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Initial motor skill performance 
predicts future performance, 
but not learning
Dekel Abeles 1, Jasmine Herszage 2, Moni Shahar 3 & Nitzan Censor 1,2*

People show vast variability in skill performance and learning. What determines a person’s individual 
performance and learning ability? In this study we explored the possibility to predict participants’ 
future performance and learning, based on their behavior during initial skill acquisition. We recruited 
a large online multi-session sample of participants performing a sequential tapping skill learning task. 
We used machine learning to predict future performance and learning from raw data acquired during 
initial skill acquisition, and from engineered features calculated from the raw data. Strong correlations 
were observed between initial and final performance, and individual learning was not predicted. 
While canonical experimental tasks developed and selected to detect average effects may constrain 
insights regarding individual variability, development of novel tasks may shed light on the underlying 
mechanism of individual skill learning, relevant for real-life scenarios.

People vary substantially in their ability to execute daily skills. To determine the sources of such variability, most 
studies have focused on initial and online task performance, known to vary between individuals1. Thus, with no 
prior practice, some individuals might exhibit outstanding performance, while others might express slow and 
inaccurate performance. Importantly, people vary greatly in their ability to learn new skills as well, with the range 
of possible improvement differing between individuals. Predicting performance and learning based on early skill 
acquisition offers an abundance of benefits and may be useful for effective adjustment of training regimes in daily 
life and for neurorehabilitation. What determines individual differences in performance and learning abilities? 
Here, we aimed to investigate individual differences in skill learning by predicting future performance and the 
amount of learning an individual will exhibit across different time intervals, based on information extracted 
from performance at an early session.

Investigating individual differences with complex statistical modeling requires a large pool of participants. 
Therefore to address this question, we leveraged online platforms enabling crowdsourced recruitment, produc-
ing large-scale data sets2,3,4.

To predict the extent of learning from skill acquisition characteristics, we utilized a common motor sequence 
learning task5, requiring participants to perform a sequence of finger movements as fast and as accurate as pos-
sible. This motor sequence learning task is widely used to model human skill acquisition and learning in health 
and disease6–18. To focus on procedural learning in the task, and control for semantic properties of the sequence 
itself, the required sequence is presented on the screen throughout the task. As evident in other motor learning 
tasks, this task is characterized by typical within-session learning curves, showing higher improvements at the 
beginning of a session and then reaching a plateau at the end of that session8,19,20. Importantly, practicing the task 
repeatedly during multiple days is known to induce improvements between-sessions, in the absence of additional 
practice (for example see20), known as ‘offline gains’, possibly depending on offline consolidation processes. In 
explicit motor learning this stage of learning is sleep-dependent, while such learning in implicit motor skill tasks 
has been shown to be time-dependent11,21. In general, these timelines showing incremental improvement in 
performance across days of practice are common across motor learning domains, similarly reported in visually 
guided curved movement22 and bimanual tasks23,24. Thereafter, if no additional practice is performed, learning 
gains might decrease over time due to memory decay. However, motor skills were previously shown to remain 
stable even after long periods of time without any additional practice of the task25. Of note, additional motor 
learning tasks such as force-field or visuomotor adaptation tasks commonly exhibit different dynamics, for a 
review on these and different motor learning domains see26.
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To collect sufficient amount of data, we conducted a large-scale crowdsourced experiment, recruiting online 
participants to take part in 3 learning sessions, with a retention session following one week, and an additional 
long-term retention session following 2–4 months. First, we validated that online participation demonstrates 
common learning rates within each session as well as between sessions offline gains5,11,27. Next, we applied 
machine learning models based on engineered features derived from existing literature of motor skill, to predict 
future learning based on initial performance. Among the extracted features are common quantifications of task 
performance such as number of correct sequences, and response times, along with custom features designed 
to capture variable learning dynamics and the fitted parameters of the learning curve (learning rate and fatigue 
rates parameters).

