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Deep joint learning of pathological 
region localization and Alzheimer’s 
disease diagnosis
Changhyun Park 1,3, Wonsik Jung 1,3 & Heung‑Il Suk 1,2*

The identification of Alzheimer’s disease (AD) using structural magnetic resonance imaging (sMRI) has 
been studied based on the subtle morphological changes in the brain. One of the typical approaches 
is a deep learning‑based patch‑level feature representation. For this approach, however, the 
predetermined patches before learning the diagnostic model can limit classification performance. 
To mitigate this problem, we propose the BrainBagNet with a position‑based gate (PG), which 
applies position information of brain images represented through the 3D coordinates. Our proposed 
method represents the patch‑level class evidence based on both MR scan and position information 
for image‑level prediction. To validate the effectiveness of our proposed framework, we conducted 
comprehensive experiments comparing it with state‑of‑the‑art methods, utilizing two publicly 
available datasets: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Australian 
Imaging, Biomarkers and Lifestyle (AIBL) dataset. Furthermore, our experimental results demonstrate 
that our proposed method outperforms the existing competing methods in terms of classification 
performance for both AD diagnosis and mild cognitive impairment conversion prediction tasks. In 
addition, we performed various analyses of the results from diverse perspectives to obtain further 
insights into the underlying mechanisms and strengths of our proposed framework. Based on the 
results of our experiments, we demonstrate that our proposed framework has the potential to 
advance deep‑learning‑based patch‑level feature representation studies for AD diagnosis and MCI 
conversion prediction. In addition, our method provides valuable insights, such as interpretability, 
and the ability to capture subtle changes, into the underlying pathological processes of AD and MCI, 
benefiting both researchers and clinicians.

Alzheimer’s disease (AD) is a type of neurodegenerative brain disorder characterized by an irreversible and 
progressive loss of  neurons1. This degenerative disorder is also considered the most common cause of  dementia2, 
which is commonly accompanied by such symptoms as memory loss and progression toward long-term impair-
ment of cognitive functioning. These symptoms are not manifest in the early stages of AD, and the symptoms 
gradually worsen without being recognized as the  condition3. Concretely, AD primarily progresses through 
a prodromal stage referred to as mild cognitive impairment (MCI). Thus, in the past few decades, numer-
ous  studies4–6 have focused on both accurately classifying the AD group from the normal control (NC) group 
and predicting the MCI conversion/transition to detect the early stages of AD. Typically, the MCI conversion 
prediction task is to distinguish between stable MCI (sMCI) and progressive MCI (pMCI) based on the risk of 
AD progression. These studies on AD diagnosis and its early detection can help identify high-risk cohorts for 
better treatment planning and to further improve the quality of  life7. Although the symptoms that appear in AD 
are not manifested in the early stages, the biological processes underlying the disease are present for decades 
before the symptoms  occur8,9. Therefore, neuroimaging data, such as magnetic resonance imaging (MRI), have 
been employed for examining neurodegeneration, diagnosing AD, and detecting its early  stages10,11. Specifically, 
automated computer-aided diagnosis (CAD) based on structural MRI (sMRI) has been attracting attention as 
promising  studies12–14 to capture and utilize the characteristics of brain atrophy, which is one of the proximate 
substrates of cognitive impairment in AD. In addition, the presentation of local clinical evidence for the diag-
nostic result has recently been emphasized for clinical  application15,16.

Most of the conventional CAD methods were multi-step pipelines consisting of the region of interest (ROI) 
selection, feature extraction, and classification. However, convolutional neural networks (CNNs) exhibited 
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superior performance in image recognition by effectively learning the local feature extraction and image clas-
sification in an end-to-end manner. This effectiveness and efficiency have let CNNs applied in various domains, 
including the medical  field17–19. Likewise, three-dimensional (3D) CNN-based AD diagnosis models can filter 
out task-oriented structural patterns such as brain atrophy from 3D sMRI scans. Therefore, recent studies on 
AD  diagnosis13,20–22 have concentrated on CAD systems in relation to sMRI scans with 3D CNNs. Most exist-
ing 3D CNN-based AD diagnostic  models7,13,17,22–26 can be categorized into two classes according to the input 
type. One option is to take a 3D whole-brain image as input. The other option is to take a bag of instances in the 
multiple instance learning (MIL) framework, where each entire 3D brain image is regarded as a bag, and the 3D 
patches extracted from the bag are treated as instances. In the case of taking a bag of instances as input, vari-
ous  approaches27–29 for patch-level feature representation have attempted to more efficiently characterize local 
structural changes induced by AD. In addition, a novel feature representation using the CNN  model22,25,26,30,31 
has recently been proposed. These approaches are intended to extract local and subtle structural changes by 
allowing models to extract features with an upper bound on the patch size. Conventional  methods11,32 generally 
assign the class label of an image to all patches extracted from the corresponding image to extract patch-level 
feature representation. However, the class labels for each patch are ambiguous because not all patches extracted 
from patients’ brains include changes associated with  pathology33. Since the proportion of AD-induced brain 
atrophy might vary according to the individual patient, in this circumstance, weakly supervised learning strate-
gies, such as MIL, have been  adopted25,29. In MIL, there are two topics of attracting researchers. The first is to 
provide the rationale for decision-making, and the second is to detect key instance that trigger the bag label. 
As for the rationale for decision-making, the existing  methods34,35 have poor instance-level accuracy and are 
inconsistent in MIL methods at the instance  level36. One of the promising reasons for this is that MIL models 
may detect only the most abnormal parts of the image where multiple abnormalities are  present37. To alleviate 
the issue,38 introduced an attention-based MIL. The attention mechanism was used to determine instances that 
trigger the bag label, called key  instances39. Compared to the attention-based MIL, discriminative brain-region 
localization in AD studies can be considered a type of key instance detection to localize brain regions where the 
bag label is triggered.

