sparrows as 

where N denotes the number of individuals in the swarm, D represents the dimensionality of a decision vector 
(or the number of features in a dataset being processed in the case of FS problems), and xi,j denotes a value taken 
by a sparrow i in a dimension j. SSA judges the quality of obtained solutions via a fitness function 

where a fitness function f(.) is used to evaluate the quality of a given solution xi.
Step 2  The producer is mainly responsible for finding food sources, and its position update rules are 

 SSA improves the quality of its solutions by exchanging information among its consecutive iterations. Eq. (3) 
is used to describe the way information is exchanged between producers as the number of iterations increases. 
t denotes current iteration’s number. Since SSA is not used to find the global optimal solution, but to provide a 
relatively better solution, the maximum number of iterations T is usually used as the condition for the termina-
tion of the algorithm. α usually has a random value in the range [0, 1]. The warning value R2 ∼ U(0, 1) indicates 
the hazard level of a producer’s location, while the safety value ST ∈ [0.5, 1] is a threshold value used to determine 
whether a producer’s location is safe. R2 < ST indicates that the producer is in a safe environment and can search 
extensively; otherwise, the producer is at risky location of predation and needs to fly away. Q is a random param-
eter that follows a normal distribution. L denotes a 1× D matrix with all its elements having values equal to 1.
Step 3  The swarm in SSA can be divided into producers and scroungers. The scroungers renew themselves as 

where gworst and gbest denote the current global worst and best positions, respectively, with the help of which the 
discoverers can improve the convergence speed of the algorithm, but it increases the risk of falling into a local 
optimum. A+ = AT (AAT )−1 , where A denotes a 1× D matrix with each element in it having a value randomly 
set to 1 or −1 . Eq. (4) shows that i > N/2 indicates that scroungers need to fly elsewhere to get food; otherwise, 
scroungers get food form around producers.
Step 4  Scouters are randomly selected from the swarm, typically 10–20% of the total swarm size, and they are 

updated as 

where β takes a random value with normal distribution properties, K is a parameter that takes a random value 
between −1 and 1, σ is a constant to avoid the occurrence of an error when the denominator is 0, and f (gtbest) 
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and f (gtworst) are fitness values of the current global best and worst individuals, respectively. The scouters take 
fitness according to an update criterion, i.e., f (xti ) > f (gtbest) indicates that the sparrow is at risk of predation and 
needs to change its location according to the current best individual, whereas when f (xti ) = f (gtbest) , a sparrow 
needs to strategically move closer to other safe individuals to improve its safety index.
Step 5  Updation and stopping guidelines are applied. The current position of a sparrow is only updated if its 

corresponding fitness is better than that of previous position. If the maximum number of current itera-
tion is not reached, then return to Step 2; otherwise, output position and fitness of the best individual.

Thus, the basic framework of SSA is realized in Algorithm 1.

g
g

g g

Chaotic maps. Chaos is defined as a phenomenon and exhibits some sort of chaotic behavior by using an 
evolution function and have three main characteristics: i) quasi-stochastic; ii) ergodicity; and iii) sensitivity to 
initial  conditions60. If its initial condition is changed, this may lead to a non-linear change in its future behav-
ior. Thus, stochastic parameters in most algorithms can be strengthened by using chaos theory, given that the 
ergodicity of chaos can help explore the solution space more fully. Table 1 presents the mathematical expressions 
for the ten chaotic maps used in this  study44, where x̃ represents the random number generated from a one-
dimensional chaotic map. Figure 1 shows their own visualizations, as well.
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Proposed chaotic sparrow search algorithm (CSSA)
In this study, CSSA is produced by mitigating the deficiencies of SSA through chaotic maps in three aspects: i) 
initial swarm; ii) two random parameters; and iii) clamping the sparrows crossing the search space. The initial 
swarm of SSA is usually generated randomly, and swarm diversity is thus easily eventually lost, leading to a lack 
of extensive exploration of the solution space. This can be regularly amended throughout the iterative process 
by utilizing the ergodic nature of chaos. For the two random parameters, this study considers α in the producer 
(Eq. (3)) and K in the scouter (Eq. (5)). Since α ∈ [0, 1] , it is replaced clearly by any of the ten chaotic maps, 
conditioned that the Chebyshev and Iterative chaotic maps take absolute values. Also, K ∈ [−1, 1] , so this study 
finally settles its replacement with the Chebyshev map. Finally, the position of sparrows going outside the search 
range is also clamped with the help of chaotic maps by redefining it as

where xti,j and x̃ti,j , respectively, represent the original and chaotic positions of a sparrow i at a dimension j and an 
iteration t. By analyzing the experimental results in Section Comparative analysis, the final version of CSSA is 
eventually released with the following final configuration: (i) the Circle map is used to generate the initial swarm, 
replace α in Eq. (3), and relocate the sparrows crossing the search range via Eq. (6); and (ii) the Chebyshev map 
substitutes for K in Eq. (5).

(6)xti,j =

{

xti,j , if xti,j ∈ [0, 1]

x̃ti,j , otherwise
,

Table 1.  Definition of the ten chaotic maps used in this study.

Name Definition Condition Range

Chebyshev map x̃t+1 = cos(k cos−1(x̃t )) k = 2 [−1, 1]
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Figure 1.  Visualizations of the ten chaotic maps used in this study and generated by using Matplotlib 3.5.261 in 
Python 3.9.1262.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14061  | https://doi.org/10.1038/s41598-023-38252-0

www.nature.com/scientificreports/

Only using the best individuals in SSA to guide the evolutionary direction of its swarm improves its con-
vergence speed but also increases the risk of falling into a local optimum. To address this issue, SSA sets some 
random numbers in the algorithm, but the random number generator used is not without sequential correlation 
in successive calls, so swarm diversity still decreases in the late iteration of the algorithm. The randomness and 
unpredictability of chaotic sequences can be then utilized in the generation of random numbers to enhance 
swarm diversity of SSA, thus increasing its exploration capability to scrutinize the search space more  widely63,64. 
Thus, this work uses chaotic maps to generate the initial swarm of SSA and replaces some random numbers in it.

Solution encoding. To our knowledge, binary  vectors65 are substantial to encode features in FS problems, 
and a facilitative scheme (e.g., transfer functions) can be used to convert the continuous search space into a 
binary  one66, in which 0s and 1s are used to organize the position of individuals. All features are initially selected, 
and during subsequent iterations, a feature is denoted as 1 if it is selected; otherwise, it is represented as 0. In 
this study, to construct the binary search space, CSSA is discretized by using a V-shaped transfer  function67 as

Thus, the locations of SSA’s individuals are made up of binary  vectors68 as

where r ∼ U(0, 1) . r < V(·) means that if a feature is previously selected, it is now discarded and vise versa; 
otherwise, a feature’s selection state is preserved.

Flow of CSSA. CSSA first builds an initial swarm using chaotic maps. Depending on the range of the chaotic 
maps, the initial point of the chaotic maps can take any value between 0 and 1, for example, the initial point of 
the Chebyshev and Iterative chaotic maps can take a value between −1 and 1. An initial value x̃0 for a chaotic map 
may have a significant influence of fluctuation patterns on it. So, except for the Tent chaotic map where x̃0 = 0.6 , 
we utilize x̃0 = 0.743,69 for all chaotic maps. Each location of a sparrow represents a possibly viable solution con-
ditioned by clamping inside the range [0, 1] for each of its dimensions.

Second, a determinant is required to assess the quality of each binarized solution we obtain. FS problems 
typically include two mutually exclusive optimization objectives, namely, maximizing classification accuracy 
and lowering selected feature size. Weighted-sum methods are extensively employed in this type of problem due 
to their straightforwardness and simplicity of  implementation70. We employ the weighted-sum approach in the 
fitness function to achieve a good trade-off between the two objectives as

where k-Nearest Neighbor (k-NN, k = 531,54) and Erri represent the classification algorithm that is run on selected 
features in a solution i and the respective classification error rate, respectively. k-NN is commonly used in com-
bination with meta-heuristics in classification tasks for solving FS problems due to its computational  efficiency54. 
|Si| represent the number of useful features CSSA has selected in i. A smaller feature selection ratio indicates that 
the algorithm has more effectively selected useful features. γ represents a weighting coefficient, which is set to 
0.99 according to existing  studies54,71.

Next, the position of sparrows is updated according to Eqs. (3), (4), and (5), provided that α and K are replaced 
with independent random values generated by a given chaotic map. This highly support the search agents of 
CCSA to more effectively explore and exploit each potential region of the search space.

Finally, CSSA terminates based on a predefined termination condition. For optimization problems, there are 
typically three termination conditions: (i) the maximum number of iterations is reached; (ii) a decent solution 
is obtained; and (iii) a predetermined time window. The first condition is used as the termination condition in 
this study. Overall, CSSA is realized in Algorithm 2. For the sake of simplicity, Fig. 2 depicts its flowchart, as well.

(7)V
(

xt+1
i

)

=

∣

∣

∣

∣

2

π
arctan

(π

2
xt+1
i

)

∣

∣

∣

∣

.

(8)xt+1
i,j =

{

¬xti,j , if r < V
(

xt+1
i,j

)

xti,j , otherwise
,

(9)Fiti = γErri + (1− γ )
|Si|

D
,



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14061  | https://doi.org/10.1038/s41598-023-38252-0

www.nature.com/scientificreports/

g
g

g g
g

Computational complexity analysis. Feature selection based on wrapper methods evaluates the candi-
date subsets several times in the process of finding the optimal feature subset, which increases the complexity of 
the algorithm. Therefore, this section analyzes the overall complexity of CSSA in the worst case.

To facilitate the analysis of CSSA’s time complexity, Algorithm 2 is inspected step by step. In the initialization 
phase (Line 2), the position of N sparrows is initialized with O(N) time complexity. In the main loop phase, the 
time complexity of binarization (Line 5), solution evaluation (Line 6), and updating positions and redefining 
variables going outside the bounds (Lines 10–21) is O(N), O(N + N logN + 1) , and O(2N), respectively. Finally, 
finding the globally best individual (Line 6) has a time complexity of O(logN) . Thus, the worst time complex-
ity of CSSA can be defined as O(N)+O(T((N + N + N logN + 1)+ 2N))+O(logN) = O(N)+O(T(4N + N logN + 1))

+O(logN) = O(TN logN) . On the other hand, the space complexity of CSSA is measured by overhead imposed 
by it on memory, i.e., O(ND).