Methods
Participants.  Participants were recruited online from the Amazon Mechanical Turk platform (https://​www.​
mturk.​com). Qualifications for registered MTurk workers to participate in the first session of the experiment 
were: above 95% approval rate in previous MTurk assignments, currently located in the USA, right-handed, 
and did not previously participate in a sequential tapping task from our lab. Each of the following sessions 
were made available to qualified participants according to the predefined scheduling scheme and was available 
for 12 h. The age of participants ranged from 18 to 78 (see below). Data were collected using non overlapping 
batches of participants—session 1 of the experiment was made available on a Monday and the next sessions 
accordingly. This resulted in the following number of participants per session: Session 1: 571 participants, Ses-
sion 2: 334, Session 3: 273, Session 4: 195, Session 5: 103. Additional exclusion criteria were enforced to make 
sure the remaining sample of participants were all attentive and complied with instructions (see below). This 
resulted in the final sample of: session 1: N = 460; 274 Female; Mean age = 43.35, Std = 12.99; session 2: N = 254; 
154 Female; Mean age = 43.29, Std = 12.83; session 3: N = 203; 116 Female; Mean age = 44.07, Std = 12.72; session 
4: N = 134; 75 Female; Mean age = 46.08, Std = 13.00; session 5: N = 75; 39 Female; Mean age = 47.48, Std = 12.47. 
Additionally collected participant information was not varied enough to be used as predictive features (Highest 
level of attained education: High-School = 26%, Bachelors = 46%, Masters = 17%; Below 2 h of weekly musical 
engagement: 82%; Below 2 h of weekly physical activity: 75%). All participants used a button press to sign an 
online informed consent form presented at the beginning of each session. The payment scheme for all sessions 
was visible on the experiment page on the Mturk platform. To minimize dropouts, the compensation increased 
as sessions progressed (1.5$, 2$, 2.5$, 2$ for the shorter 4th Retention session, and 5$ for the final long-term 
Retention session). The methods were performed in accordance with relevant guidelines and regulations and 
approved by Tel Aviv University’s Ethics committee.

Task.  Participants performed a procedural motor task—the sequence tapping task5, a canonical task used 
in numerous motor learning studies20,28–30. Participants were instructed (using illustrative slides) to place their 
non-dominant left hand on their keyboard in a one-to-one correspondence between fingers and digit-numbers; 
pinky—#1, ring finger—#2, middle finger—#3, index finger—#4. They were instructed to repeatedly tap the 
requested pattern (4-1-3-2-4) as fast and as accurate as possible using their left hand for the entire trial duration 
(10 s), according to accepted guidelines of the task5,8. A 10 s count-down screen preceded each trial and served 
as a break. Throughout each trial, each key press produced a dot displayed at the top portion of the screen, with 
the dots accumulating from left to right as the trial progressed19,20,25. Except for the sequence itself, this was the 
only visible item on the screen during the trial. The experiment was programed in Psychopy31 and was hosted on 
Pavlovia servers (https://​pavlo​via.​org/).

Experimental procedure.  Before the first session, participants reported their age, gender, education level, 
time of weekly engagement with musical instruments and time engaged in physical activities. Additionally, at the 
beginning of each session, participants were asked to report the duration and the quality of sleep on the night 
preceding that session. At the end of each session, as a simple attention check, participants were asked to report 
the hand they used to perform the task (they were instructed to use their left hand in the beginning of the experi-
ment). The study initially comprised of 4 sessions—each consisting of 36 trials except for the Retention session 
(4th session) containing 9 trials. A fifth session, the long-term Retention session, was made available 2–4 months 
after the completion of the Retention session, and comprised of 36 trials, identical to the first 3 sessions (Fig. 1a). 
The first three sessions were chosen to be 24 h apart to enable overnight consolidation between sessions7,8,27. 
The retention interval was chosen to be significantly longer (7 days) to examine skill retention absent of daily 
practice. The long-term retention interval was chosen to be very long (> 2 month) to examine skill deterioration 
effects stemming from memory decay.

Data analysis.  All analyses were performed using custom code written in python32. Data preprocessing and 
handling was done using the Numpy33 and Pandas34 package. The machine learning pipeline was defined using 
Scikit-learn35 and Pytorch36. The Matplotlib37 and Seaborn38 libraries were used for data visualization. Statistical 
analysis was conducted using Pingouin39.

Participants were qualified to continue to the next session if they did not end the experiment mid-session and 
averaged at least 9 input characters per trial. Additionally, to validate participants’ attention to the task, data were 
discarded from all sessions if participants were too slow to start the trial following a break (first input exceeded 
2 s) or failed to respond in more than 5 trials per session. Next, if the reported sleep duration was outside of the 
acceptable range of 6–12 h, the data from that session and all following sessions were discarded.

