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Topic modeling for multi‑omic 
integration in the human gut 
microbiome and implications 
for Autism
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Maude M. David 1,2*

While healthy gut microbiomes are critical to human health, pertinent microbial processes remain 
largely undefined, partially due to differential bias among profiling techniques. By simultaneously 
integrating multiple profiling methods, multi-omic analysis can define generalizable microbial 
processes, and is especially useful in understanding complex conditions such as Autism. Challenges 
with integrating heterogeneous data produced by multiple profiling methods can be overcome using 
Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies 
topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S 
rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic 
profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial 
processes, that summarize complex phenomena occurring within gut microbial communities. We then 
subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter 
precursors and fatty acid derivatives, that differ significantly between children with and without 
Autism. We identify clusters of topics, deemed “cross-omic topics”, which we hypothesize are 
representative of generalizable microbial processes observable regardless of profiling method. 
Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-
omic topic as: healthy/general function, age-associated function, transcriptional regulation, and 
opportunistic pathogenesis.

Autism is a complex neurodevelopmental condition that occurs in 1 out of every 54 children in the United 
States. It is characterized by a specific set of behaviors, although many autistic people may exhibit only a subset 
of them1. Autism is frequently called “Autism Spectrum Disorder” in the scientific literature, however, surveys 
and public opinion from people in the community have demonstrated that the preferred term is simply “Autism”2.

Autistic people have a statistically higher likelihood to experience gastrointestinal (GI) issues3,4. These GI 
issues can include symptoms such as chronic constipation, diarrhea, abdominal pain, and potential signs of GI 
inflammation such as vomiting and bloody stools5. There is also growing evidence to suggest a link between gut 
microbiome dysbiosis and Autism. Fecal microbiota transplants in children with Autism have demonstrated some 
improvements in GI symptoms and a decrease in Autism-associated behaviors6,7. Probiotic supplementation has 
also been observed to improve GI symptoms as well as multisensory processing and adaptive functioning in 
autistic preschoolers8. However, the specifics of this relationship are still little understood. Many studies using 
16S sequencing to profile microbial communities have reported differences in the abundance of certain species 
and genera - often these reports are not reproducible in independent studies9–11.

Molecular-level processes have also been implicated in Autism. Neurotransmitter biosynthesis and break-
down, specifically tryptophan and glutamine metabolism, are often observed to be dysregulated in Autism and 
potentially influenced by shifts in the gut microbiome12–17 . Additionally, the chance of mitochondrial disease 
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within the autistic population is about 5.0%, 500 times higher than that found in the general population ( 0.01%), 
and 30% of children with Autism may experience metabolic abnormalities18. The metabolisms of the resident 
gut bacteria is suggested to be involved in both the phenomena of oxidative stress and Autism, respectively19. 
However, our understanding of how gut microbiome environments relate to both is hindered by the heteroge-
neity of the categorization of Autism, high variation between and within human gut microbial ecosystems, and 
differences in conclusions based on different profiling techniques that may be used to measure microbiomes.

There are certain techniques in computer science, specifically in natural language processing, that excel at 
summarizing highly heterogeneous data. The topic modeling strategy used here, Latent Dirichlet Allocation 
(LDA), was originally used to identify topics within heterogeneous written text documents20. Based on the 
shared distribution of words across documents, LDA defines a pre-determined number of topics, each of which 
is a probability distribution across words. Documents are simultaneously defined by a probability distribution 
across topics. In this way, a document from a food blog may be 60% about restaurants, and 40% about travel. 
This mixed membership model set up allows models to capture complex phenomenon as would be expected in 
a microbial ecosystem.

In this study, we pursued two objectives. First, we sought to deepen our understanding of related variables 
within the human gut microbiome as represented by multiple omic profiling technologies. We define an “omic” 
as one sample by feature table as produced by one profiling method (i.e. 16S rRNA, shotgun metagenomics, 
shotgun metatranscriptomics, and untargeted metabolomics). To address this objective, we applied Latent Dir-
ichlet Allocation, a mixed membership statistical method, defining microbial features (i.e. amplicon sequencing 
variants (ASVs), Kegg Orthologs (KOs), or compounds) as words, and samples as documents. This topic analysis 
defined specific sub-processes or topics that were represented in a robust manner across multiple gut microbiome 
profiling techniques. Second, we evaluated potential associations between features of the gut microbial ecosystem 
and Autism. To do this, we first used the identified microbiome topics to cluster samples with similar “microbial 
landscapes” together, then applied traditional differential abundance analysis techniques.