In AD diagnostic research, the MIL method considers a given brain MRI scan as a bag and treats the 3D 
patches that make up the bag as instances. The simplest method to define the 3D patches in AD diagnosis is to use 
all of the patches over the brain. However, the number of patches that can be extracted from 3D high-resolution 
brain images is too large. In addition, including numerous patches not associated with AD can lead to a low 
proportion of instances containing AD pathological changes in bags labeled as the AD class. This method can 
cause serious class imbalance problems and degrade performance for many real-world  problems40,41. Therefore, 
localizing the brain regions and extracting patches from these regions are important and challenging problems. 
Although existing studies have addressed these challenges based on data-driven  approaches25,27,29,42, the prede-
termined area to extract patches can lead to various limitations. One of them is that the dependency between 
AD-associated brain-region localization for patch extraction and the diagnostic model training is overlooked. 
First, it may lead to a low proportion of instances containing AD pathological changes in bags labeled as the 
AD class. Second, it can limit the opportunity to explore potential biomarkers in the learning diagnosis model. 
These can result in suboptimal classification performance. In addition, hyperparameters for patch extraction 
eventually cause time-consuming hyperparameter exploration or optimization procedures by iterating the diag-
nostic model training according to numerous hyperparameter combinations. To alleviate issues arising from 
the independence of patch extraction and diagnostic model training, a hierarchical fully convolutional network 
(H-FCN) was proposed for joint atrophy localization and disease  identification26. Although a novel discriminative 
brain-region localization approach has been introduced for patch extraction, the fundamental problem caused 
by brain-region predetermination remains.

In the end, we propose the BrainBagNet with a position-based gate (PG-BrainBagNet) for joint learning of 
pathological region localization and disease diagnosis. As illustrated in Fig. 1, the proposed method starts with 
two branches, called the patch-level prediction branch and the position-based gating branch. Given an MRI scan, 
the patch-level prediction branch extracts local features from a specific receptive field size (i.e., 3D patches) and 
produces patch-level responses. Then, given the position information, the position-based gating branch identi-
fies the brain regions where the class-discriminative responses consistently appear across subjects. By leveraging 
the soft region proposals generated by the position-based gating branch, patch-level responses obtained in the 
patch-level prediction branch are converted to patch-level class evidence, which is transparently aggregated to 
determine an image-level response. Transparent aggregation for the image-level response alleviates the difficulty 
of interpretation due to global and nonlinear interactions. In our proposed method, the patch-level class evidence 
is trained and inferred without the need for local annotation. Instead, we utilize image-level weak annotation 
to guide the learning process. Taking into account this underlying concept, our approach can be considered a 
form of multiple-instance learning. We strictly evaluated the effectiveness of the proposed method in both the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and the Australian Imaging Biomarkers and Life-
style Study of Ageing (AIBL) dataset. In addition, we conducted extensive ablation studies in both AD versus 
NC and sMCI versus pMCI binary classification tasks, called AD diagnosis and the MCI conversion prediction 
task, respectively. The proposed method outperformed the comparison methods in both AD diagnosis and MCI 
conversion prediction tasks. We identified the discriminative brain regions and patch-level class evidence in a 
weakly supervised learning manner and analyzed the changes according to patch size.
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Related works
CNN‑based Alzheimer’s disease diagnosis. The development of deep learning methods, including 
CNN, has efficiently addressed multistep pipelines for handcrafted feature generation/extraction and logistic 
regression by training a model in an end-to-end  manner17. Thus, studies on the accurate AD diagnosis based 
on the 3D CNN are underway by taking 3D whole-brain images as  input13,20. In particular, various architectures 
have been proposed for accurate AD  diagnosis9,13,17,23,24. Among all,13 demonstrated the changes in disease iden-
tification performance according to various factors, such as the normalization layer, kernel size, network archi-
tecture width, and patient age. For network architecture, the model introduced  in13 was designed to be capable 
of learning subtle differences in the brain by avoiding early spatial downsampling and limiting the size reduction 
of feature maps during low-level feature extraction steps. Afterward, the attention mechanism gradually became 
popular and widely employed in the CNN-based image recognition model to better explain network behavior 
and generate more discriminative feature  representations19,43,44.

In terms of AD diagnosis and analysis,21,23 introduced an attention-based 3D convolutional network for 
disease identification and biomarker exploration. The network architecture was designed based on the  ResNet45, 
and the attention module was embedded in the middle of the network. By taking the extracted local features as 
input, the attention module produced spatial weights. As described  in21, the goal of the attention module is to 
represent the regional importance during end-to-end training. In backward propagation, the produced atten-
tion could work as a gradient filter. Recently,31 devise a method that combined multiview-slice attention with 
3D CNN to effectively analyze MRI data. By focusing on multiple views of the slice brain image and leveraging 
the 3D information, the model enables to improve the AD diagnosis performance. As the early AD stages could 
only be identified using subtle local pathological cues, patch-level feature representations have been investigated 
to capture subtle local pathological changes more efficiently. Given that the early stages of AD rely on subtle 
local pathological cues for identification, some researchers have explored patch-level feature representations to 
enhance the detection of these subtle changes. However, since only a limited number of brain regions may contain 
relevant cues for disease identification, an additional discriminative patch extraction procedure was necessary 
before analysis. In previous studies, a common initial step for extracting discriminative patches involved lever-
aging prior anatomical knowledge and utilizing statistical approaches to derive the discriminative  probability33. 
Patch extraction has been improved through resampling schemes using Elastic  Net29,46. Recently, a landmark 
discovery algorithm for AD diagnosis was introduced for discriminative patch  extraction25. The algorithm started 
with a multivariate statistical test on training images generated using nonlinear registration. A p-value map was 
obtained from the template space. Based on the p-value map, landmarks were determined based on the size and 
number of patches and the minimum distance between patches. Patches extracted from the landmark were used 
for diagnosis model training. 3D CNN-based feature extractors were configured as the number of determined 
landmarks to extract features from each patch located in the landmark. The following fully connected layers 
employed concatenated patch-level representations for bag-level prediction.

However, previous studies conducted discriminative region localization and patch extraction independent 
of the diagnostic model, which may lead to suboptimal diagnostic  performance26. To alleviate this limitation,26 

Figure 1.  Illustration of the proposed PG-BrainBagNet, including the encoder, classifier, position embedding, 
and gate network. Structural and position information is processed in two separate branches, given a magnetic 
resonance imaging scan and position indicator. The outcomes from the two branches are combined to represent 
patch-level class evidence and image-level disease probability.
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proposed a hybrid loss and pruning strategy based on the H-FCN. The proposed model extracted multiscale 
feature representations (i.e., patch-, region-, and subject-level features) by employing CNN. This hierarchical 
construction of the network architecture allows the trained model to identify the most informative patches and 
regions through hybrid loss. The hybrid loss was designed by gathering patch-, region-, and image-level loss for 
diagnostic model training and ranking the discriminative capacity of the corresponding location. Pruning less 
discriminative areas identified by hybrid loss could improve diagnostic results. However, the hybrid loss was 
defined by considering all patch- and region-level features belonging to the patient’s MRI images as positive 
samples, although not all patches and regions would necessarily be affected by AD. In addition, this approach 
still relies on predetermined landmarks for better classification performance in the initial stage, and the pruning 
approach cannot consider potential patch-level biomarkers not previously extracted as candidates.