Performance was defined as the overall number of correct keypresses in a trial20,40–42. To calculate the amount 
of correct keypress, the number of complete (4–1-3-2-4) sequences in a trial was multiplied by the sequence’s 
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length (5). If the trial ended mid-pattern (e.g., 4-1-3), all keypresses from the start of that pattern were also 
considered correct. Between–session learning was quantified based on the maximal performance (the average 
of the 3 best trials; see Supplementary table s1).

Machine learning modeling.  To test the predictive power of the behavior observed during initial training 
(session 1) on future learning induced by subsequent training sessions, three-time intervals were examined: (a) 
change in performance from the 1st session to the 2nd session, (b) change in performance from the 1st session to 
the 3rd session, (c) change in performance from the 1st session to the 4th retention session. Two additional time 
intervals were used to predict skill retention (a) one week retention interval (from the 3rd session to the 4th) and 
(b) a long-term retention interval (2–4 months) (from the 4th session to the 5th).

Engineered features.  Based on previous research in the field, and specifically on the sequential tapping task, 
engineered features were calculated from the behavioral data aimed to capture more complex patterns in the 
data. All extracted features and their definitions are reported in Supplementary table s1.

Model selection and training.  The gradient boosting method on random forests43 was used due to its efficiency 
in tabular data prediction, and ability to extract complicated non-linear features without specifically designing 
them44. Due to the high number of potential measures in relation to participants for each prediction interval, 
a hyperparameter grid search was conducted, allowing for high values of regularization parameters to avoid 
potential overfitting to the training set (the best parameters were chosen based on a fivefold cross validation 
average MSE score). Additionally, to allow for a better feature selection process that will help with model inter-
pretability, we exposed the model to an increasing set of potential predictors based on their complexity, starting 
with high level features (i.e., session dynamic parameters) and ending with the simplest features (performance 
per trial). Initially, only non-behavioral features were included (i.e., Age and Gender). Predictors were intro-
duced in steps (see Supplementary table s1). In the 1st step parameters from the learning curve were introduced. 
The 2nd step included the parameters extracted to capture Within sequence consistency dynamics and the pat-
tern consistency trend. The 3rd step included Lowess based features. The 4th step included session statistics. The 
5th step included the micro-offline and micro-online features of the first 5 trials19. And the 6th and final step, 
included the performance per trial for all trials in the session. Note that hyperparameters were optimized spe-
cifically for each step due to the increased model complexity that comes with additional parameters and the 
need to adjust the regularization terms accordingly. Due to the large number of potential predictors, and as an 
additional means to avoid over-fitting to the training set, we tested these pipelines both with and without an 
additional preprocessing step of principle components analysis (PCA)-based dimensionality reduction. Data 
were first transformed into Z-scores before entering the model. For prediction purposes, the training set mean, 
and standard deviations were used.

To test whether the results were due to the specific modeling family of choice, different alternative models 
were examined and are described in the Supplementary materials.

Model evaluation.  The parameters that resulted in the best performance on the training-set for each model 
type and prediction interval were used to re-train the model on the entire training set and examine it on the 20% 
of hold-out data that was not accessible during training. The final score is thus the reported explained variance 
(R2) of the hold-out dataset.

Statistical analysis.  One sample t-test was used to examine the statistical significance of the offline gains 
analysis. Correlational analyses were conducted using Pearson or Spearman correlations.

Results
We first validated that performance was consistent with previous studies employing the same task in laboratory 
settings8,25,41,42. Indeed, participants displayed typical learning curves (Fig. 1b), with significant learning expressed 
both within-session, and between-sessions as offline gains8,45,46 (Fig. 1c). Specifically, there were significant offline 
gains between sessions 1 and 2 (t(253) = 2.639, p = 0.009, Cohen’s d = 0.126, CI = [0.36, 2.45]), and between sessions 
2 and 3 (t(202) = 4.008, p < 0.001, Cohen’s d = 0.191, CI = [1.08, 3.16]). Interestingly, even when the skill memory 
was tested following one week, additional offline gains were evident, with a significant improvement between 
session 3 and Retention session 4 (t(133) = 3.154, p = 0.002, Cohen’s d = 0.183, CI = [0.75, 3.28]). In addition, 
during the long term retention interval, lasting between 2–4 months (see “Methods”) a significant reduction 
in performance was observed (difference from Retention (4th session) to Long-term Retention (5th session): 
t(74) = − 7.661, p < 0.001, Cohen’s d = 0.722, CI = [− 10.32, − 6.06]), indicating a decay of the memory trace over a 
period of months. Overall, these results validate typical within and between session motor skill learning.