Experimental results and discussion
Dataset description. In this study, experiments are conducted on eighteen UCI datasets listed in Table 2, 
covering different subject areas, including physics, chemistry, biology, medicine,  etc72. Interdisciplinary datasets 
have advantages to evaluate the applicability of CSSA in multiple disciplines.
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Performance metrics. We mainly use four metrics to assess the overall performance of competitors, 
namely, mean fitness ( MeanFit ), mean accuracy ( MeanAcc ), mean number of selected features ( MeanFeat ), and 
mean computational time ( MeanTime ) defined as

where M = 30 is the maximum number of independent runs. f k∗  , Acck∗ , |Sk∗| , and Timek∗ respectively, denote the 
values of fitness, accuracy, selected feature size, and computational time (measured in milliseconds) for the 
globally best solution obtained at run k.

The smaller the values of MeanFit , MeanFeat , and MeanTime , the better the CSSA’s performance. In contrast, 
the higher the value of MeanAcc , the greater the CSSA’s performance. The optimality of the results is validated 
by using the hold-out strategy, in which the training and test sets are realized by randomly dividing each dataset 
into two parts, with the training phase taking up 80% of the dataset and the testing phase taking up the remaining 
20%73. Due to the stochastic nature of meta-heuristic algorithms, they cannot be fully replicated, and the average 
results for each algorithm and single dataset are thus determined over 30 independent runs and realized as the 
final values for all metrics. Furthermore, we use W, T, and L to represent, respectively, the number of wins, ties, 
and losses for CSSA in comparison to its rivals across all datasets experimented. Although this may adequately 
measure the effectiveness of the proposed method, non-parametric statistical tests, such as Wilcoxon’s signed-
rank test, Friedman’s rank test, and Nemenyi’s test, are also required to determine CSSA’s statistical significance 

(10)MeanFit =
1

M

M
∑

k=1

Fitk∗ ,

(11)MeanAcc =
1

M

M
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k=1
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Figure 2.  Flowchart of CSSA.
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over its rivals. They are more appropriate and safer than parametric tests since they assume some, if limited, 
comparability and do not require normal distributions or homogeneity of  variance74. The best overall perfor-
mances are indicated in bold.

Comparative analysis. In this section, the MeanFit of CSSA is compared and examined against the ten 
various chaotic maps listed in Table 1, in order to obtain the finest CSSA version ever. The MeanFit , MeanAcc , 
MeanFeat , and MeanTime are then calculated, and post-hoc statistical analysis is performed on the eighteen UCI 
datasets and three high-dimensional microarray datasets detailed in Tables 2 and 21, respectively, to see if CSSA 
has a competitive advantage over its well-known peers. CSSA is also compared to several state-of-the-art, rel-
evant FS methods in the literature to put the acquired results into context. Furthermore, an ablation study is 
used to do convergence analysis and exploration-exploitation trade-off analysis. The experimental setting has an 
impact on the final results, and Table 3 summarizes the circumstances for all experiments. There are frequently 
multiple hyper-parameters in meta-heuristic algorithms, and their values highly affect the performance of the 
final results to some extent. In this work, all competitors’ algorithm-specific parameter settings match those 
recommended in their respective papers, with no parameter  tuning75. Table 4 only provides the parameters that 
are shared by all algorithms.

Table 2.  Characteristics of eighteen UCI datasets.

Dataset No. of features No. of instances No. of classes Domain

Breastcancer 9 699 2 Biology

BreastEW 30 569 2 Biology

CongressEW 16 435 2 Politics

Exactly 13 1000 2 Biology

Exactly2 13 1000 2 Biology

HeartEW 13 270 2 Biology

IonosphereEW 34 351 2 Electromagnetic

KrvskpEW 36 3196 2 Game

Lymphography 18 148 2 Biology

M-of-n 13 1000 2 Biology

PenglungEW 325 73 7 Biology

SonarEW 60 208 2 Biology

SpectEW 22 267 2 Biology

Tic-tac-toe 9 958 2 Game

Vote 16 300 2 Politics

WaveformEW 40 5000 3 Physics

WineEW 13 178 3 Chemistry

Zoo 16 101 7 Artificial

Table 3.  General experimental settings.

Parameter Value

Operating system Microsoft Windows 11

Central processing unit (CPU) 11th Gen Intel Core i5-1155G7 2.50 GHz

Random-access memory (RAM) 16GB

Software Python 3.9.1262

Table 4.  Common parameters for all experiments.

Parameter Value

Number of independent runs M 30

Maximum number of iterations T 100

Swarm size N 10

Weighting factor γ in Eq. (9) 0.99
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CSSA under different chaotic maps. In this section, the effectiveness of CSSA is investigated under different cha-
otic maps reported in Table 1 with an initial point x̃0 = 0.7 for all chaotic maps to obey fluctuation  patterns43,69 
and exceptionally x̃0 = 0.6 for the Tent map subjecting to its judgment condition. Thus, the best version of CSSA 
can be released. K in Eq. (5) takes a random value in the range [−1, 1] and only the Chebyshev and Iterative maps 
can, among the ten chaotic maps, give a value in such a range. So, CSSA is separately experimented and results 
are recorded for the Chebyshev map instead of K and Iterative map instead of K in Tables 5 and 6, respectively. 
Since the other three improvements, i.e., generating the initial swarm, substituting for α in Eq. (3), and relocating 
transgressive sparrows, can be all amended by using random values in the range [0, 1], they can be clearly tested 
with the ten chaotic maps, conditioned that the Chebyshev and Iterative maps take absolute values. The MeanFit 
in Eq. (10) is taken as a key metric in this experiment to measure the distinction between different versions of 
CSSA based on the ten chaotic maps. We further employ W*, T*, and L* to reflect the advantages and disadvan-
tages of the CSSA’s twenty variants when comparing independently to SSA.

From Tables 5 and 6 combined, when using the Sinusoidal map, for instance, to substitute for α , the experi-
mental results show that CSSA with the Chebyshev and Iterative maps replacing K does not perform effectively, 
with better results than SSA on only 5 and 4 datasets, respectively, indicating that the Sinusoidal map cannot 
improve SSA’s performance. Furthermore, “W|T|L” shows that the Sinusoidal map has neither wins nor ties on 
the eighteen datasets when compared to other maps. The experimental results of CSSA under other maps are 
relatively better than SSA on most datasets. Overall, the best results are obtained when CSSA performs better 
than SSA on a total of 17 datasets, as shown in Table 5. Thus, since we attempt to maximize the performance of 
SSA, this study takes the Chebyshev map instead of K and the Circle map for the other three improvements, in 
order to release the best CSSA variant ever based on chaotic maps.

Contribution of chaos to SSA’s overall performance. Table 7 compares the proposed CSSA with SSA based on 
MeanFit , MeanAcc , MeanFeat , and MeanTime . CSSA gains an outstanding MeanFit advantage for a total of 17 
datasets, and only underperforms SSA on the WineEW dataset. In terms of MeanAcc , CSSA obtains the highest 
accuracy on 14 datasets and similarly for the other 4 ones. In terms of MeanFeat , CSSA also outperforms SSA on 
most datasets. As for MeanTime , CSSA relatively has less computational time over the majority of datasets. On 
the one hand, this implies that the chosen fitness function is able to integrate the role of accuracy and selected 
feature size in classification tasks. Furthermore, it shows that CSSA can balance the exploration and exploitation 
capabilities, shielding SSA from falling into local optimum.

Comparison of CSSA and its peers. This section compares CSSA with twelve well-known algorithms, includ-
ing SSA, ABC, PSO, BA, WOA, GOA, HHO, BSA, ASO, HGSO, LSHADE, and CMAES, in order to determine 
whether CSSA has a competitive advantage over them. A brief description of compared algorithms is given in 
Table 8.

Table 5.  SSA versus CSSA under different chaotic maps in terms of MeanFit , where the Chebyshev map 
substitutes for K in SSA. Significant values are in [bold].

Datasets Gauss Circle Singer Sinusoidal Sine Iterative Logistic Piecewise Chebyshev Tent SSA

Breast cancer 0.0206 0.0203 0.0206 0.0206 0.0207 0.0203 0.0204 0.0205 0.0206 0.0203 0.0208

BreastEW 0.0380 0.0367 0.0368 0.0376 0.0365 0.0369 0.0366 0.0366 0.0367 0.0371 0.0371

CongressEW 0.0259 0.0265 0.0261 0.0263 0.0256 0.0261 0.0260 0.0259 0.0273 0.0249 0.0286

Exactly 0.0046 0.0060 0.0078 0.0197 0.0046 0.0105 0.0063 0.0065 0.0074 0.0070 0.0139

Exactly2 0.2298 0.2211 0.2243 0.2261 0.2231 0.2234 0.2214 0.2211 0.2203 0.2226 0.2264

HeartEW 0.0861 0.0860 0.0890 0.0891 0.0884 0.0873 0.0885 0.0901 0.0891 0.0838 0.0873

IonosphereEW 0.0682 0.0711 0.0732 0.0798 0.0653 0.0694 0.0702 0.0714 0.0692 0.0781 0.0739

Lymphography 0.1690 0.1658 0.1715 0.1786 0.1703 0.1725 0.1679 0.1706 0.1716 0.1714 0.1750

WineEW 0.0032 0.0032 0.0031 0.0034 0.0032 0.0031 0.0032 0.0032 0.0032 0.0031 0.0031

Zoo 0.0034 0.0033 0.0033 0.0034 0.0032 0.0033 0.0032 0.0032 0.0033 0.0032 0.0035

M-of-n 0.0046 0.0048 0.0047 0.0063 0.0057 0.0047 0.0050 0.0046 0.0049 0.0046 0.0052

PenglungEW 0.3713 0.3627 0.3779 0.3761 0.3690 0.3737 0.3821 0.3757 0.3714 0.3517 0.3715

SonarEW 0.0164 0.0188 0.0190 0.0255 0.0186 0.0198 0.0180 0.0205 0.0198 0.0190 0.0225