Our first objective was motivated by the fact that human gut microbiomes are highly heterogeneous within 
and between individuals on a taxonomic and functional level21–24. Clustering approaches are commonly used 
to define community structure and have led to the adoption of the concept of enterotypes, distinct sub-types of 
microbiomes that are dominated by either Bacteroides, Prevotella, or Ruminococus genera25. However, while 
this categorization serves as an important dimensionality reduction tool for these complex datasets, it tends to 
oversimplify the community structure, and hides complexity in the microbial communities that exist in the space 
between enterotypes26. Newer work argues that host-associated microbiomes should be considered to be on a 
spectrum, and that mixed membership models, and in particular topic models, are powerful and robust tools 
to learn and define that spectrum27–32.

Our second objective, to identify associations between Autism and gut microbial features, was motivated by 
the high heterogeneity between individual microbiomes, and was enabled by topic modeling. Reports of how 
the gut microbiome relates to Autism are highly variable across the literature, and while many agree that the gut-
brain axis plays a role, there is only moderate consensus about the specific bacteria and processes involved9–11. 
Differential abundance analysis between highly heterogeneous samples provides limited power and is more 
likely to produce spurious positive results. To address this, we use topics identified in multi-omic data to cluster 
samples, and perform differential abundance analysis on each cluster independently, making each group less 
heterogeneous in microbial structure.

Results
Topic modeling for multi‑omic integration.  We used Latent Dirichlet Allocation (LDA), a form of 
unsupervised topic modeling, as an integrative approach to reduce the thousands of features across 16S rRNA 
(16S), shotgun metagenomic (MTG), shotgun metatranscriptomic (MTT), and untargeted metabolomic (MBX) 
profiling datasets all performed on the same stool samples from children with and without Autism. Please see 
Table 1 for a demographic description.

LDA was originally used for topic modeling in natural language processing where topics are defined by 
distributions across a vocabulary and documents are modeled as deriving from a distribution of topics. In this 
study case, we treated samples as documents and omic features as words, and we used the counts of features 
across samples to learn topics per omic (Fig. 1A). After model fitting, each topic is a weighted vector of feature 
count probabilities, and each sample is a weighted vector of topic probabilities. Each sample has 24 total associ-
ated vectors: 4 original omic count vectors, 4 16s topic vectors, 5 MTG topic vectors, 4 MTT topic vectors, and 
7 MBX topic vectors (Fig. 1B). The number of topics were selected to minimize differences between true and 
model-simulated data (see Methods). Remarkably, topics learned from different omics correlated significantly 
with one another in true data, but not in data simulated using null models (see Methods), allowing us to define 
cross-omic topics, or sub-processes that are observable at multiple levels of measurements (Fig. 1C, Supple-
mentary Fig. 2). Using the topics as representative of broad microbial processes, we split samples into two main 
groups based on their topic distribution (Fig. 1D). Samples in the same topic-derived clusters shared similar 
dietary patterns (Supplementary Fig. 1). Clustering samples using topics highlighted two distinct Autism-related 
metabolic profiles: sample cluster 1, which associated with healthier eating habits, implicated neurotransmit-
ter precursors and sample cluster 2, which associated with less healthy eating habits, implicated fatty acids and 
their derivatives. Lastly, topic interpretation revealed four main processes reflected in all omics: healthy/general 
function, age-associated function, transcriptional regulation, and opportunistic pathogenesis. See Table 2 for 
cluster demographics.
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Modeling identifies cross‑omic topics that correspond to diet and microbial functions.  We 
interpreted topics by observing which features have highest attribution weights for each topic, and also by cor-
relating topic distributions across samples to dietary characteristics (Fig. 2). We find that dietary variables cluster 
into two main groups (Fig. 1E) with the consumption of fruits, vegetables, fermented vegetables, seafood, meat, 
home-prepared meals, probiotics, vitamin B, and vitamin D constituting one group, and consumption of sugary 