More recently, a hybrid network (HybNet)22 was proposed to improve the H-FCN, which considers both 
global and local structural information. Specifically, two branches were constructed: the global branch (GB) 
and the local branch (LB). The subject-specific and intersubject-consistent discriminative region localization 
approaches were applied in the GB and LB, respectively. Both localizations were obtained using a pre-trained fully 
convolutional network (FCN) backbone. The FCN backbone was trained for weakly supervised object localiza-
tion (WSOL) and capable of generating class activation  maps47. They utilized disease attention maps (DAMs) 
derived from the class activation map outputs to represent subject-specific brain regions associated with AD. 
Furthermore, the mean of the DAMs is calculated by averaging the DAMs generated from a substantial number 
of samples in the training dataset. Leveraging the pre-computed localization results, the GB and LB models were 
trained. The GB utilized DAMs as spatial attention, representing subject-specific discriminative brain regions. 
On the other hand, LB was trained using patches extracted from intersubject-consistent discriminative brain 
regions, as indicated by the mean DAM. The patch extraction was performed identically to the H-FCN, but the 
mean DAM was used instead of the discriminative probability map obtained by the statistical test. Moreover, 
this study indicated that the feature representations extracted from both branches could be complementary, and 
their fusion could improve classification performance. Although additional information was used to address the 
shortcomings of H-FCN, the predetermination of patches may hamper the effectiveness of end-to-end learning 
of local feature extraction and diagnosis. A recent  study30 introduces a patch-based deep multi-modal learning 
(PDMML) framework for diagnosing brain diseases. The authors incorporate a discriminative location discovery 
strategy to remove normal regions without prior knowledge. Moreover, the framework integrates information 
from different imaging modalities and jointly trains the model to preserve spatial information that would be 
lost by directly flattening the patches. As a result, the proposed model enhances the accuracy of Alzheimer’s 
disease diagnosis.

AD‑associated brain‑region localization. AD-associated brain-region localization methods have been 
proposed and developed for various purposes. Specifically, these methods boost the classification performance 
of diagnostic models, detect potential biomarkers in AD diagnosis, and better explain the behavior of deep 
learning networks. These brain-region localization methods can be divided into two categories according to the 
information used in the localization: feature-based and position-based approaches.

First, feature-based approaches produce the brain-region localization result based on individual local features 
extracted from each brain image. These can be further divided into supervised learning and weakly supervised 
learning approaches based on the learning strategy. For supervised learning approaches, a relatively large patch 
or ROI extracted from the image was assigned the same annotation as the image-level  annotation15,48. A model 
was trained to represent regional abnormalities by subject. Regional outcomes were used as features to estimate 
the individual disease states. Although the identified regional abnormalities can provide clinical evidence, the 
evidence was relatively coarse. In addition, this supervised approach assumes that all regions in patients are 
affected by AD. This fact has recently led to the application of weakly supervised learning and MIL.

Regarding weakly supervised learning  approaches47, proposed a representative WSOL method through an 
FCN with a global average pooling (GAP) layer and linear classifier. Due to the linear property of the GAP and 
linear classifier, areas that contributed significantly to the predictions can be tracked. This approach has evolved 
from several  perspectives18,49,  and50 proposed bag-of-local-feature models, which provide patch-level class evi-
dence by limiting the receptive field size of the topmost feature maps. In the AD study, WSOL was employed 
 in26 to localize AD-related structural abnormalities at a finer scale by training an additional 3D FCN. Moreover, 
WSOL was applied to represent the regional importance of better feature  representation22,51. Li et al.51 proposed 
an iterative learning framework leveraged by the localization result generated by WSOL.  Further22, introduced a 
subject-specific discriminative brain-region localization called a DAM. An attention mechanism can be attached 
to a diagnostic model for a similar purpose. Jin et al.21 and Zhu et al.52 proposed an attention-based diagnosis 
model for joint learning of discriminative brain-region localization and disease identification.

Unlike feature-based region localization, position-based brain-region localization methods detect regions 
where significant differences appear between the AD and NC groups. The identified brain regions are consist-
ent across subjects, leading to a method called inter-subject-consistent discriminative region  localization22. All 
sMRI scans are aligned to the same template in preprocessing; thus, all samples share the same 3D space. This 
shared space allows a group comparison of local features, and the statistical test could generate a probability map 
representing the discriminative capacity. In particular, this position-based localization method has been widely 
used in patch extraction for patch-level feature representation. Data-driven pathological brain-region localiza-
tion approaches have continued evolving as described in the previous section such as the statistical  approach25,28, 
landmark  discovery25, pruning  strategy26, and mean  DAM22. However, the existing patch extraction methods are 
performed independently of image-level diagnostic model outcomes.
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Inspired by the recent patch-level analysis in AD diagnosis, we propose a framework that jointly learns 
pathological region localization and disease identification in an end-to-end manner. In addition, final decision-
making is conducted through the transparent aggregation of the patch-level responses, providing patch-level 
class evidence for decision-making. To the best of our knowledge, this framework is the first for joint learning 
of position-based discriminative brain-region localization and disease identification in an end-to-end manner.

Experiments and results
In this section, we demonstrate datasets used for performance evaluation, our experimental settings, and com-
parative methods related patch-level feature extraction. In addition, we report the classification accuracies of 
our framework and those of comparative methods.