SpectEW 0.1134 0.1087 0.1141 0.1248 0.1080 0.1125 0.1091 0.1153 0.1119 0.1127 0.1132

Tic-tac-toe 0.1544 0.1552 0.1546 0.1552 0.1546 0.1549 0.1552 0.1555 0.1552 0.1552 0.1563

Vote 0.0022 0.0024 0.0024 0.0030 0.0027 0.0025 0.0023 0.0024 0.0025 0.0023 0.0025

KrVsKpEW 0.0249 0.0256 0.0260 0.0289 0.0248 0.0251 0.0251 0.0252 0.0265 0.0252 0.0279

WaveformEW 0.1543 0.1574 0.1574 0.1629 0.1567 0.1573 0.1581 0.1559 0.1591 0.1574 0.1582

Overall 0.0828 0.0820 0.0840 0.0871 0.0823 0.0835 0.0833 0.0836 0.0833 0.0822 0.0848

W|T|L 2|4|12 1|0|17 0|1|17 0|0|18 0|2|16 0|2|16 0|0|18 0|1|17 1|0|17 2|3|13 0|1|17

W*|T*|L* 14|0|4 17|0|1 14|1|3 5|0|13 14|0|4 14|3|1 15|0|3 14|0|4 14|1|3 15|2|1 –
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Table 9 compares the MeanFit of CSSA with that of its peers. The results show that CSSA obtains the smallest 
MeanFit on 13 datasets and ABC, SSA, and CMAES perform relatively better on the remaining datasets. Thus, 
MeanFit results show that CSSA holds its own merits for most datasets and can perform best in comparison to 
other rivals by adapting itself to classification tasks.

Table 6.  SSA vs. CSSA under different chaotic maps in terms of MeanFit , where the Iterative map substitutes 
for K in SSA. Significant values are in [bold].

Datasets Gauss Circle Singer Sinusoidal Sine Iterative Logistic Piecewise Chebyshev Tent SSA

BreastCancer 0.0205 0.0205 0.0206 0.0206 0.0207 0.0204 0.0206 0.0205 0.0208 0.0203 0.0208

BreastEW 0.0379 0.0367 0.0369 0.0376 0.0365 0.0372 0.0366 0.0365 0.0367 0.0369 0.0371

CongressEW 0.0262 0.0264 0.0253 0.0263 0.0265 0.0251 0.0247 0.0261 0.0278 0.0254 0.0286

Exactly 0.0055 0.0046 0.0104 0.0248 0.0046 0.0083 0.0053 0.0056 0.0067 0.0063 0.0139

Exactly2 0.2275 0.2220 0.2221 0.2267 0.2231 0.2230 0.2212 0.2212 0.2220 0.2221 0.2264

HeartEW 0.0850 0.0877 0.0895 0.089 0.0889 0.0868 0.0895 0.0868 0.0896 0.0850 0.0873

IonosphereEW 0.0652 0.0729 0.0725 0.0792 0.0656 0.0674 0.0691 0.0723 0.0706 0.0772 0.0739

Lymphography 0.1722 0.1671 0.1693 0.1839 0.1681 0.1704 0.1746 0.1716 0.1727 0.1704 0.1750

WineEW 0.0031 0.0032 0.0032 0.0033 0.0032 0.0032 0.0032 0.0032 0.0033 0.0031 0.0031

Zoo 0.0034 0.0033 0.0033 0.0034 0.0032 0.0034 0.0031 0.0033 0.0033 0.0033 0.0035

M-of-n 0.0046 0.0048 0.0047 0.0075 0.0046 0.0046 0.0046 0.0059 0.0046 0.0046 0.0052

PenglungEW 0.3667 0.3714 0.3780 0.3760 0.3581 0.3714 0.3712 0.3648 0.3649 0.3714 0.3715

SonarEW 0.0169 0.0189 0.0205 0.0232 0.0187 0.0230 0.0210 0.0204 0.0182 0.0213 0.0225

SpectEW 0.1145 0.1069 0.1141 0.1229 0.1086 0.115 0.1098 0.1122 0.1148 0.1164 0.1132

Tic-tac-toe 0.1544 0.1552 0.1546 0.1552 0.1546 0.1552 0.1552 0.1546 0.1555 0.1552 0.1563

Vote 0.0022 0.0024 0.0023 0.0028 0.0029 0.0024 0.0028 0.0025 0.0026 0.0023 0.0025

KrVsKpEW 0.0243 0.0254 0.0273 0.0291 0.0252 0.0261 0.0244 0.0255 0.0256 0.0252 0.0279

WaveformEW 0.1551 0.1570 0.1586 0.163 0.1563 0.1570 0.1561 0.1553 0.1594 0.1572 0.1582

Overall 0.0825 0.0826 0.0841 0.0875 0.0816 0.0833 0.0829 0.0827 0.0833 0.0835 0.0848

W|T|L 2|4|12 1|1|16 0|0|18 0|0|18 0|3|15 0|1|17 2|1|15 0|1|17 0|0|18 0|3|15 0|1|17

W*|T*|L* 14|1|3 16|0|2 13|0|5 4|0|14 15|0|3 14|0|4 15|0|3 15|1|2 12|1|5 15|1|2 -

Table 7.  Comparison of CSSA and SSA. Significant values are in [bold].

MeanFit MeanAcc MeanFeat MeanTime

Dataset CSSA SSA CSSA SSA CSSA SSA CSSA SSA

BreastCancer 0.0204 0.0208 0.9857 0.9855 0.6300 0.6400 3420 3316

BreastEW 0.0367 0.0371 0.9649 0.9649 0.1922 0.2367 3723 3934

CongressEW 0.0265 0.0286 0.9762 0.9739 0.2938 0.2833 2379 2410

Exactly 0.0060 0.0139 0.9987 0.9908 0.4641 0.4846 5098 5036

Exactly2 0.2211 0.2264 0.7815 0.7768 0.4795 0.5487 5173 5182

HeartEW 0.0860 0.0873 0.9179 0.9167 0.4769 0.4795 1673 1653

IonosphereEW 0.0711 0.0739 0.9315 0.9286 0.3245 0.3275 3298 3469

Lymphography 0.1658 0.1750 0.8367 0.8278 0.4130 0.4537 1212 1197

WineEW 0.0032 0.0031 1.0000 1.0000 0.3154 0.3103 1322 1303

Zoo 0.0033 0.0035 1.0000 1.0000 0.3250 0.3500 1021 1006

M-of-n 0.0048 0.0052 0.9998 0.9995 0.4667 0.4718 5015 4955

PenglungEW 0.3627 0.3715 0.6378 0.6289 0.4098 0.4089 2196 2239

SonarEW 0.0188 0.0225 0.9849 0.9817 0.3906 0.4400 3082 3065

SpectEW 0.1087 0.1132 0.8938 0.8895 0.3636 0.3833 1860 1902

Tic-tac-toe 0.1552 0.1563 0.8531 0.8517 0.9778 0.9481 4572 4357

Vote 0.0024 0.0025 1.0000 1.0000 0.2396 0.2542 1773 1780

KrVsKpEW 0.0256 0.0279 0.9800 0.9780 0.5750 0.6120 37344 36860

WaveformEW 0.1574 0.1582 0.8468 0.8463 0.5800 0.6042 37761 40405

Overall 0.0820 0.0848 0.9216 0.9189 0.4399 0.4576 6773 6893

W|T|L 17|0|1 1|0|17 14|4|0 0|4|14 14|0|4 4|0|14 8|0|10 10|0|8
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Table 10 compares CSSA with other algorithms in terms of MeanAcc . The comparison results illustrate that 
CSSA obtains the highest MeanAcc on 9 datasets, ties for the highest on 6 datasets, having thus an outstanding 
performance on a total of 15 datasets, while ABC solely have higher MeanAcc than CSSA on only 3 datasets: 
CongressEW, Exactly2, and Tic-tac-toe. On the other hand CMAES only performs better than CSSA on the 
Tic-tac-toe. This may be attributed to the complex nature of data in these datasets.

Table 11 compares CSSA with its peers in terms of MeanFeat . CSSA has the lowest number of features selected 
on 9 datasets, while the other 12 algorithms won only on 9 datasets. Noteworthily, ABC is second to CSSA in 
terms of only MeanFit and MeanAcc , but has no advantages in terms of MeanFeat.

Table 12 compares MeanTime of CSSA over other algorithms. LSHADE has the lowest MeanTime among all 
algorithms, but the algorithm performs poorly in other aspects such as MeanFit , MeanAcc , and MeanFeat . While 
ABC performs slightly better for these metrics, it has the longest run time, reaching almost three times the dura-
tion of CSSA. In addition, although the MeanTime of CSSA is in the middle of the range of all the algorithms 
compared, it has a lower time cost than standard SSA, as shown in Table 7). This shows that CSSA significantly 
improves the performance of SSA without increasing or even decreasing the time complexity of the algorithm. 
This is another aspect that demonstrates the advantage of CSSA over standard one.

Furthermore, Figs. 3 and 4 prove the stability of CSSA in terms of MeanAcc and MeanFeat in means of boxplots. 
As can be seen from Fig. 3, CSSA obtained higher boxplots on all datasets except Exactly2. On the other hand, 

Table 8.  Summary information about the twelve compared optimization algorithms.