ML was then used to predict learning based on performance in the first session. To that end, our goal was 
to predict the improvements between performance in session 1 and performance in each of the subsequent 
sessions 2–4. To minimize within session effects of warm-up and fatigue29,47, between-session learning was 
quantified based on the maximal performance in each session (see “Methods”). Predictors were introduced in 
steps with diminishing feature complexity, ranging from whole session dynamics descriptors to the number 
of correct keypresses in each trial. The models did not predict learning in the hold-out set (session2–session1: 
R2

mean_cv_score = 0.08, R2
test = 0.016; session3–session1: R2

mean_cv_score = 0.09, R2
test = − 0.18; Retention session 4—session1: 

R2
mean_cv_score = − 0.01, R2

test = − 0.1, Fig. 2a). Of note, a negative R2 score indicates that model predictions do not 
explain any variance in the dependent variable.
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Figure 1.   Task performance within and between sessions. (a) Experimental design. (b) Learning curves across 
all five sessions (session 1—blue, session 2—yellow, session 3—green, Retention session—orange, Long Term 
Retention session—pink), the shaded area represents the 95% confidence interval. (c) Offline gains between 
consecutive sessions. Data points in the violin plots represent offline gains for each participant. The white dot 
represents the median.

Figure 2.   Model performance with engineered features. (a) Maximum mean cross-validation R2 scores (blue) 
and the corresponding hold-out R2 scores (orange) for each learning interval (x axis). (b) Maximum mean 
cross-validation R2 scores (blue) and the corresponding hold out R2 (orange) for the two retention intervals (x 
axis).
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Is behavior at initial stages of skill acquisition indicative of skill retention? To address this question, the 
model was trained to predict the performance change during the short (from session 3 to Retention session) 
and long retention intervals (from Retention to Long-term retention), based on performance in either the first 
or all 3 prior sessions. The change in performance over both retention intervals was not predicted by the best 
performing model (highest cross validation score) as reflected in the negative R2 in the hold-out set (Reten-
tion session—session3: R2

mean_cv_score = 0.11, R2
test = − 0.84; Long-retention—Retention session: R2

mean_cv_score = 0.08 
R2

test = − 0.88, Fig. 2b). Since the long-term retention interval showed negative changes in performance, further 
investigation of the data revealed that maximum performance in the Retention session was the best predictor for 
the subsequent long-term retention interval (Pearson’s r(73) = − 0.49, p < 0.001, CI = [− 0.65, − 0.30]). Consider-
ing that maximum performance in the Retention session reflects both innate abilities and the overall benefit of 

Figure 3.   Performance was consistent across sessions but did not predict learning. (a) Performance in 
all sessions explains a large portion of the variability in future performance (R2 range = [0.25, 0.91]. (b) 
Performance hardly explains the variability in learning (R2 range = [0, 0.05]. (c) Performance throughout 
the experiment separated according to the performance quantile in the Retention session (colors), showing 
that participants’ relative performance rank remains stable across sessions. Shaded areas represent the 95% 
confidence interval. Statistical significance is marked with * for p < 0.05 and with ** for p < 0.001.
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training throughout the experiment, we examined the correlation between total learning and retention. Pearson 
correlation confirmed that the amount of total learning throughout the experiment (performance differences 
between session 1 and Retention session 4) was even a stronger predictor of the change in performance (Pearson’s 
r(73) = − 0.58, p < 0.001, CI = [− 0.71, − 0.40]), suggesting that participants exhibit long-term decay of their own 
learning before the retention interval. These results were not due to a specific modeling family of choice and were 
consistent when approaches with different inductive biases were used, including a convolutional network that 
benefits from the temporal relation between adjunct datapoints or a LSTM (long short-term memory) network 
that is specifically suitable for time-series (see Supplementary materials).

To further investigate the above results, we assessed the consistency of simple performance metrics in each 
session and between-session learning, using Pearson correlations. Performance in each session explained a large 
portion of the variance in Performance scores across the 3 sessions and Retention session (R2 range = [0.25–0.91], 
all p < 0.001; see Fig. 3a), indicating high test–retest reliability and thus a stable measure of individual perfor-
mance. However, performance hardly explained any portion of the variance in learning (R2 range = [0.00, 0.05]; 
Fig. 3b). While these results suggest that variability in performance can be explained by performance in previ-
ous sessions, variability in learning can hardly be explained. To further illustrate this point, participants were 
separated into 5 quantile ranges (each spanning 20%)48 based on their maximum performance in the Retention 
session, plotted throughout the experiment (Fig. 3c). The plotted curves show that participant’s relative perfor-
mance remained stable throughout the experiment.