Dataset and preprocessing. We used two publicly available datasets, namely the ADNI  [1] and the 
AIBL [2]. The ADNI dataset is a renowned and extensively utilized resource in the field of Alzheimer’s disease 
research. It provides longitudinal data from individuals diagnosed with AD, mild cognitive impairment (MCI), 
and normal controls (NC) and includes various types of data, such as clinical assessments, neuroimaging scans 
(i.e., MRI and positron emission tomography (PET)), genetic information, and biomarker measurements. The 
main objective of the ADNI dataset is to expedite the progress of developing novel diagnostic methods and ther-
apeutic approaches for AD, ultimately contributing to improved patient care. The AIBL database is a comprehen-
sive Australian research initiative focused on investigating the early biomarkers and underlying causes of AD. It 
consists of a variety of data collected from individuals across the cognitive spectrum, including clinical assess-
ments, neuroimaging scans (MRI and PET), genetics, and lifestyle factors. The dataset provides valuable insight 
into the development and progression of AD and supports the development of early detection and intervention 
strategies, and potential treatment approaches. As our main objective is to classify MRI of patients with AD as 
well as MCI and NC, we consider only baseline subjects. Therefore, we first collected the baseline brain sMRI 
scans and the diagnostic information from the datasets. Henceforth, we categorized the disease state of scans 
collected in all datasets (i.e., ADNI and AIBL) into three classes: NC, MCI, and AD. In this process, we further 
divided each MCI subject into two classes for the MCI conversion prediction task. If the patient corresponding 
to a baseline image had not been diagnosed with an AD class by 72 months, the image was labeled as the stable 
MCI (sMCI) class. On the other hand, images converted into the AD class within 36 months were labeled as the 
progressive MCI (pMCI) class. We noted that MCI samples with reversion from the AD class to other classes 
were excluded from the dataset. The demographics and clinical information are presented in Table 1.

The collected brain scans were processed using the following pipeline. First, the brain extraction procedure 
was performed by the HD-BET brain extraction  tool53 to remove non-brain tissues from the MRI image (e.g., 
neck, skull, and so on.). Then, skull-stripped images were aligned to the MNI152 template using linear registra-
tion tool (FLIRT) from the FMRIB (http:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki) software library v6.0.1. By doing so, the 
images removed global linear differences such as global translation, scale, and rotation differences and further 
allowed them to have an identical spatial resolution (i.e., 1× 1× 1mm3 ). Consequently, we acquired the pre-
processed 3D brain scans with 193× 229× 193 . Noted that each image was normalized through the mean and 
standard deviation of each image.

Experimental settings. To validate the proposed models, we conducted five-fold cross-validation on the 
AD diagnosis (AD vs. NC) and MCI conversion prediction (pMCI vs. sMCI). As aforementioned, in order to 
compare our proposed model with comparative methods in AD diagnosis and MCI conversion prediction tasks, 
we first trained the model for AD diagnosis and transferred the trained parameters to initialize the network for 
the MCI conversion prediction task. We performed the transfer learning process because the two tasks are highly 
correlated, and the MCI conversion prediction task is more challenging than the other task. The classification 
performances acquired in five-fold cross-validation were measured regarding the accuracy (ACC) and the area 
under the receiver operating characteristic (AUROC), accordingly.

The proposed method required a predetermined 3D Cartesian space to represent the brain regions where local 
features were extracted. Therefore, we defined the 3D Cartesian space I with the size of 193× 229× 193× 3 the 
same as preprocessed 3D brain scans as illustrated in Fig. 2a. To alleviate the overfitting problem, we adopted 
a random cropping strategy for data augmentation with the size of 177× 213× 177 in training. In the case of 
evaluation, we employed center-cropped images, not only in our proposed method but also in the comparison 
methods.

Our encoder network consists of a convolutional block, which is set to 32, and four residual blocks, which are 
set to 32, 64, 128, and 256 the number of output feature maps. In the position-based gating branch, output feature 
maps for the positional embedding network were set at 128 and 256 and were reduced to 128 and 16 in the gate 
network. For model initialization, all weights for the AD diagnosis model were initialized using the He initializa-
tion  method54 and optimized using the Adam  optimizer55. We adopted cosine annealing with the learning rate 
warm-up method for scheduling the learning rate, referred to  by56. Specifically, the learning rate was linearly 
increased from 0 to 1e−4 within five epochs and was decreased as a cosine function to a learning rate of zero. We 
set the total number of epochs as 200 and applied the early stopping with 30 patience with four mini-batch sizes. 
By using a grid hyperparameter search, we set � for the weight between classification and entropy losses as 0.01.

Comparative methods. For all experiments, we adopted four sMRI-based deep learning architectures, 
which are considered state-of-the-art methods: 3D CNN, Attention-based 3D ResNet (A3D-Net), DA-MIDL, 
and HybNet.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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• 3D  CNN13: The CNN-based classifier was trained end-to-end to classify disease states without anatomical 
prior knowledge and a localization method. We adopted a proposed model architecture for a fair comparison 
without clinical information, such as patients’ age. Given a randomly cropped 3D image as input, sequential 
convolutional blocks extracted local features, and the output feature maps were flattened. The flattening vec-
tor was employed as input to the classifier. We compared our method to the model trained with a widening 
factor (WF) of 1 and 2.

• Attention-based 3D ResNet (A3D-Net)21: This method had a similar goal as jointly learning AD-related 
brain-region detection and disease identification in an end-to-end manner. However, there are two underlying 
differences that exist. One is that the AD-related brain regions were detected based on local features. The other 
difference is the non-linear interactions between weighted local features for image-level decision-making. 
An attention module generated spatial attention weights based on local features extracted in the middle of 
the network, and the attention was applied to local features.

• DA-MIDL52: They propose a dual attention network, which represents both spatial importance for extract-
ing discriminative features within each sMRI patch and attention for MIL pooling. The predetermination of 
patches has been performed by group comparison on the training set. Here, we set the number and size of 
patches as 60 and 25× 25× 25 , respectively. For feature representation, we applied two types of attention. 
One was spatial attention within each patch, and the other is for attention MIL pooling. An attention-aware 
global classifier continues to process the bag-level representations for final diagnosis.

• Hybrid network (HybNet)22: This method consists of two branches constructed to capture 1) global structural 
information and 2) local structural information. First, the FCN backbone was trained to generate the DAM 
and mean DAM to train a GB and LB, respectively. The DAM was directly used as the attention in training 
the GB, whereas the mean DAM was used to determine the brain regions to extract patches. The LB was 
trained based on the patches extracted from predetermined brain regions. As described in the literature, we 
performed the pruning and fine-tuning steps. Finally, two discriminative feature vectors obtained using the 
GB and LB were concatenated and used as input for the training fusion branch. The fusion branch comprised 
two subsequent fully connected layers followed by ReLU activation.