Algorithm Acronym Inspiration Year

Particle swarm  optimization21 PSO Intelligent, collective, social behavior of bird and fish flocks 1995

Evolution strategy with covariance matrix  adaptation59 CMAES Adaptively adjusting the covariance matrix 2003

Artificial bee  colony23 ABC Foraging behavior of bees 2005

Bat  algorithm28 BA Behavior of bats during foraging 2010

Success-history based adaptive differential evolution with linear popula-
tion size  reduction58 LSHADE An improved variant of the differential evolution algorithm 2014

Whale optimization  algorithm24 WOA The social behavior of humpback whales 2016

Bird swarm  algorithm27 BSA Strategies of bird flocks during foraging and migration 2016

Grasshopper optimization  algorithm25 GOA Grasshopper strategies for foraging and mating 2017

Atom search  optimization29 ASO Motion behavior of atoms in the search space 2019

Harris hawks  optimization26 HHO Cooperative behavior and chasing style of Harris’ hawks 2019

Henry gas solubility  optimization30 HGSO The behavior governed by Henry’s law 2019

Sparrow search  algorithm45 SSA Foraging and anti-predatory behaviors of sparrows 2020

Table 9.  Comparison of CSSA against its peers in terms of MeanFit. Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

BreastCancer 0.0204 0.0208 0.0202 0.0227 0.0238 0.0208 0.0216 0.0217 0.0213 0.0300 0.0248 0.0213 0.0205

BreastEW 0.0367 0.0371 0.0380 0.0395 0.0417 0.0380 0.0388 0.0389 0.0382 0.0490 0.0467 0.0388 0.0415

CongressEW 0.0265 0.0286 0.0260 0.0317 0.0350 0.0278 0.0291 0.0297 0.0276 0.0383 0.0370 0.0303 0.0295

Exactly 0.0060 0.0139 0.0209 0.1213 0.1695 0.0272 0.0547 0.0399 0.0588 0.2628 0.1651 0.0570 0.0331

Exactly2 0.2211 0.2264 0.2160 0.2276 0.2385 0.2207 0.2251 0.2316 0.2223 0.2433 0.2413 0.2300 0.2280

HeartEW 0.0860 0.0873 0.0864 0.1047 0.1154 0.0903 0.0904 0.0924 0.0912 0.1439 0.1142 0.0923 0.0896

IonosphereEW 0.0711 0.0739 0.0815 0.0973 0.1070 0.0840 0.0902 0.0812 0.0893 0.1116 0.1125 0.0879 0.0957

Lymphography 0.1658 0.1750 0.1674 0.1964 0.2128 0.1848 0.1775 0.1857 0.1861 0.2297 0.2118 0.1881 0.1833

WineEW 0.0032 0.0031 0.0034 0.0052 0.0141 0.0036 0.0036 0.0035 0.0036 0.0322 0.0112 0.0035 0.0039

Zoo 0.0033 0.0035 0.0035 0.0042 0.0126 0.0037 0.0038 0.0038 0.0038 0.0189 0.0054 0.0038 0.0041

M-of-n 0.0048 0.0052 0.0058 0.0480 0.0525 0.0097 0.0158 0.0129 0.0150 0.1397 0.0597 0.0149 0.0099

PenglungEW 0.3627 0.3715 0.3720 0.3983 0.4027 0.3916 0.3895 0.3845 0.3873 0.4024 0.4012 0.3982 0.4017

SonarEW 0.0188 0.0225 0.0251 0.0438 0.0533 0.0278 0.0313 0.0261 0.0305 0.0629 0.0495 0.0322 0.0282

SpectEW 0.1087 0.1132 0.1137 0.1367 0.1516 0.1208 0.1265 0.1297 0.1304 0.1652 0.1527 0.1252 0.1265

Tic-tac-toe 0.1552 0.1563 0.1544 0.1587 0.1671 0.1565 0.1546 0.1592 0.1552 0.1854 0.1584 0.1552 0.1544

Vote 0.0024 0.0025 0.0038 0.0110 0.0169 0.0030 0.0033 0.0047 0.0049 0.0218 0.0181 0.0053 0.0059

KrVsKpEW 0.0256 0.0279 0.0278 0.0386 0.0410 0.0292 0.0323 0.0286 0.0323 0.0708 0.0400 0.0340 0.0281

WaveformEW 0.1574 0.1582 0.1628 0.1787 0.1788 0.1627 0.1685 0.1634 0.1696 0.1902 0.1788 0.1691 0.1632

Overall 0.0820 0.0848 0.0849 0.1036 0.1130 0.0890 0.0920 0.0910 0.0926 0.1332 0.1127 0.0937 0.0915

W|T|L 13|0|5 1|0|17 3|1|14 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0 |18 0|0|18 0|0|18 0|0|18 0|1|17



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14061  | https://doi.org/10.1038/s41598-023-38252-0

www.nature.com/scientificreports/

CSSA has smaller box sizes on all datasets except PenglungEW, SonarEW, and SpectEW, indicating that CSSA 
is more stable in terms of MeanAcc compared to its peers. Figure 4 also shows that CSSA is able to achieve lower 
MeanFeat on most datasets, guaranteeing a lower size of the boxplots. Figure 5 shows MeanAcc and MeanFeat of 
all competitors. It can be seen that CSSA achieves the highest MeanAcc accompanied with the least MeanFeat.

Convergence curves of all competitors. Aforementioned experimental results can effectively describe the subtle 
differences among competing algorithms, but we also need to control the algorithm as a whole. The convergence 
behavior of all competitors is further analyzed. Figure 6 visually compares the MeanFit trace of all competitors 

Table 10.  Comparison of CSSA against its peers in terms of MeanAcc. Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

BreastCancer 0.9857 0.9855 0.9857 0.9838 0.9826 0.9857 0.9850 0.9855 0.9850 0.9757 0.9824 0.9852 0.9857

BreastEW 0.9649 0.9649 0.9649 0.9640 0.9620 0.9646 0.9643 0.9635 0.9649 0.9550 0.9579 0.9646 0.9629

CongressEW 0.9762 0.9739 0.9774 0.9716 0.9678 0.9759 0.9739 0.9728 0.9755 0.9648 0.9667 0.9724 0.9743

Exactly 0.9987 0.9908 0.9840 0.8837 0.8350 0.9777 0.9503 0.9650 0.9462 0.7413 0.8398 0.9724 0.9718

Exactly2 0.7815 0.7768 0.7870 0.7757 0.7640 0.7822 0.7775 0.7713 0.7808 0.7585 0.7617 0.7727 0.7757

HeartEW 0.9179 0.9167 0.9179 0.8988 0.8883 0.9136 0.9136 0.9117 0.9130 0.8593 0.8901 0.9117 0.9148

IonosphereEW 0.9315 0.9286 0.9216 0.9061 0.8962 0.9188 0.9127 0.9216 0.9136 0.8911 0.8911 0.9150 0.9080

Lymphography 0.8367 0.8278 0.8356 0.8067 0.7900 0.8178 0.8256 0.8167 0.8167 0.7733 0.7922 0.8144 0.8200

WineEW 1.0000 1.0000 1.0000 0.9991 0.9898 1.0000 1.0000 1.0000 1.0000 0.9722 0.9944 1.0000 1.0000

Zoo 1.0000 1.0000 1.0000 1.0000 0.9921 1.0000 1.0000 1.0000 1.0000 0.9857 1.0000 1.0000 1.0000

M-of-n 0.9998 0.9995 0.9992 0.9578 0.9532 0.9953 0.9895 0.9922 0.9903 0.8657 0.9468 0.9903 0.9953

PenglungEW 0.6378 0.6289 0.6289 0.6022 0.5978 0.6089 0.6111 0.6156 0.6133 0.5978 0.6000 0.6022 0.6000

SonarEW 0.9849 0.9817 0.9794 0.9603 0.9508 0.9762 0.9730 0.9778 0.9738 0.9413 0.9556 0.9722 0.9770

SpectEW 0.8938 0.8895 0.8895 0.8660 0.8512 0.8821 0.8765 0.8728 0.8722 0.8377 0.8512 0.8778 0.8772

Tic-tac-toe 0.8531 0.8517 0.8542 0.8486 0.8391 0.8514 0.8538 0.8479 0.8531 0.8194 0.8493 0.8531 0.8542

Vote 1.0000 1.0000 0.9994 0.9922 0.9861 1.0000 1.0000 0.9983 0.9983 0.9811 0.9861 0.9978 0.9978

KrVsKpEW 0.9800 0.9780 0.9783 0.9670 0.9645 0.9764 0.9735 0.9773 0.9735 0.9341 0.9667 0.9716 0.9783

WaveformEW 0.8468 0.8463 0.8418 0.8250 0.8254 0.8415 0.8356 0.8411 0.8345 0.8142 0.8258 0.8352 0.8416

Overall 0.9216 0.9189 0.9192 0.9005 0.8909 0.9149 0.9120 0.9128 0.9114 0.8705 0.8921 0.9102 0.9130

W|T|L 9|6|3 0|4|14 3|5|10 0|1|17 0|0|18 0|4|14 0|3|15 0|2|16 0|3|15 0|0|18 0|1|17 0|2|16 0|4|14

Table 11.  Comparison of CSSA against its peers in terms of MeanFeat. Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

BreastCancer 0.6300 0.6400 0.6067 0.6667 0.6633 0.6633 0.6733 0.7300 0.6467 0.6000 0.7367 0.6700 0.6333

BreastEW 0.1922 0.2367 0.3289 0.3889 0.4078 0.2967 0.3478 0.2711 0.3500 0.4467 0.5000 0.3733 0.4733

CongressEW 0.2938 0.2833 0.3604 0.3583 0.3188 0.3854 0.3292 0.2792 0.3333 0.3417 0.4042 0.3021 0.4062

Exactly 0.4641 0.4846 0.5077 0.6103 0.6128 0.5051 0.5564 0.5231 0.5487 0.6744 0.6538 0.5538 0.5231

Exactly2 0.4795 0.5487 0.5179 0.5462 0.4821 0.5000 0.4821 0.5179 0.5308 0.4179 0.5385 0.4897 0.5923

HeartEW 0.4769 0.4795 0.5077 0.4513 0.4821 0.4769 0.4872 0.5000 0.5077 0.4564 0.5410 0.4923 0.5282

IonosphereEW 0.3245 0.3275 0.3833 0.4294 0.4324 0.3588 0.3745 0.3588 0.3765 0.3765 0.4706 0.3784 0.4618

Lymphography 0.4130 0.4537 0.4574 0.4963 0.4870 0.4444 0.4759 0.4241 0.4630 0.5333 0.6093 0.4444 0.5056

WineEW 0.3154 0.3103 0.3385 0.4308 0.3974 0.3564 0.3590 0.3462 0.3615 0.4692 0.5667 0.3538 0.3949

Zoo 0.3250 0.3500 0.3479 0.4167 0.4708 0.3667 0.3792 0.3771 0.3750 0.4792 0.5438 0.3771 0.4062

M-of-n 0.4667 0.4718 0.4949 0.6282 0.6154 0.5051 0.5359 0.5154 0.5462 0.6718 0.7077 0.5308 0.5231

PenglungEW 0.4098 0.4089 0.4624 0.4482 0.4492 0.4389 0.4452 0.3904 0.4466 0.4203 0.5224 0.4414 0.5725