Figure 1.   Topic modeling process.Stool samples were measured using 4 techniques, 16s, metagenomics (MTG), 
metatranscriptomics(MTT), and metabolomics (MBX) (A). Latent Dirichlet Allocation (LDA) was applied 
to each dataset independently to model latent variable “topics” from count data . Each sample is modeled as a 
Dirichlet distribution of topics, and each topic is modeled as a Dirichlet distribution of features (ASV, KO, or C) 
(B). Topics from each omic were then clustered by their distribution across samples using hierarchical clustering 
on spearman correlations (C). We call the cluster of topics “cross-omic topics”, and discuss their interpretations 
and biological implications. Multiple topics from an omic may be included in the same cross-omic topic, 
denoted as “.1” or “.2” etc. Samples were clustered using hierarchical clustering on spearman correlations 
between their topic distributions (D). Groups enabled comparisons between samples with similar diets and 
similar ‘microbial feature landscapes’.

Table 1.   Demographics of 81 samples where all four omics were performed on the same stool sample, and of 
topic-driven sub-clusters. ASD stands for Autism Spectrum Disorder or simply “Autism”, and TD stands for 
typically developing or “neurotypical”.

n_samples n_ASD n_TD

81 inclusive samples 81 42 39

Cluster 1 39 21 18

Cluster 2 42 21 21
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Figure 2.   Topic interpretation using feature weights Each topic may be defined by those features with the 
highest weights. Features detailed here had weights with max value more than 1.5 standard deviations over 
the median (exceptionally high value) and high values along axes of maximal variation between topics 
(exceptionally attributable to a single topic). Topic interpretations are for cross-omic topic 1 (A), cross-omic 
topic 2 (B), cross-omic topic 3 (C) and cross-omic topic 4 (D). Each cross-omic topic may contain multiple 
single omic topics, as denoted by 0, .1 or .2. We consider any features with high weight to be representative of 
the cross-omic topic. Topic correlations with dietary features are in (E). Dietary variables with keyword “freq” 
represent long-term self-reported variables, while variables without “freq” are about the most recent week before 
sampling. Cells in A-D are colored by topic value (probability between 0 and 1), while cells in E are colored by 
spearman ρ value. A star signifies a significant (p<0.05) spearman correlation.
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food, sweetened drinks, starchy food, dairy, whole-grains, pre-packaged meals, and restaurant food constituting 
another. It should be noted that dietary variables are not included into the topic modeling process itself to focus 
analysis on the true microbial landscapes and erase bias due to self-reported data and pre-conceived notions of 
healthy eating.

Topic1 is characterized by high consumption of the first, healthier, group of dietary variables (Fig. 1E), as 
well as with bacterial alpha diversity (Supplementary Fig. 4). There are three MBX topics that cluster into cross-
omic Topic1. They are characterized by high values of fats, specifically 18:3 containing glycerols, anacardic and 
heptadecatrienoic acids, PAHSA, ximenoylcarnitine, as well as alpha-tocopherol acetate, trimethylurate, and 
AAMU (5-acetyleamino-6-amino-3-methyluracil) (Fig. 2). There are two MTG topics that cluster into cross-
omic Topic1. They are characterized by ubiquitous enzymes like glutamine and serine/threonine kinases and 
heavy metal and drug exporter pumps. There are two MTT topics that cluster into cross-omic Topic1 as well. 
They are characterized by high values of methyl-coenzyme M subunits used in methane metabolisms, as well 
as functions like yeast plasma membrane ATPase, yeast amino acid transporter, eukaryotic translation initia-
tion factors, pyruvate decarboxylase, heat shock protein, and MFS sugar transporters. There is one topic from 
16s that clusters into cross-omic Topic1; it is high in values for species from Ruminococcacea, as well as other 
unidentified Clostridiales order members.