Performance comparison. Table  2 represent the comparison of classification performance for the AD 
diagnosis and MCI conversion prediction task, respectively. In the table, BrainBagNet-s processes a single patch 
size s, and patch-level responses are aggregated using the GAP operation. The FG-BrainBagNet indicates a 
BrainBagNet with a feature-based gate inspired by an attention-based MIL  framework38. Instead of using posi-

Figure 2.  (a) Three-dimensional (3D) patch xsi,j,k comprising a 3D structural magnetic resonance imaging 
(sMRI) scan X on the Cartesian coordinate system. (b) Representation of coordinates in 3D Cartesian space I 
and the extraction of position indicator I′ . Illustration of (a) three-dimensional (3D) patch extracted in a specific 
position and size and (b) the position indicator extracted from the coordinates in 3D Cartesian space.

Table 1.  Demographic information of cohorts included in the study.  MMSE Mini-Mental State Examination.

Dataset Category Gender (male/female) Age MMSE Education

ADNI

NC 214/219 74.8± 5.8 29.1± 1.1 16.2± 2.7

sMCI 299/198 72.9± 7.7 27.8± 1.8 16.0± 2.9

pMCI 148/103 74.1± 7.1 26.8± 1.7 15.8± 2.8

AD 194/165 75.3± 7.9 23.2± 2.1 15.2± 3.1

AIBL
NC 95/107 73.4± 6.4 29.0± 1.2 16.6± 2.5

AD 91/68 74.9± 8.1 23.1± 2.1 15.7± 2.7
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tion information, local features generated by the encoder network were used as input to the gate network. Lastly, 
the PG-BrainBagNet is the proposed position-based gate method.

In the AD diagnostic task, we first selected the patch size as a tunable hyperparameter using the mean bal-
anced cross-entropy loss criterion of the validation set for five-fold cross-validation. The best classification model 
in AD diagnostic task was selected as PG-BrainBagNet-41 based on the minimum validation loss. Compared 
to state-of-the-art methods, we observed that our proposed method outperformed in terms of accuracy (ACC) 
and AUROC. The highest and lowest margins for the mean accuracy were 14.77% (vs. DA-MIDL) and 3.65% (vs. 
HybNet (GB)), respectively. The proposed position-based gate method (i.e., PG-BrainBagNet) yields an increase 
in classification performance compared to BrainBagNets regardless of patch size. Moreover, PG-BrainBagNet 
significantly improved the classification performance of BrainBagNet (i.e., 13.13%) with small patch size (i.e., 
s=9), whereas feature-based gates (i.e., FG-BrainBagNet) even had low performance when s = 57 . The proposed 
position-based gate method (i.e., PG-BrainBagNet) yields an increase in classification performance compared 
to BrainBagNets regardless of patch size. Moreover, PG-BrainBagNet significantly improved the classification 
performance of BrainBagNet (i.e., 13.13%) with small patch size (i.e., s=9), whereas feature-based gates (i.e., 
FG-BrainBagNet) even had low performance when s = 57 . Although the classification performance of Brain-
BagNets increased as the patch size increased, PG-BrainBagNets did not exhibit significant differences according 
to patch size. Therefore, the reason that BrainBagNets performed classification poorly when using a small patch 
size might be that the whole-brain image contains many patches unrelated to the brain disease. In addition, we 
observed that the improvement in classification performance cause our proposed method (w/ gating mecha-
nism) to capture the AD-related regions effectively. For validating the generalization of the models trained on 
the ADNI dataset, we additionally tested on the AIBL cohort. We could observe that the position-based gating 
branch (i.e., PG-BrainBagNet) improved the accuracy and AUROC score. In addition, our proposed method 
showed a balanced prediction result even in the case of class imbalance. Although HybNet achieved the highest 
accuracy, our proposed model obtained more balanced performance, outperforming the state-of-the-art models 
in terms of AUROC.

In the MCI conversion prediction task, the best model that appeared in our proposed method was PG-Brain-
BagNet-17 based on the minimum validation loss as well. In the comparison of the results using the state-of-the-
art methods, the classification accuracy did not show a significant difference due to the class-imbalanced dataset 
which consists of the number of samples 251 (pMCI) and 497 (sMCI). On the other hand, we could observe 
that our proposed method significantly increased the AUROC score against the comparison method. Similar 
to the performance obtained in the aforementioned task, in terms of patch sizes, the classification performance 
of BrainBagNets increased as the patch size increased excluding s = 57 . Furthermore, the feature-based gating 
method (i.e., FG-BrainBagNet) did not play a role in improving the classification results. However, the position-
based gate method (i.e., PG-BrainBagNet) yielded improvements when a small patch size was used, especially 
when the patch size was 9, 17, 25 or 41. Except for s = 57 case, the classification results of PG-BrainBagNet were 
consistently increased as the patch size was reduced. As the receptive field size was limited, local feature represen-
tations were forced to extract the local brain changes rather than global structural changes. The results implied 

Table 2.  Performance comparison on the ADNI and AIBL dataset.

Methods

AD versus NC (ADNI) pMCI versus sMCI (ADNI) AD versus NC (AIBL)

ACC AUROC ACC AUROC ACC AUROC

3D CNN (WF: 1)13 0.799± 0.037 0.881± 0.034 0.689± 0.028 0.702± 0.015 0.795± 0.029 0.884± 0.017

3D CNN (WF: 2) 0.804± 0.014 0.886± 0.006 0.675± 0.019 0.692± 0.024 0.698± 0.131 0.890± 0.015

A3D-Net21 0.827± 0.026 0.905± 0.015 0.702± 0.029 0.720± 0.036 0.814± 0.045 0.885± 0.016

DA-MIDL52 0.735± 0.040 0.809± 0.037 0.657± 0.023 0.581± 0.019 0.832± 0.030 0.846± 0.025

HybNet22 0.832± 0.046 0.908± 0.022 0.702± 0.014 0.676± 0.028 0.866± 0.054 0.892± 0.043

BrainBagNet-9 0.737± 0.013 0.809± 0.029 0.643± 0.031 0.716± 0.041 0.781± 0.018 0.846± 0.012

FG-BrainBagNet-9 0.747± 0.011 0.830± 0.021 0.643± 0.033 0.716± 0.047 0.774± 0.027 0.843± 0.024

PG-BrainBagNet-9 0.869± 0.028 0.938± 0.025 0.715± 0.023 0.773± 0.009 0.859± 0.014 0.928± 0.006