SonarEW 0.3906 0.4400 0.4656 0.4483 0.4550 0.4278 0.4617 0.4100 0.4594 0.4800 0.5500 0.4722 0.5389

SpectEW 0.3636 0.3833 0.4273 0.4045 0.4318 0.4045 0.4258 0.3788 0.3909 0.4515 0.5409 0.4152 0.4924

Tic-tac-toe 0.9778 0.9481 1.0000 0.8815 0.7741 0.9407 0.9926 0.8667 0.9778 0.6667 0.9185 0.9778 1.0000

Vote 0.2396 0.2542 0.3208 0.3271 0.3104 0.3042 0.3250 0.3062 0.3208 0.3125 0.4375 0.3125 0.3688

KrVsKpEW 0.5750 0.6120 0.6269 0.5981 0.5917 0.5843 0.6074 0.6074 0.6111 0.5509 0.6963 0.5861 0.6630

WaveformEW 0.5800 0.6042 0.6225 0.5492 0.5867 0.5817 0.5775 0.6083 0.5683 0.6267 0.6342 0.5958 0.6342

Overall 0.4399 0.4576 0.4876 0.5044 0.4983 0.4745 0.4909 0.4673 0.4897 0.4987 0.5873 0.4870 0.5399

W|T|L 9|0|9 1|0|17 0|0|18 2|0|16 0|0|18 0|0|18 0|0|18 2|0|16 0|0|18 4|0|14 0|0|18 0|0|18 0|0|18
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for the eighteen datasets, where all results are the mean of 30 independent runs per each iteration. It is clear 
that CSSA is more effective compared to SSA on almost all datasets, exhibiting that the convergence of CSSA is 
more accelerated than that of its peers. For most datasets, CSSA is at the bottom of the convergence traces of all 
other eleven algorithms, indicating that CSSA holds a competitive advantage among its rivals in terms of rapid 
convergence while jumping out of the local optima. This may be due to the distinctive characteristics (especially 
ergodicity) of chaotic maps, which help cover the whole search space more conveniently. Thus, CSSA achieves 
better exploratory and exploitative behaviors than its peers.

Statistical test and analysis. Although it is evident from the previous analysis that CSSA has significant 
advantages over its peers, further statistical tests of the experimental results are required to bring rigorousness 
in terms of stability and reliability analyses. In this study, we analyze whether CSSA has a statistically significant 
advantage over its peers based on a p-value by using the Wilcoxon’s signed-rank test at a 5% significance  level76. 
When p<0.05, this indicates a significant advantage of CSSA compared to its peers; otherwise, CSSA has a com-
parable effectiveness among all competitors.

Table 13 shows the results of the Wilcoxon’s signed-rank test for CSSA over other competitors in terms of 
MeanFit , where “+” represents the number of datasets on which CSSA has a significant advantage over its peers, 
“ ≈ ” indicates that CSSA is comparable to the corresponding competing algorithm, and “−” represents the num-
ber of datasets on which CSSA works worse than the algorithm it is being compared against. From Table 13, it 
is clear that CSSA has outstanding advantages over PSO, BA, HHO, and ASO for all the eighteen datasets, and 
over SSA, HGSO, LSHADE, CMAES, GOA, BSA, WOA, and ABC on 7, 17, 17, 16, 16, 16, 15, 14, and 12 datasets, 
respectively. Thus, CSSA outperforms its peers significantly on most datasets.

In addition, we further measures the statistical significance of CSSA relative to other algorithms in terms of 
MeanFit by Friedman’s rank  test77. Assuming that we take a significance level α = 0.05 , Friedman’s rank test is 
measured as

 which is undesirably conservative, and a better statistic is therefore derived  as78

 where ND is the number of datasets, NA is the number of comparative algorithms, and Rk is the average ranking 
of an algorithm k. Thus, we have ND = 18 , NA = 13 , and Rk calculated from Tables 9, 10, 11, and 12. Table 14 
shows Rk , χ2

F , and FF for all algorithms under our four evaluation metrics. FF obeys the F-distribution with 
degrees of freedom NA − 1 and (NA − 1)(ND − 1) . The calculation gives F(12, 204) = 1.80 , and since all FF are 
greater than that value, there is a significant difference among the algorithms in favor of CSSA.

(14)χ2
F =

12ND

NA(NA + 1)

(

NA
∑

k=1

R2
k −

NA(NA + 1)2

4

)

,

(15)FF =
(ND − 1)χ2

F

ND(NA − 1)− χ2
F

,

Table 12.  Results of CSSA compared to its peers in terms of MeanTime. Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

BreastCancer 3420 3316 9351 2958 2337 3249 3431 2646 2973 2834 3322 1977 3042

BreastEW 3723 3934 11900 3729 2975 3843 4805 2688 3804 3843 4239 2439 5960

CongressEW 2379 2410 6822 2253 1783 2362 2795 1806 2190 2285 2480 1388 2252

Exactly 5098 5036 14660 4448 3617 5029 5181 4003 4598 4179 5165 2859 4927

Exactly2 5173 5182 15151 4732 3811 5094 5128 3860 4562 4798 5258 2893 4938

HeartEW 1673 1653 4621 1528 1216 1625 2013 1280 1501 1505 1672 996 1557

IonosphereEW 3298 3469 10371 3362 2652 3465 4330 2509 3260 3485 3825 2051 5507

Lymphography 1212 1197 3305 1110 873 1164 1717 934 1083 1080 1210 735 1143

WineEW 1322 1303 3616 1207 958 1281 1693 1016 1185 1181 1323 797 1235

Zoo 1021 1006 2776 940 740 984 1495 791 918 913 1021 633 970

M-of-n 5015 4955 14514 4378 3474 4984 5088 4036 4539 4069 5124 2927 5001

PenglungEW 2196 2239 6264 2220 1667 2200 11317 1746 2036 2073 2259 1308 5554

SonarEW 3082 3065 8544 2828 2232 3008 4505 2353 2784 2812 3109 1812 4333

SpectEW 1860 1902 5357 1767 1334 1846 2522 1391 1707 1641 1915 1307 1951

Tic-tac-toe 4572 4357 13120 3965 3118 4390 4532 3584 4068 3605 4597 2600 4385

Vote 1773 1780 5021 1663 1312 1738 2206 1360 1622 1673 1832 1102 1704

KrVsKpEW 37344 36860 105984 32993 25971 36520 35067 28855 33384 29439 37637 23292 34776

WaveformEW 37761 40405 99308 38708 33715 37703 37206 28685 35288 56568 37046 22749 33595

Overall 6773 6893 18927 6377 5210 6694 7502 5197 6195 7110 6835 4104 6824

W|T|L 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 18|0|0 0|0|18
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Friedman’s rank test alone is usually unable to compare the significance of the algorithms against each other. 
So, Nemenyi’s test is also  conducted74. This test essentially compares the difference between the average ranking 
of each algorithm with a critical difference CD. If the difference is greater than CD, it indicates that the algorithm 
with the lower ranking is superior; otherwise, there is no statistical difference between the algorithms. CD is 
calculated as

Figure 3.  Boxplot of MeanAcc.
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 where qα is calculated as 3.31, given that NA = 13 and the confidence level α = 0.05 . Thus, CD = 4.30 , and sig-
nificant differences between two algorithms hold when the difference between their average ranking is greater 
than that value.

(16)CD = qα

√

NA(NA + 1)

6ND
,

Figure 4.  Boxplot of MeanFeat.
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Figure 7 shows CD results for all competitors. Vertical dots indicate the average ranking of the algorithms, 
and the horizontal line segment starting with the point indicates the critical difference. A significant difference 
between the algorithms is represented by the absence of intersection of the horizontal line segments of the 
algorithms. As shown, CSSA performs best in terms of MeanFit , MeanAcc and MeanFeat , but performs less well 
in terms of MeanTime . CSSA intersects only SSA, ABC and WOA in terms of MeanFit and only SSA, WOA and 
HHO in terms of MeanFeat , indicating that CSSA is significantly different from most compared algorithms in 
terms of MeanFit and MeanFeat . On the other hand, Fig. 7b shows that CSSA is significantly different from PSO, 
BA, HHO, ASO, HGSO and LSHADE in terms of MeanAcc , and Fig. 7d shows that there is no significant advan-
tage in MeanTime for CSSA, but rather a significant advantage for LSHADE. Furthermore, there is a difference 
between CSSA and SSA though it is not significant. Overall, since the MeanFit among all evaluation metrics can 
synthesize the ability of the algorithm to handle FS problems, Wilcoxon’s signed-rank test, Friedman’s rank test, 
and Nemenyi’s test show that CSSA has a satisfactorily significant performance over its peers.

Merits of CSSA’s main components via an ablation study. In this experiment, five representative 
continuous benchmark functions are picked from the CEC benchmark suite to investigate the impact of the 
different improvements embedded into CSSA in terms of swarm diversity and convergence trace. Their charac-
teristics and mathematical definitions are reported in Table 15.

Since CSSA is specifically proposed for FS problems, its search space is restricted to [0, 1] due to the existence 
of chaotic maps. However, in order to fully demonstrate the advantages of its main components, CSSA should be 
tested in different search spaces for diverse benchmark functions. Therefore, we further analyze CSSA in com-
parison to CSSA without chaotic initial swarm (NINICSSA), CSSA without chaotic random parameters (NPARC-
SSA), and CSSA without chaotic update of transgressive positions (NPOSCSSA). We define parameter settings 
in this experiment for all algorithms as: the maximum number of iterations is 100, swarm size is 30, and D = 50 
for Rosenbock, Ackley, and Rastrigin functions. All results are recorded as the mean of 30 independent runs.

Tables 16, 17, and 18 represent the experimental results of CSSA against NINICSSA, NPARCSSA, and 
NPOSCSSA on the eighteen UCI datasets, respectively. In general, CSSA outperforms other versions of CSSA 
in terms of MeanFit , MeanAcc , and MeanFeat , and it is also clear that CSSA has a significant advantage over 
NPOSCSSA, winning 16, 11, and 15 times in MeanFit , MeanAcc , and MeanFeat , respectively. On the other hand, 
it can be seen that, in terms of MeanTime , CSSA has lower computational overhead compared to NINICSSA, 
NPARCSSA and NPOSCSSACSSA, due to the fact that chaotic map can generate random sequences more simply 
and efficiently. In short, it is clear that the three improvements proposed in this study are indispensable to boost 
the overall performance of CSSA, and redefining transgressive position by a chaotic map is especially important.