Additionally, we found Topic1 values to be correlated with specific behavioral characteristics from the parent-
reported behavioral questionnaire (see Methods). In particular, Topic1 values correlated with observed imagi-
native play, both along and with others, as well as language and speech skills and a lack of self harm behavior 
(Supplementary Fig. 5). It should be noted that these behaviors and topics may be related to age, although 
significance of correlations between Topic1 and age vary (Supplementary Fig. 6).

Cross-omic Topic2 is characterized by high consumption of the second, less healthy, group of dietary variables 
(Fig. 2E). In MBX data, we see high values of steroid sulfates, specifically androstenediol mono and di sulfate, 
tetrahydrocortisol sulfate, pregnenediol sulfate, and DHEA-S (Fig. 2B). In MTG, we see proteins used by bacteria 
for horizontal gene transfer, namely competence proteins and transposases, as well as a glutamine synthetase 
repressor, acetolactate decarboxylase, and phosphomevalonate kinase. In 16s, we see high Ruminiclostridium 
species, Blautia and Tyzzerella and Faecalitalea genera members. Topic2 is not represented in MTT data. Topic2 
is also the only cross-omic topic consistently correlated (negatively) with age (Supplementary Fig. 6).

Topic3 is weakly associated with the first, healthy, set of dietary variables (Fig. 2E). In MBX data, we see high 
values of dinucleoside monophosphates (Fig. 2C). In MTG data, we see higher values of sensor histidine kinase 
DegS and manganese/zinc/iron transport permease protein. In MTT data, Topic3 is not clearly defined by any 
set of features, but is dramatically the topic assigned the highest attribution across all samples (the chance of a 
sample having high Topic3 values is very high) (Supplementary Fig. 7). In 16s data, we see high values for two 
species, one from the family Christensenellaceae and the other from Odoribacter.

Topic4 is characterized less strongly by metadata variables, but still represents lower intake of vegetable, 
fruit, fat/oil, meat, and home prepared meals (Fig. 2E). In MBX data, we see high values of sulfates, specifically 
catechol, dihydrocaffeate, and furaneol sulfates (Fig. 2D). Additionally, myristoylcarnitine, linoleoylcarnitine, 
7-ketolithocholate, 3-hydroxyisobutyrate, and 2-O-methylascorbic acid are all high in Topic4 MBX. In MTG, we 
see a strong contribution from genes associated with pathogenesis, specifically autotransporter family proteins, 
usher proteins, adhesin/invasin, and bacteriophage proteins. In MTT, we see similarly high values of universal 
stress protein E, outer membrane usher protein, biofilm regulator BssR, as well as regulatory proteins RseB, 
molecular chaperone IbpA, and chromosome partition protein MukB. Lastly, 16s data shows particularly high 
values for a Veillonella species, as well as for species from the Blautia, Faecalibacterium, Intestinibacter, and 
Anaerostipes genera.

Topics may be observed in independent datasets.  To demonstrate that topics may be observed in 
other independently collected datasets, we utilized data from David et. al and Telleria et. al, which offered 16s 
and metabolomics data respectively with similar data collection and processing methods. We trained LDA mod-
els with the same parameters as used in this paper, calculated feature-feature cosine distance matrices based 
on the feature-topic distributions (betas) in each model. We compared the respective feature-feature matrices 
derived from the independent studies to those from this study using a mantel test, which reported a significant 
relationship between the 16s-based ( p = 0.001 ) and metabolomics-based ( p = 0.001 ) feature-feature relation-
ship matrices across studies. Then, we permuted the rows of one feature-feature distance matrix to simulate 
mantel statistics under the null hypothesis, and observed the true mantel z-score was significantly higher than 
would be expected due to random chance (Supplementary Figure 8). This result implies that topics define con-
sistent feature-feature relationships, in essence grouping features in a similar way, regardless of dataset.