Discussion
The goal of this study was to identify what determines an individual’s skill performance and learning ability, 
based on their initial behavior during skill acquisition. Learning was measured at different intervals, using 
large-scale crowdsourced data. Results showed improvements in performance throughout the first 3 sessions 
and the retention session following one week. Between session improvements without additional practice dur-
ing retention intervals of several days20,24,49 may reflect enhanced offline consolidation mechanisms50, and is in 
line with between-days spacing effects51. Interestingly, performance in early sessions did not predict subsequent 
learning, even though variability in performance was explained by performance in previous sessions. In addition, 
participants exhibited long-term skill memory decay, bound by their own learning before the retention interval.

Machine learning was leveraged to predict learning. We extracted features from the observed behavior in the 
task, ranging from high level features such as the parameters of the learning curve (learning rate, fatigue accu-
mulation rate), to simple features such as the correct number of keypresses in a trial. The model did not predict 
future learning, and the results were consistent when validated across different modeling approaches. Thus, no 
further interpretability attempts were taken. It is worth noting that when models are predictive, examining their 
decision functions could help form future hypotheses regarding the suspected cognitive meaning of successful 
predictors which could then be explicitly tested in future experiments.

It is conceivable that the learning measures employed are noisy or do not reflect a stable individual trait. Low 
test–retest reliability of individual metrics was demonstrated in other fields, such as the field of attentional con-
trol, where many canonical tasks, including Stroop52, Flanker53, and Navon54 result in robust between-conditions 
experimental effects, but in unreliable estimates of individual effects55, thus limiting insights regarding individual 
differences. Spearman and colleagues attributed this limitation to the calculation of a composite score as the 
difference between two measurements for the same individual56,57. Critically, such differences between two meas-
urements are the key outcome for evaluating skill learning. Therefore, while skill learning tasks have extensively 
shown robust and replicable results across different contexts when examined between conditions20,25,41,42,58, 
insights into individual differences may be limited. Accordingly, while large sample sizes may reduce standard 
errors and enable to detect average between-conditions effects, they do not necessarily improve the reliability 
of individual effects. This issue could be addressed by increasing the number of repeated measures or trials for 
each participant, as done for example in studies of perceptual learning59.

Separating participants into sub-groups based on their performance in the Retention session resulted in 
a visible, consistent classification throughout all sessions, suggesting that future learning may be too small to 
change participants’ rank. Participants showing higher performance at the beginning also show better perfor-
mance at the end of the experiment. These results are consistent with previous findings of a large online sample 
of participants playing a complex online shooter game48. When participants were split into 5 quantile ranges 
based on their best performance the curves remained separated from the very beginning of the task. Develop-
ment of novel model motor skill tasks with high variability in between-session learning, and in which future 
performance is not determined by initial performance, may overcome the above constraints. Furthermore, the 
challenge of designing such novel tasks, would be to construct them as generalizable across different motor 
domains (including reaching models22 and bimanual tasks23,24), and across different contexts which are known 
to affect performance60–62. Such tasks may provide valuable insights regarding learning variability, which may 
be further combined with potentially useful predictors from other domains1,63,64, functional and anatomical 
neuroimaging information65, or high-resolution kinematic inputs66.

The age of participants is known to affect their motor performance and learning67. To address this issue, 
participants in the current study were recruited from a large variability of ages (see “Methods”), which may have 
supported more generalizable results. However, since all participants were adults, future studies should evaluate 
developmental differences in motor learning in children where performance dynamics and their association 
with future performance might be different. Additionally, while this study tested motor learning, results might 
be generalized to other procedural learning domains, such as perceptual learning, which is known to share com-
mon characteristics with procedural learning (for a review see68). Nevertheless, the generalization of the current 
results to other learning domains should be examined in future studies.
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In correspondence with other empirical fields testing human behavior, canonical experimental tasks devel-
oped and selected to detect average effects may constrain insights regarding individual variability, relevant for 
real-life scenarios. Accordingly, development of novel tasks with high test–retest reliability which model real-life 
learning, may shed light on the underlying mechanisms of individual differences in skill learning and promote 
personalized learning regimes geared to enhance human performance.

Data availability
The datasets generated and analyzed during the current study are publicly available at https://​osf.​io/​rxmpz.
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