Furthermore, we study exploration merits added to CSSA thanks to its main components. We therefore take 
the average distance from the swarm center for all sparrows as a measurement of swarm  diversity79 as

where ẋj is the value at the j-th dimension of the swarm center ẋ . A larger D indicates that the greater the disper-
sion of individuals in the swarm the higher the swarm diversity, and conversely, the lower the swarm diversity.

(17)D =
1

N

N
∑

i=1

√

√

√

√

D
∑

j=1

(

xi,j − ẋj
)2
,

Figure 5.  Bar chart of MeanAcc and MeanFeat.
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Consequently, Fig. 8 compares CSSA with its ablated variants in terms of swarm diversity. As the algorithm 
gradually converges, individuals reach a similar state, leading to a convergence of the swarm to the minimum 
as the iterations  proceed79. It is obvious from Fig. 8 that SSA and NINICSSA always maintain the same swarm 
diversity on the Shekel function, indicating that the algorithm does not evolve and falls into a local optimum, 
while the other CSSA variants with chaotic initial swarm gradually converges, showing that initializing the swarm 
by a chaotic map facilitates the algorithm to jump out of the local optimum. The diversity curves of the remaining 
functions show that the diversity of NPOSCSSA remains basically the same as that of SSA, and it can be seen 
that swarm diversity of NPOSCSSA and SSA is high due to the presence of transgressive individuals. However, 
NPOSCSSA still has its own advantages over SSA. For example, NPOSCSSA converges normally on the Shekel 

Figure 6.  Convergence curves of CSSA and its peers.
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function, indicating that although no updates are made to transgressive sparrows in this version, NPOSCSSA 
is still able to utilize chaotic maps in the initial swarm and random parameters to enable CSSA to escape from 
local optima. On the other hand, swarm diversity of NPARCSSA converged smoothly to the minimum point 
similarly to SSA. It is possible that, like SSA for the Shekel function, a similar situation occurs when NPARCSSA 
deals with more complex functions, but it is only because NPARCSSA retains chaotic initial swarm and chaotic 
position updates, i.e., it cannot thus find its deficiencies when the type of function being optimized is limited. 
In contrast, there is a clear trend in swarm diversity for CSSA when the initial swarm, transgression location, 
and random parameters are all amended by chaotic maps. In summary, each single improvement embedded 
into CSSA has its own merit and is indispensable for swarm diversity and avoidance of falling into local optima.

From Fig. 9 CSSA have the ability of high exploration and low exploitation, so as to initially explore the 
solution space comprehensively, and as the iteration increases, the exploration ability of the algorithm gradu-
ally diminishes whereas the exploitation ability increase, so as to converge to the global optimal solution more 
quickly. As can be seen, the exploratory capability of all algorithms except CSSA in the initial phase of all five 
benchmark functions decreases sharply while the exploitation capability increases sharply. On the contrary, 
CSSA is able to maintain a decent trade-off by preserving high exploration capability in the initial stage and 
exploitation capability later, enabling the algorithm to explore the solution space more fully and search feasible 
regions to find the global optimal solution.

Overall, Figs. 8 and 9 show that: (i) NPOSCSSA has similar performance to SSA but has the ability to avoid 
local optima, as shown in the test results of the Ackley and Shekel functions; (ii) NINICSSA has a risk of pre-
mature convergence but its convergence trend is fluctuating; (iii) NPARCSSA has a smooth convergence trend 
like SSA, which leads to the risk of the algorithm falling into a local optimum when dealing with more complex 
problems; and (iv) CSSA retains the above advantages while avoiding the shortcomings, allowing the algorithm 
to show the best results in terms of swarm diversity, and the balance between exploration and exploitation 
capabilities.

CSSA vs. other state‑of‑the‑art optimizers in the literature. Table 19 compares CSSA with other 
algorithms in the literature, including hybrid evolutionary population dynamics and GOA (BGOA-EPD-Tour)80, 

Table 13.  p-values of Wilcoxon’s signed-rank test on CSSA vs. its peers in terms of MeanFit. Significant values 
are in [bold].

Dataset SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

BreastCancer 3.34E-01 1.57E-01 3.36E-04 4.54E-05 2.36E-01 1.41E-03 7.25E-04 1.16E-02 3.57E-06 2.32E-06 7.60E-03 1.00E+00

BreastEW 2.89E-02 3.41E-06 1.68E-06 2.52E-06 5.90E-05 1.70E-06 9.71E-04 2.63E-06 1.72E-06 1.70E-06 2.00E-06 2.00E-06

CongressEW 2.06E-02 2.64E-01 4.88E-05 3.39E-06 5.44E-04 7.95E-03 1.89E-03 4.54E-02 1.68E-06 2.15E-06 9.50E-05 7.30E-05

Exactly 6.30E-02 2.11E-03 2.55E-06 2.56E-06 1.74E-03 4.99E-06 1.31E-03 1.76E-05 1.73E-06 1.72E-06 1.20E-05 4.28E-04

Exactly2 2.97E-02 6.76E-02 1.79E-02 1.23E-05 9.04E-01 7.09E-02 4.59E-04 5.74E-01 5.88E-06 7.98E-06 1.27E-03 5.45E-03

HeartEW 2.63E-01 1.92E-01 2.01E-05 1.70E-06 2.40E-02 1.35E-02 3.70E-03 4.93E-03 1.71E-06 3.43E-06 3.60E-04 1.20E-02

IonosphereEW 2.10E-01 2.04E-04 2.00E-06 1.72E-06 4.35E-05 3.17E-06 2.33E-03 1.63E-05 1.73E-06 1.73E-06 2.00E-05 2.00E-06

Lymphography 1.91E-02 2.79E-01 5.53E-06 3.77E-06 5.51E-05 4.24E-03 1.14E-03 1.04E-05 1.71E-06 1.72E-06 8.00E-05 1.60E-04

WineEW 3.17E-01 2.01E-02 2.66E-05 3.91E-05 5.10E-03 3.16E-03 1.06E-02 1.83E-03 1.65E-06 1.62E-06 5.49E-03 1.51E-04

Zoo 2.70E-03 4.51E-03 5.65E-06 3.50E-06 1.57E-03 4.15E-05 6.57E-04 9.89E-04 3.54E-06 1.55E-06 9.00E-05 1.40E-05

M-of-n 2.76E-01 1.35E-02 2.52E-06 8.11E-06 2.07E-02 8.82E-05 1.17E-03 1.27E-04 1.73E-06 1.72E-06 3.33E-04 6.33E-04

PenglungEW 3.44E-01 7.97E-03 1.73E-06 2.60E-06 2.83E-05 1.60E-05 1.43E-02 1.02E-05 2.84E-05 1.73E-06 2.00E-06 2.00E-06

SonarEW 4.74E-02 2.17E-04 1.73E-06 2.11E-06 2.34E-04 1.72E-06 1.57E-02 3.49E-06 1.73E-06 1.73E-06 2.00E-06 4.80E-05

SpectEW 3.49E-01 4.62E-02 5.28E-06 1.72E-06 2.55E-03 2.83E-05 1.38E-04 8.78E-06 1.72E-06 1.72E-06 1.41E-04 2.30E-05

Tic-tac-toe 1.80E-01 1.80E-01 1.03E-02 1.74E-04 2.12E-01 4.14E-01 1.53E-02 1.00E-00 3.56E-06 8.48E-02 1.00E+00 1.02E-01

Vote 2.98E-01 7.31E-05 2.05E-06 3.32E-06 7.81E-04 2.40E-04 1.09E-04 2.81E-05 1.65E-06 1.35E-06 4.60E-05 3.00E-06

KrVsKpEW 4.83E-03 2.01E-02 2.13E-06 1.73E-06 1.14E-02 3.40E-05 3.61E-03 9.78E-06 1.73E-06 1.73E-06 3.00E-06 5.67E-03

WaveformEW 5.17E-01 2.51E-04 1.73E-06 1.73E-06 2.10E-03 6.98E-06 9.49E-05 1.92E-06 1.73E-06 1.73E-06 7.00E-06 1.01E-04

+|≈|− 7|11|0 12|6|0 18|0|0 18|0|0 15|3|0 16|2|0 18|0|0 16|2|0 18|0|0 17|1|0 17|1|0 16|2|0

Table 14.  Results of Friedman’s rank test on CSSA vs. its peers.

Metric CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES χ
2

F FF

MeanFit 1.50 2.94 2.64 9.72 11.58 4.72 6.39 6.72 6.69 12.89 11.36 7.33 6.50 182.35 92.11

MeanAcc 2.17 3.67 2.83 9.56 11.58 4.86 6.25 6.64 6.50 12.94 10.94 7.42 5.64 163.41 52.83

MeanFeat 2.25 4.28 7.39 7.92 7.67 4.81 7.39 4.86 7.19 7.56 12.19 6.81 10.69 97.34 13.94

MeanTime 9.17 9.06 12.94 5.89 2.22 7.89 11.11 2.83 4.94 5.44 10.44 1.00 8.06 188.57 116.85
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hybrid gravitational search algorithm (HGSA)81, improved HHO (IHHO)82, a self-adaptive quantum equilib-
rium optimizer with ABC (SQEOABC)83, binary coyote optimization algorithm (BCOA)84, chaotic binary group 
search optimizer (CGSO5)85, and chaos embed marine predator algorithm (CMPA)86.

In order to verify whether CSSA has a competitive advantage over similar algorithms, two recently proposed 
chaotic algorithms, i.e., CGSO5 and CMPA, are chosen among compared algorithms. From Table 19, MeanAcc 
of CSSA is higher than that of CGSO5 and CMPA on all datasets, except for the CongressEW dataset where it is 
inferior to CMPA. In addition, the comparison results with other non-chaotic algorithms also show that CSSA 
has outstanding advantages. In a summary, a comparison with FS literature works demonstrates usefulness and 
superiority of CSSA over other several, state-of-the-art methods.