Subsetting population by topics reveals metabolic differentials between Autism and Typically 
Developing cohorts.  We defined two major clusters of samples using hierarchical clustering of topic dis-
tributions (Fig. 3A). We found that 92% of families (88 families) clustered into the same groups as each other, 
while only 8% (8 families) clustered separately (data not shown). Before clustering, autistic and typically devel-
oping participants had large differences in multiple dietary variables that significantly affected multi-omic fea-
tures (Supplementary Fig. 3). After separating samples into subpopulations, we found that metadata differences 
between autistic and typically developing phenotypes became less stark (Supplementary Fig. 9). The exception to 
this statement was autistic individuals in Cluster2 still ate less dairy than their typically developing counterparts. 
This grouping therefore allowed us to account, to some extent, for differences in dietary patterns in our analysis.

We find samples in cluster1 have high cross-omic topic1 values, while samples in cluster2 have high cross-
omic topic2 and topic4 values (Fig. 3B). Differential analysis between autistic and typically developing individuals 
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within these subset populations reveals distinct metabolic signatures. In Cluster1, autistic individuals have sig-
nificantly lower stool abundances of neurotransmitter precursors, namely caroxyethyl GABA, glutamine, and 
tryptophan, and higher abundance of vanillin (Fig. 3C). In Cluster2, autistic individuals have significantly lower 
stool abundances of fatty acids (caprate), acylcarnitines (myristoylcarnitine, palmitoylcarnitine), quinolinediol, 
and 3-hydroxy-5-cholenoic acid (Fig. 3D). Differential abundance plots for these metabolites across the entire 
cohort can be found in Supplementary Figure 10.

Additionally, we observed differentials in metagenome, metatranscriptome, and 16s features between autistic 
and typically developing individuals in each subgroup (Supplementary Fig. 11) ).

Discussion
The gut microbiome has been implicated in a plethora of complex and idiopathic conditions, but thus far remains 
challenging to interpret due to the high variability and many avenues for analysis. We may observe microbiome 
structure and function using 16s rRNA amplicon sequencing, shotgun metagenomics, shotgun metatranscrip-
tomics, and untargeted metabolomic profiling (among many others), and each of these data modalities reveals 
a different understanding of the composition and dynamics of the microbial community at large. While none of 
these methods singularly assures accurate conclusions, this paper simultaneously integrates all four omic data 

Figure 3.   Differential analysis of metabolites between autistic and typically developing children within 
sample clusters as determined by topics. Hierarchical clustering on samples’ topic distribution produces two 
clusters (A). Cluster1 is defined by high topics 1 and 3, while cluster 2 is defined by high topics 2 and 4 (B). In 
cluster 1, CEGABA, glutamine, tryptophan, and vanillin are differentially abundant (C). In cluster 2, caprate, 
myristoylcarnintine, palmitoylcarnitine, quinolinediol, and 3hydroxy5cholenoic acid are differentially abundant 
(D). Features are first filtered, and then p values are reported using Wilcox rank sum test. Multiple single-omic 
topics may belong to the same cross-omic topic, denoted here as “.1” or “.2”.

Table 2.   Sample demographics for all samples used in topic modeling and differential abundance approaches. 
81 samples had all four omics measured on the fecal samples. Remaining samples were collected as part of the 
same study, but had one or more omics missing.

n_samples n_ASD n_TD n_individuals

16s, used for topic modeling 456 228 228 152

MTG, used for topic modeling 193 98 95 186

MTT, used for topic modeling 178 89 89 178

MBX, used for topic modeling 175 87 88 175

81 all-inclusive samples, used for differential abundance testing 81 42 39 81

Cluster1 39 21 18 39

Cluster2 42 21 21 42
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modalities to create a more complete and unbiased representation of microbiome structure and function. Our 
approach reveals which dietary habits are reflected across the microbiome to what extent, and presents an objec-
tive approach to subtyping a population based on microbiome composition and function.

We define ‘cross-omic topics’ that summarize patterns observed in 16s, metagenome, metatranscriptome, and 
metabolomic data, and their relationship with each other. We find that topics correlate with dietary variables, and 
these correlations can be used to group dietary habits in a way that reflects current dietary health standards. We 
associate features from each omic with those groups, and hypothesize that these feature groups may be used to 
obtain a more complete and data-driven understanding of overall health of the microbiome, especially in com-
plex diseases associated with microbiome dysbiosis. We then clustered stool from autistic/typically developing 
participants using topic values, and found two distinct subpopulations. Metabolic differences between autistic 
and typically developing individuals within each subpopulation implicated neurotransmitter precursosr and 
medium to long chain fatty acid availability as relevant factors in Autism worthy of further exploration. We argue 
that this type of topic modeling approach could be used in other complex disease studies to integrate multi-omic 
data and more accurately elucidate the relevant factors in the human-microbiota relationship.