BrainBagNet-17 0.753± 0.025 0.826± 0.022 0.655± 0.026 0.716± 0.024 0.782± 0.038 0.858± 0.018

FG-BrainBagNet-17 0.828± 0.024 0.893± 0.022 0.679± 0.013 0.757± 0.008 0.807± 0.029 0.876± 0.013

PG-BrainBagNet-17 0.878± 0.027 0.940± 0.017 0.697± 0.005 0.763± 0.010 0.832± 0.035 0.921± 0.009

BrainBagNet-25 0.823± 0.017 0.891± 0.020 0.675± 0.046 0.727± 0.032 0.767± 0.045 0.869± 0.029

FG-BrainBagNet-25 0.845± 0.025 0.909± 0.019 0.689± 0.013 0.748± 0.013 0.801± 0.050 0.900± 0.016

PG-BrainBagNet-25 0.872± 0.025 0.939± 0.011 0.691± 0.028 0.753± 0.031 0.822± 0.045 0.927± 0.011

BrainBagNet-41 0.865± 0.043 0.929± 0.034 0.691± 0.009 0.751± 0.026 0.840± 0.036 0.911± 0.013

FG-BrainBagNet-41 0.875± 0.030 0.920± 0.029 0.687± 0.018 0.747± 0.016 0.799± 0.017 0.914± 0.010

PG-BrainBagNet-41 0.883± 0.013 0.940± 0.012 0.695± 0.044 0.755± 0.048 0.827± 0.026 0.922± 0.014

BrainBagNet-57 0.860± 0.053 0.914± 0.031 0.683± 0.029 0.749± 0.041 0.819± 0.013 0.906± 0.015

FG-BrainBagNet-57 0.850± 0.020 0.927± 0.023 0.701± 0.019 0.764± 0.017 0.836± 0.020 0.920± 0.006

PG-BrainBagNet-57 0.862± 0.026 0.937± 0.020 0.681± 0.021 0.755± 0.015 0.841± 0.012 0.923± 0.009
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the brain-region localization method based on the position provided highly informative results. In addition, we 
observed the importance of capturing subtle changes for the early detection of AD.

The MCI conversion prediction performance obtained from the proposed models trained from scratch and 
those trained through transfer learning is compared in supplementary A. Furthermore, Fig. 3 illustrates the 
confusion matrices of the PG-BrainBagNet-41 and PG-BrainBagNet-17 models, which exhibited the best perfor-
mance according to the validation loss criterion, for the tasks of AD diagnosis and MCI conversion prediction, 
respectively. Each confusion matrix showcases the performance of the corresponding model on its respective 
task and dataset.

Visualization of discriminative brain regions. We analyzed discriminative probability maps G gener-
ated by the proposed position-based gating branch. For better visualization, linear interpolation was performed 
and overlaid with the MNI template. The changes in the discriminative probability map by the learning epoch 
are described in supplementary B. In the learning process with a small patch size, localization helped the diag-
nostic model extract finer features; thus, the gating branch could provide better localization results based on the 
features extracted by the diagnostic model. The differences in the output of the gating branch from the trained 
model according to the patch sizes and downstream tasks are compared in Fig. 4. First, high responses were 
distributed in anatomically meaningful areas such as the hippocampal, temporal, and parietal lobe areas. When 
the model was limited to increasing the receptive field size, the gate network represented the weight in the sparse 

Figure 3.  Confusion matrices derived from the PG-BrainBagNet-41 and PG-BrainBagNet-17 models, which 
demonstrated the best performance based on the validation loss criterion, for the tasks of AD diagnosis and 
MCI conversion prediction, respectively. Each confusion matrix depicts the performance of the respective 
model on its corresponding task and dataset.

Figure 4.  Difference in the output of the trained position-based gating branch depending on the downstream 
task and patch size used in model training.
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regions only. As the patch size increased, regions with high responses were captured in the overall images. In this 
context, the proposed method employing small patches is sensitive to localization results and requires proper 
localization. While there were no significant changes by downstream tasks, we observed that the highlighted 
regions were dispersed especially in the model trained using small patches for MCI conversion prediction.

Effect of brain region localization on diagnostic performance. We performed an ablation study of 
localization methods using our proposed framework to evaluate the effectiveness of joint learning of discrimina-
tive brain-region localization and disease identification. We compared four localization methods: “w/o”, “mean 
DAM”, “mean DAM (0.3)”, and “end-to-end”. The “w/o” denotes BrainBagNets, and the “end-to-end” denotes 
the proposed models, which are PG-BrainBagNets. Both “mean DAM” and “mean DAM (0.3)” were models 
trained with the predetermined discriminative brain region inspired by the mean DAM introduced  in22. For 
“mean DAM”, the proposed framework has been trained using predetermined G by considering the mean DAM 
to be G instead of training position embedding and gate network. The resulting model was denoted as “mean 
DAM”. In addition, we generated a binary mask because “mean DAM” was not used as a probabilistic value but 
instead was used for extracting patches  in22. In patch extraction, the threshold of 0.3 was used in the literature to 
represent potential patch locations. We obtained a binary mask based on this threshold, and model training was 
performed in the same way as for “mean DAM”. The predetermined G for the “mean DAM” and “mean DAM 
(0.3)” are illustrated in Fig. 5a.

The average accuracy (ACC) and AUROC in five-fold cross-validation are described in Fig. 5b and c. First, 
when the model was trained without brain-region localization, classification performance decreased as the patch 
size reduced. The model trained using the smallest patches exhibited the lowest classification performance for 
both tasks in accuracy and AUROC. By adding the predetermined localization method, the classification per-
formance improved compared with that without the localization method. However, localization was performed 
regardless of the diagnosis model, resulting in a worse classification than the proposed method (i.e., “end-to-
end”). In the MCI conversion prediction task, only the proposed method demonstrated increased classification 
performance by limiting the increase in patch size. This result implies that the regularization of the patch size 
allows extracting AD-related local and subtle changes but requires suitable brain-region localization dependent 
on the diagnosis model.