CSSA on high‑dimensional microarray datasets: The additional experiment. To verify the scal-
ability and robustness of CSSA to tackle FS problems, we further test three high-dimensional microarray data-
sets having up to 12000 features, namely, 11_Tumors, Brain_Tumor2 and Leukemia2. They are all of high feature 
size, low sample size, as reported in Table 21. Since high-dimensional data can cause significant time overhead, 

Figure 7.  Nemenyi’s test on CSSA against its peers in terms of MeanFit , MeanAcc , MeanFeat , and MeanTime.

Table 15.  Five representative CEC benchmark functions with diverse characteristics.

Function Characteristics Mathematical expression Limits fmin

Ackley
⋅ Uni-modal
⋅ Differentiable
⋅ Convex
⋅ Non-separable

f (x) = −20 exp
(

−0.2
√

1
D

∑D
j=1 x

2
j

)

− exp
(

1
D

∑D
j=1 cos (2πxj)

)

+ 20+ exp (1) [−32.768, 32.768] 0

Rastrigin
⋅ Multi-modal
⋅ Differentiable
⋅ Convex
⋅ Separable

f (x) = 10d +
∑D

j=1[x
2
j − 10 cos (2πxj)] [−5.12, 5.12] 0

Rosenbrock
⋅ Multi-modal
⋅ Differentiable
⋅ Non-convex
⋅ Non-separable

f (x) =
∑D−1

j=1 [100(xj+1 − x2j )
2 + (xj − 1)2] [−2.048, 2.048] 0

Shekel ⋅ Multi-modal

f (x) = −
∑10

i=1

(

Bi +
∑4

j=1(xj − Cji)
2
)−1

,

B = 1
10 (1, 2, 2, 4, 4, 6, 3, 7, 5, 5)

T,

C =







4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6







[0,10] −10.5364

Himmelblau ⋅ Multi-modal
⋅ Non-convex f (x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 [−5, 5] 0
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we prefer to use the experimental settings in Table 20. Tables 22, 23, 24, and 25 show the experimental results 
in terms of MeanFit , MeanAcc , MeanFeat , and MeanTime , respectively. It is evident that CSSA has outstanding 
advantages over other algorithms in terms of MeanFit and MeanAcc , but its performance in terms of MeanFeat is 
relatively poor, which can be justified by the high MeanAcc obtained. On the other hand, all algorithms have a 

Table 16.  Comparison of CSSA and NINICSSA in terms of MeanFit , MeanAcc , MeanFeat , and MeanTime. 
Significant values are in [bold].

Dataset

MeanFit MeanAcc MeanFeat MeanTime

CSSA NINICSSA CSSA NINICSSA CSSA NINICSSA CSSA NINICSSA

BreastCancer 0.0204 0.0206 0.9857 0.9857 0.6300 0.6467 3420 3289

BreastEW 0.0367 0.0367 0.9649 0.9649 0.1922 0.2000 3723 3975

CongressEW 0.0265 0.0240 0.9762 0.9789 0.2938 0.3188 2379 2298

Exactly 0.0060 0.0067 0.9987 0.9980 0.4641 0.4692 5098 4964

Exactly2 0.2211 0.2232 0.7815 0.7797 0.4795 0.5026 5173 4993

HeartEW 0.0860 0.0884 0.9179 0.9154 0.4769 0.4667 1673 1650

IonosphereEW 0.0711 0.0670 0.9315 0.9357 0.3245 0.3333 3298 3341

Lymphography 0.1658 0.1691 0.8367 0.8333 0.4130 0.4074 1212 1192

WineEW 0.0032 0.0031 1.0000 1.0000 0.3154 0.3128 1322 1303

Zoo 0.0033 0.0033 1.0000 1.0000 0.3250 0.3271 1021 1011

M-of-n 0.0048 0.0047 0.9998 1.0000 0.4667 0.4667 5015 4983

PenglungEW 0.3627 0.3671 0.6378 0.6333 0.4098 0.4116 2196 2374

SonarEW 0.0188 0.0165 0.9849 0.9873 0.3906 0.3889 3082 3179

SpectEW 0.1087 0.1100 0.8938 0.8926 0.3636 0.3667 1860 1972

Tic-tac-toe 0.1552 0.1560 0.8531 0.8521 0.9778 0.9556 4572 4524

Vote 0.0024 0.0024 1.0000 1.0000 0.2396 0.2375 1773 1763

KrVsKpEW 0.0256 0.0256 0.9800 0.9801 0.5750 0.5898 37344 38786

WaveformEW 0.1574 0.1583 0.8468 0.8460 0.5800 0.5825 37761 38316

Overall 0.0820 0.0824 0.9216 0.9213 0.4399 0.4436 6773 6884

W|T|L 9|4|5 5|4|9 8|5|5 5|5|8 11|1|6 6|1|11 7|0|11 11|0|7

Table 17.  Comparison of CSSA and NPARCSSA in terms of MeanFit , MeanAcc , MeanFeat , and MeanTime. 
Significant values are in [bold].

Dataset

MeanFit MeanAcc MeanFeat MeanTime

CSSA NPARCSSA CSSA NPARCSSA CSSA NPARCSSA CSSA NPARCSSA

BreastCancer 0.0204 0.0202 0.9857 0.9857 0.6300 0.6067 3420 3272

BreastEW 0.0367 0.0374 0.9649 0.9649 0.1922 0.2689 3723 3982

CongressEW 0.0265 0.0256 0.9762 0.9774 0.2938 0.3250 2379 2330

Exactly 0.0060 0.0046 0.9987 1.0000 0.4641 0.4615 5098 4958

Exactly2 0.2211 0.2216 0.7815 0.7813 0.4795 0.5128 5173 4988

HeartEW 0.0860 0.0832 0.9179 0.9210 0.4769 0.5000 1673 1653

IonosphereEW 0.0711 0.0644 0.9315 0.9376 0.3245 0.2578 3298 3284

Lymphography 0.1658 0.1726 0.8367 0.8300 0.4130 0.4278 1212 1193

WineEW 0.0032 0.0031 1.0000 1.0000 0.3154 0.3077 1322 1308

Zoo 0.0033 0.0034 1.0000 1.0000 0.3250 0.3438 1021 1015

M-of-n 0.0048 0.0046 0.9998 1.0000 0.4667 0.4615 5015 4992

PenglungEW 0.3627 0.3848 0.6378 0.6156 0.4098 0.4172 2196 2428

SonarEW 0.0188 0.0213 0.9849 0.9825 0.3906 0.4011 3082 3220

SpectEW 0.1087 0.1192 0.8938 0.8833 0.3636 0.3742 1860 2007

Tic-tac-toe 0.1552 0.1555 0.8531 0.8528 0.9778 0.9704 4572 4473

Vote 0.0024 0.0028 1.0000 1.0000 0.2396 0.2792 1773 1777

KrVsKpEW 0.0256 0.0288 0.9800 0.9771 0.5750 0.6102 37344 38159

WaveformEW 0.1574 0.1570 0.8468 0.8472 0.5800 0.5733 37761 37240

Overall 0.0820 0.0839 0.9216 0.9198 0.4399 0.4500 6773 6793

W|T|L 10|0|8 8|0|10 7|5|6 6|5|7 11|0|7 7|0|11 6|0|12 12|0|6
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huge overhead in terms of MeanTime , which is normally caused by the limitations of the wrapper-based methods 
themselves. This can be improved by combining other methods (e.g., filter-based methods).

Discussion
In order to cope with issues encountered in standard SSA, such as early loss of swarm diversity and hence easily 
falling into local optima, this study integrates chaotic maps into SSA to produce CSSA. The effectiveness of CSSA 
has been demonstrated through many comparative and analytical studies. The main purpose of this section is to 
give a brief summary of the strengths and weaknesses of CSSA.

CSSA has the following advantages: 

Table 18.  Comparison of CSSA and NPOCSSA in terms of MeanFit , MeanAcc , MeanFeat , and MeanTime. 
Significant values are in [bold].

Dataset

MeanFit MeanAcc MeanFeat MeanTime

CSSA NPOSCSSA CSSA NPOSCSSA CSSA NPOSCSSA CSSA NPOSCSSA

BreastCancer 0.0204 0.0208 0.9857 0.9855 0.6300 0.6400 3420 3207

BreastEW 0.0367 0.0372 0.9649 0.9649 0.1922 0.2433 3723 3899

CongressEW 0.0265 0.0244 0.9762 0.9785 0.2938 0.3188 2379 2324

Exactly 0.0060 0.0087 0.9987 0.9960 0.4641 0.4744 5098 4848

Exactly2 0.2211 0.2273 0.7815 0.7752 0.4795 0.4718 5173 4981

HeartEW 0.0860 0.0890 0.9179 0.9148 0.4769 0.4667 1673 1651

IonosphereEW 0.0711 0.0776 0.9315 0.9249 0.3245 0.3255 3298 3532

Lymphography 0.1658 0.1718 0.8367 0.8311 0.4130 0.4556 1212 1178

WineEW 0.0032 0.0033 1.0000 1.0000 0.3154 0.3333 1322 1296

Zoo 0.0033 0.0034 1.0000 1.0000 0.3250 0.3417 1021 997

M-of-n 0.0048 0.0056 0.9998 0.9992 0.4667 0.4744 5015 4916

PenglungEW 0.3627 0.3758 0.6378 0.6244 0.4098 0.4019 2196 2397

SonarEW 0.0188 0.0213 0.9849 0.9825 0.3906 0.3978 3082 3187

SpectEW 0.1087 0.1198 0.8938 0.8827 0.3636 0.3652 1860 2006

Tic-tac-toe 0.1552 0.1546 0.8531 0.8538 0.9778 0.9926 4572 4279

Vote 0.0024 0.0029 1.0000 1.0000 0.2396 0.2896 1773 1762

KrVsKpEW 0.0256 0.0258 0.9800 0.9800 0.5750 0.6000 37344 38350

WaveformEW 0.1574 0.1581 0.8468 0.8462 0.5800 0.5850 37761 41030

Overall 0.0820 0.0849 0.9216 0.9189 0.4399 0.4543 6773 6991

W|T|L 16|0|2 2|0|16 11|5|2 2|5|11 15|0|3 3|0|15 7|0|11 11|0|7

Figure 8.  Swarm diversity curves.
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Figure 9.  Exploration-exploitation trade-off curves.

Table 19.  MeanAcc of CSSA compared to other optimizers in the literature. Significant values are in [bold].

Dataset CSSA BGOA-EPD-Tour HGSA IHHO SQEOABC CGSO5 CMPA BCOA

BreastCancer 0.9857 0.9800 0.9740 0.9341 0.97429 0.9590 0.9600 0.9632

BreastEW 0.9649 0.9470 0.9710 0.9114 0.93721 0.9690 0.9400 −

CongressEW 0.9762 0.9640 0.9660 0.9483 0.9679 0.9710 0.9800 −

Exactly 0.9987 0.9990 1.0000 0.7167 1.0000 0.9740 0.8900 −

Exactly2 0.7815 0.7800 0.7700 0.7940 0.7447 0.7840 0.7800 −

HeartEW 0.9179 0.8330 0.8560 − 0.8059 0.8320 0.8200 −

IonosphereEW 0.9315 0.8990 0.9340 0.8164 0.9451 0.9200 0.9300 −

Lymphography 0.8367 0.8680 0.8920 0.7922 0.8847 − 0.8700 −

WineEW 1.0000 0.9890 0.9890 − 0.9775 − 0.9700 −

Zoo 1.0000 0.9930 0.9320 0.9889 0.9608 0.9630 0.9800 0.9724

M-of-n 0.9998 1.0000 1.0000 0.9900 1.0000 0.9560 − −

PenglungEW 0.6378 0.9270 0.9560 − 0.9946 0.9220 0.9700 −

SonarEW 0.9849 0.9120 0.9580 0.6968 0.9064 0.9400 0.900 0.8389

SpectEW 0.8938 0.8260 0.9190 − 0.8741 0.8540 0.8300 0.8683

Tic-tac-toe 0.8531 0.8080 0.7880 0.7885 0.7829 0.8120 0.7800 −

Vote 1.0000 0.9660 0.9730 0.9228 0.9793 0.9700 0.9700 −

KrVsKpEW 0.9800 0.9680 0.9780 0.9348 0.9817 0.9530 0.9700 −

WaveformEW 0.8468 0.7370 0.8150 0.7764 0.8067 0.8020 0.7900 −

W|T|L 8|0|10 0|1|17 3|2|13 1|0|13 3|2|13 0|0|16 1|0|16 0|0|4

Table 20.  Special settings for high-dimensional data experiments.

Parameter Value

Operating system Linux (Rocky 8.5)

CPU Four Xeon 6240/18 cores 2.6 GHz (72 cores in total)

RAM 512GB

Software Python 3.9.787



24

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14061  | https://doi.org/10.1038/s41598-023-38252-0

www.nature.com/scientificreports/

Table 21.  High-dimensional microarray datasets.

Dataset No. of features No. of instances No. of classes

11_Tumors 12533 174 11

Brain_Tumor2 10367 50 5

Leukemia2 11225 72 3

Table 22.  Comparison of CSSA against its peers in terms of MeanFit on high-dimensional datasets. Significant 
values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

11_Tumors 0.1454 0.1530 0.1581 0.1823 0.2101 0.1691 0.1710 0.1557 0.1738 0.1878 0.2037 0.1701 0.1857

Brain_Tumor2 0.0445 0.0707 0.0612 0.1039 0.1266 0.0742 0.0875 0.0774 0.0808 0.1003 0.1112 0.0907 0.1022

Leukemia2 0.0047 0.0045 0.0049 0.0046 0.0040 0.0047 0.0049 0.0046 0.0048 0.0049 0.0050 0.0049 0.0061

Overall 0.0649 0.0761 0.0747 0.0969 0.1136 0.0827 0.0878 0.0792 0.0865 0.0977 0.1066 0.0886 0.0980

Friedman rank 2.5 2.33 5.17 7.83 9 4.83 7.83 3.83 7 9.83 12 7.83 11

Final rank 2 1 5 7 10 4 7 3 6 11 13 7 12

Table 23.  Comparison of CSSA against its peers in terms of MeanAcc on high-dimensional datasets. 
Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

11_Tumors 0.8581 0.8505 0.8457 0.8210 0.7924 0.8343 0.8324 0.8476 0.8295 0.8152 0.8000 0.8333 0.8190

Brain_Tumor2 0.9600 0.9333 0.9433 0.9000 0.8767 0.9300 0.9167 0.9267 0.9233 0.9033 0.8933 0.9133 0.9033

Leukemia2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Overall 0.9394 0.9279 0.9297 0.9070 0.8897 0.9214 0.9164 0.9248 0.9176 0.9062 0.8978 0.9155 0.9074

Friedman rank 3 4 4.33 9 11 5.33 7 5 7 9.17 10.33 7 8.83

Final rank 1 2 3 10 13 5 6 4 6 11 12 6 9

Table 24.  Comparison of CSSA against its peers in terms of MeanFeat on high-dimensional datasets. 
Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

11_Tumors 0.4944 0.4946 0.5333 0.5010 0.4597 0.5014 0.5060 0.4888 0.5048 0.4881 0.5668 0.5067 0.6553

Brain_Tumor2 0.4863 0.4729 0.5094 0.4854 0.4462 0.4889 0.4979 0.4789 0.4946 0.4615 0.5596 0.4942 0.6499

Leukemia2 0.4711 0.4511 0.4940 0.4617 0.3971 0.4688 0.4911 0.4637 0.4819 0.4864 0.5027 0.4869 0.6088

Overall 0.4839 0.4729 0.5122 0.4827 0.4343 0.4864 0.4983 0.4771 0.4938 0.4787 0.5430 0.4959 0.6380

Friedman rank 5.33 3.33 11 4.67 1 6.33 9.67 3.67 8 4 12 9 13

Final rank 6 2 11 5 1 7 10 3 8 4 12 9 13

Table 25.  Comparison of CSSA against its peers in terms of MeanTime on high-dimensional datasets. 
Significant values are in [bold].

Dataset CSSA SSA ABC PSO BA WOA GOA HHO BSA ASO HGSO LSHADE CMAES

11_Tumors 83526 82066 245040 85060 63279 84592 456043 63657 74359 82176 84728 47081 13595806

Brain_Tumor2 58936 59218 168041 61423 44598 58373 355852 45270 52848 58053 61458 33392 8316136

Leukemia2 65329 65784 187711 68378 49587 65169 386624 50568 57887 60323 68963 36942 10039133

Overall 69264 69023 200264 71620 52488 69378 399506 53165 61698 66851 71717 39138 10650358

Friedman rank 7 7 11 9.33 2 6.67 12 3 4 5.33 9.67 1 13

Final rank 7 7 11 9 2 6 12 3 4 5 10 1 13
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1. The improvement effect of ten chaotic maps on SSA is researched completely in this work, and thus the degree 
of contribution of diverse chaotic maps is examined from a global perspective. The best CSSA determined 
in this manner can avoid the one-sidedness of a single chaotic map and serve as a reference for subsequent 
research.

2. CSSA improves the performance of SSA while reducing its computational cost. From Table 7, it can be seen 
that CSSA significantly improves the performance of the algorithm in terms of MeanFit , MeanAcc , MeanFeat , 
and MeanTime without highly increasing the computational cost.

3. Tables 9, 10, 11, and 12 describe in detail the results of CSSA compared with twelve well-known algorithms in 
terms of MeanFit , MeanAcc , MeanFeat , and MeanTime . Figures 3, 4, and 5 visualize the classification accuracy 
and feature reduction rate performance of all competitors. It can be seen that CSSA effectively reduces the 
MeanFeat (0.4399) while achieving the highest MeanAcc (0.9216). In addition, CSSA’s ability to handle truly 
high-dimensional data has been demonstrated through experiments on three microarray datasets with up 
to 12000 features.

4. Furthermore, seven recently proposed methods selected from the literature are compared with CSSA, and 
the comparative study shows that our proposed method not only outperforms other non-chaotic algorithms 
but also has outstanding advantages among similar chaotic ones.

In addition, CSSA has its own limitations: 

1. Table 12 demonstrates that CSSA is not optimal in terms of MeanTime , which may be due to the fact that SSA 
was originally developed for continuous search space. Although the V-shaped function in Eq. (7) allows CSSA 
to deal with discrete problems, its essence is still evolving via a continuous approach. As a result, to improve 
overall performance and reduce computational costs, a more efficient SSA variant for discrete problems can 
be designed.

2. It is vital to note that CSSA cannot successfully minimize the MeanFeat when dealing with extremely high-
dimensional data. Table 24 demonstrates that CSSA picks more than 5000 features (a nearly 50% reduction) 
on all three datasets, indicating that the algorithm cannot successfully reduce selected feature size and is not 
conducive to the analysis and extraction of valuable features. This issue can be overcome by combining the 
filters (which are used to reduce and select high-quality features) and wrappers (which are used to improve 
the algorithm’s performance). CSSA, on the other hand, achieves superior superior MeanFit and MeanAcc , 
as seen in Tables 22 and 23, respectively.

Conclusion
In this paper, a new chaotic sparrow search algorithm (CSSA) is suggested and used to FS problems. The majority 
of the literature focuses on the influence of a single chaotic map on an algorithm. Ten chaotic maps are inves-
tigated in this study comprehensively. Based on our findings, CSSA with Chebyshev and Circle chaotic maps 
embedded into it delivers the best outcomes among evaluated schemes by making a good trade-off between 
exploration and exploitation in CSSA. CSSA offers a competitive edge in global optimization and addressing 
FS problems when compared to twelve state-of-the-art algorithms, including LSHADE and CMAES, and seven 
recently proposed, relevant approaches in the literature, according to comparative research. Furthermore, a 
post-hoc statistical analysis confirms CSSA’s significance on most UCI datasets and high-dimensional microar-
ray datasets, demonstrating that CSSA has an exceptional ability to pick favorable features while achieving high 
classification accuracy.

However, when dealing with high-dimensional datasets, CSSA’s time cost is not satisfactory when compared 
to its contemporaries, and the feature selection ratio is not successfully reduced. To address these concerns, 
we propose to integrate the filters and wrappers in future work, in order to leverage their respective benefits in 
building a new binary SSA version that is more suitable for high-dimensional FS problems.

Data availibility
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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