Effectiveness of subtle changes captured using small patches. The aforementioned, we demon-
strated that the model extracting the local class evidence captured using a small receptive field size better pre-
dicts MCI conversion. We analyzed the two pMCI samples that yielded false negatives from the model trained 

Figure 5.  (a) Examples of predetermined discriminative brain regions inspired  by22. (b) ACC. (c) AUROC. 
Illustration of classification performance in terms of accuracy (ACC) and area under the receiver operating 
characteristic (AUROC) by the patch size used in model training, localization method, and downstream task.
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using a large patch and made predictions correctly by limiting the patch size. The local class evidence according 
to patch size is described in Fig. 6. The first row depicted the original sMRI scans with image ID 26442 and 
31799. The following rows demonstrated the patch-level class evidence according to the patch size. For a better 
comparison, the areas where a high amount of class evidence was contained were marked with dashed rectangles 
and denoted as R1 to R4. The blue and red colors indicate high-class evidence for sMCI and pMCI classes in that 
region, respectively.

First, in the bottom of the R1 region, we observed that Sample #26442 contains brain atrophy in the tempo-
ral lobe rather than the hippocampus, compared to Sample #31799. In contrast, Sample #31799 depicts brain 
atrophies located in the hippocampal area. These brain atrophies were correctly captured by the model trained 
using small patches. However, the estimation produced by the model trained using larger patches demonstrated 
the difficulties of capturing these subtle changes. These patterns can be observed in the R1, R2, and R3 regions. 
The positive class evidence for the pMCI class located in the parietal lobe area was only captured by the model 
trained using small patches, which can be observed in comparing the R4 region. Finally, the model trained using 
small patches could determine sufficient local evidence to correctly predict the MCI conversion, whereas models 
trained using large patches could not capture sufficient cues for a correct decision. In this analysis, we observed 
that regularizing the increasing patch size increased the prediction performance for MCI conversion by extract-
ing subtle and local structural feature representation. To better understand these results, we demonstrated the 
additional visualization of patch-level class evidence for the various patch sizes and samples in supplementary C.

Discussion
From a practical perspective, there are several pros and cons to consider in our study. On the positive side, our 
proposed framework deviates from previous patch-level approaches by leveraging a CNN-based encoder to 
extract patch-level features directly from whole-brain images, leading to improved computational efficiency. 
This efficiency is beneficial for practical implementation and real-time applications. However, there are some 
limitations to acknowledge. First, our study primarily focused on the early-stage diagnosis of MCI and does not 
address the forecasting of disease progression. Future research is needed to extend the framework capabilities 
to predict the progression of brain diseases. Moreover, while our proposed framework provides explainability 
by visualizing a probability map to aid clinicians and patients in understanding the models’ decisions, estimat-
ing decisions uncertainty remains an important consideration that requires further exploration. Incorporating 
uncertainty estimation into the framework would enhance its reliability and trustworthiness. Lastly, given the 
recent advancements in multi-modal learning, it would be worthwhile to explore the integration of other neu-
roimaging modalities, such as PET and diffusion-weighted imaging, to improve the overall performance and 
diagnostic accuracy of our current framework.

Conclusion
In this work, we proposed a deep learning train pipeline for patch-level feature representation learning on MRI 
scans. To alleviate the problem caused by predetermined brain regions for patch-level feature representation 
learning, we proposed a PG-BrainBagNet framework for jointly learning discriminative brain-region localization 
and disease identification in an end-to-end manner. We conducted both the AD diagnosis and MCI conversion 

Figure 6.  Examples of false negatives from the model trained with large patches but correctly predicted by the 
model trained using small patches. Each column indicates one sample labeled as progressive mild cognitive 
impairment (pMCI), where the number next to the # denotes the corresponding image ID of an input MRI scan. 
In addition, the blue and red colors indicate high class evidence for the stable mild cognitive impairment and 
pMCI class in that region, respectively.
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prediction tasks on two publicly available datasets, thereby demonstrating the validity of our proposed method. 
Specifically, our PG-BrainBagNet obtained the best classification performance over competing methods. Fur-
thermore, our PG-BrainBagNet effectively increased the classification performance, when localization of the 
subtle changes was required. We also demonstrated the interpretability of the proposed method by tracing the 
rationale for the model predictions down to the small patch level.

Methods
We propose PG-BrainBagNet as depicted in Fig. 1, wherein our proposed framework consists of four kinds of 
networks: the encoder, classifier, position embedding, and gate network. Specifically, these networks are organized 
into two branches such as patch-level prediction and position-based gating and each branch takes different inputs: 
the input MRI scan X and the position indicator I′ . The input MRI scan X can be considered a set containing M 
patches X = {x1, · · · , xM} . I′ represents the patch position information: the position indicator. In the following 
section, we present the details for jointly learning AD-related local morphological changes and the regions where 
the discriminative changes sustainably appear based on the branches.

Patch‑level features extraction and classification. The patch-level prediction branch comprises an 
encoder E s

φ  and classifier network Cψ parameterized with φ and ψ , respectively. First, according to the receptive 
field size of the top-level feature maps, we construct an encoder network that can adjust the patch size for feature 
extraction to handle local and morphological changes distributed in the whole brain. The configured encoder 
takes the whole brain image X ∈ R

W×H×D×1 as input and extracts the local features from 3D patches of size 
s × s × s , where W, H, and D denote the size of images’ width, height, and depth, respectively. The patch-level 
features, extracted from the whole brain, are represented as feature maps X̂ ∈ R

w×h×d×f  , where w, h, and d 
denote the size of 3D spatial dimension, and f is the size of the feature space. In particular, the kernel and stride 
sizes in the convolution operator allow adjusting the patch sizes and the distance between them. Furthermore, 
we employed this approach introduced in  BagNets18 to construct our proposed network architectures. Specifi-
cally, based on BagNets, we rebuilt shallower encoders utilizing 3D convolutional layers. The goal of configuring 
an encoder network E s

φ  is to represent local features extracted from patches of size s × s × s.
Specifically, encoder network E s

φ  consists of a convolutional block, max-pooling, and four residual blocks, as 
illustrated in Fig. 1. All convolutional blocks in this study include sequential operators of the convolutional layer, 
instance normalization layer, and rectified linear unit (ReLU) activation function. The kernel and stride size for 
the first convolutional block is set to 5× 5× 5 and 2× 2× 2 , respectively. For the following max-pooling layer, 
the kernel size is 3× 3× 3 , and the stride size is 2× 2× 2 . The feature maps yielded by max pooling have a 
receptive field size of 9× 9× 9 . Thus, if the receptive field size does not increase further, the encoder can extract 
features with a specific receptive field size of 9× 9× 9 from the whole brain. With nine as the minimum size, we 
constructed encoders based on five receptive field sizes according to the following residual blocks.

Overall, we can achieve patch-level feature representation X̂ ∈ R
w×h×d×f  for an individual MRI scan X . Then, 

the classifier network Cψ converts the f-dimensional vector into a scalar for patch-level responses and produces 
X̃ ∈ R

w×h×d×1 . The patch-level responses X̃ = (x̃1,1,1, · · · , x̃i,j,k , · · · , x̃w,h,d) comprises local responses x̃i,j,k ∈ R . 
As both the encoder and classifier networks extract local responses in the specific receptive field size and share 
the extracting function overall spatial dimensions, each local response was extracted by a 3D patch in the brain 
without considering its position in the brain.

Position‑based gate for AD‑related brain‑region localization. This branch is to represent the prob-
ability of detecting AD-related morphological changes in patches centered on specific coordinates in MR scans. 
As all MRI scans were aligned in a 3D template in the image processing step, a 3D space can be shared and is 
applicable over the samples. In addition, all 3D patches are single-scale patches with 3D cubic shapes. Thus, 
the patches distributed in the entire brain can be differentiated only by the patch position information, and the 
center patch position is the representative position information. The simplest method to indicate positions is to 
use a one-hot representation. However, this approach can be inefficient due to the numerous patches and ignores 
the volumetric position in 3D space. This problem can be efficiently addressed using the Cartesian coordinate 
system.

Inspired by a representation proposed  in57, we constructed a 3D complete translation invariance to specify 
a 3D Cartesian space. The 3D Cartesian space coordinates could be represented in three channels, such as 
I ∈ R

W ′×H ′×D′×3.
Based on the position information, we obtain the center position information for the patches used in the 

patch-level prediction branch. The center position information is represented as a position indicator I′ . The 
extraction of the position indicator is described in Fig. 2b. First, when using data augmentation such as image 
translation and cropping, the representation of 3D Cartesian space I should be transformed in the same way as 
the input transformation, which results in the same spatial dimension as the input MRI scan. Then, based on the 
encoder network, the center positions of the receptive field are hierarchically extracted. The extracted position 
indicator I′ ∈ R

w×h×d×3 is taken as input for the position-based gating branch.
The position-based gating branch generates translation-dependent outcomes, which is not possible in the 

patch-level prediction branch. As described in Fig. 1, parameterized functions in position embedding Pπ and 
gate network Gρ consist of convolutional layers, and all convolutional layers in both networks are point-wise 
convolutions parameterized by π and ρ . In the position embedding network, the semantic feature representation 
Î were extracted to detect the task-oriented discriminative region by increasing the number of feature maps. 
Furthermore, the number of output feature maps was decreased in the gate network to encode the semantic fea-
ture representation. Finally, the remaining feature maps were averaged and activated by the sigmoid activation 
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function to generate discriminative probability map G = (g1,1,1, · · · , gi,j,k , · · · , gw,h,d) . The discriminative prob-
ability map consists of gi,j,k ∈ [0, 1] , representing the position-based response located in (i, j, k). By constructing 
position indicator I′ based on the representation of coordinates in the 3D Cartesian space, absolute positioning 
can be performed and shared over the MRI scans for each patch. Therefore, the trained position embedding 
and gate network represent the high response in the region where the AD-related morphological changes are 
consistently captured.

Gate‑based pooling for image‑level prediction. By considering a 3D whole brain to be a bag and 
considering the local features extracted from 3D patches distributed in the whole brain to be instances, the 
proposed framework can be considered a MIL framework. In conventional MIL-based classification problems, 
permutation-invariant pooling operators (e.g., max and mean) have been widely used to aggregate instance-level 
representation into bag-level representation. Just  as18 introduced GAP for patch-level responses in aggregation, 
the mean operator has also been used as a representative aggregation function, especially when more than one 
instance is needed to identify a bag. The mean operation can directly calculate the image-level response, z, as 
follows:

A function parameterized by neural networks was proposed  in38 to detect key instances and aggregate the 
responses based on them. Inspired by the aggregation method, we defined the image-level response by aggregat-
ing patch-level responses through position-based outcomes of the gate network. The element-wise multiplica-
tion between patch-level responses X̃ and discriminative probability map G results in patch-level class evidence 
E ∈ R

w×h×d×1 . The total amount of the discriminative brain region is unknown; thus, the normalization is 
performed based on the sum of the discriminative probability map so that the amount of the gated regions is 
independent of the diagnostic results. The aggregation of patch-level class evidence infers image-level abnormal-
ity and is defined as follows:

where ei,j,k = gi,j,kx̃i,j,k . The image-level response z is directly activated by the posterior probability ŷ = p(y|X) 
using the sigmoid activation function. The patch-level class evidence E directly reveals which patches made a 
significant contribution in the final decision, making the model transparent and interpretable.

Joint learning of pathological brain‑region localization and disease identification. The overall 
parameters (i.e., φ , ψ , π , and ρ ) are trained based on the image-level classification objective. To better train from 
the generalization perspective, the proposed models were trained using two additional techniques: label smooth-
ing and balanced cross-entropy, referring to prior  studies56,58,59. The classification loss function is described as 
follows:

where yLS ∈ {0.1, 0.9} is the modified target and β is a hyperparameter addressing the imbalanced classifica-
tion problem. In addition, β was set to the inverse class frequency. Precisely, the function was calculated using 
the number of samples with negative annotation ( y = 0 ) divided by the total number of samples. The gradient 
generated by classification loss updates the parameters, φ , ψ , π , and ρ.

Moreover, the element-wise multiplication operation between G and X̃ allows both forward and backward 
propagation to be highly dependent on each other. However, in the early stages of training, randomly initial-
ized parameters yielded both X̃ and G . To impose the framework to explore more discriminative brain regions 
localization, we employ an entropy loss for maximization of entropy G , as follows:

The gradient generated by the entropy loss is affected on parameters π and ρ . The final total loss function is 
defined using hyperparameter � to weigh the classification loss and entropy loss. Our proposed network is trained 
in an end-to-end manner with the following loss function:

Data availability
We have evaluated our proposed method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the 
Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) dataset. Both datasets are publicly 
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available, and more information can be found at the following link: (ADNI) https:// adni. loni. usc. edu/ data- sampl 
es/ access- data/, (AIBL) https:// aibl. csiro. au/.

Code availability
All codes used in our experiments are available at https:// github. com/ ku- milab/ PG- Brain BagNet.
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