Value of LDA.  Latent Dirichlet Allocation (LDA) has been used with great success to identify topics in natu-
ral language processing contexts. Given a set of documents, LDA uses word count distributions to define a set of 
topics that each document discusses. For example, documents may primarily discuss politics, cooking, or sports. 
Gibbs sampling is used to learn unlabeled topics by a weighted vector of vocabulary words. Simultaneously, 
documents are assigned weighted vectors of topic distributions. The resulting topic vectors as defined by vocabu-
lary are unlabeled, however, by interpreting those words with high weight in a given topic, one may assign a label 
to the topic heuristically. For example, one topic may contain high weights for president, prime minister, coun-
selor, and court room, while another may contain high weight for the words spatula, bruschetta, and baguette. 
A human interpreter could see these patterns and call the first topic “politics” and the second topic “cooking”.

The Dirichlet distribution is commonly used to model microbiome data33–35, and LDA in particular has proven 
to be a powerful and robust tool for modeling 16S data in various environments26,28–32. LDA is a parametric form 
of dimensionality reduction; it has the advantage of additional power as compared to other non-parametric forms 
like PCoA, GloVe, or transformer neural networks36. In the case of multi-omic analysis, where data representing 
multiple omic measurements on the same samples is very limited, parametric methods are particularly useful. 
LDA allows for mixed membership, so a sample can be represented by multiple sub-communities of bacteria, 
genes, or metabolites, making it more appropriate for capturing complex phenomena.

Value of cross‑omic microbiome topics.  Cross-omic topics represent gut microbiome landscapes that 
can be viewed through the lens of individual omics, but that are present regardless of the lens. We are not the first 
to consider microbial landscapes as a basis for comparing samples.

Perhaps the most commonly cited example of considering microbial landscapes is that of enterotypes. In a 
2011 paper, Arumugam et. al introduced the idea that the human gut can come in three varieties, those domi-
nated by Bacteroides, Prevotella, and Ruminococcus genera respectively. Later work by Knights et. al suggested 
that the enterotype distribution is actually continuous rather than discrete26. Most recently, Symul et. al consider 
how we might use approaches like topic modeling to identify sub-communities of samples within this continu-
ous microbiome space in the vaginal ecosystem27. To our knowledge, the approach of topic modeling to define 
microbial sub-communities has been reported only for 16S data, with other omic data as supporting evidence. 
Here, we illustrate that the same sub-community or sub-process structures can be observed through the lens 
of multiple levels of biology (e.g. community membership, genomic function, and metabolic result), and that 
the sub-processes (topics) identified by each omic do correspond significantly with one another to define sub-
processes across omics.

By comparing only samples with similar community structure, and only then identifying the specific fac-
tors by which they differ, our results become more meaningful. For example, in macroecology, it is standard 
practice to compare population sizes between species in similar environments only, as comparisons between 
vastly different habitats may be correct, but not meaningful. In microbial ecology, we often perform differential 
abundance analysis to identify features that differ between host phenotypes without consideration for the broader 
microbial landscape. We argue that it is not enough that samples come from the same tissue (e.g. gut), we must 
also consider the ecology between individuals as a relevant factor. One approach to accomplish this grouping 
of similar samples is to cluster samples based on similarities of diet and/or host genotype, however, the effect 
these factors have on the microbial environment is not fully understood, and does not account for all differences 
observed in broad microbial landscapes. Comparisons made on the basis of dietary similarities are also usually 
subjective to self-report bias. Instead, methodologies that act on the microbial landscapes themselves promise 
to be more consistent across studies and inherently mitigate bias derived from an incomplete understanding of 
microbiome-diet relationships.

Additionally, topics may represent underlying metabolic processes that are independently informative of 
microbial ecology principles. In the “Interpreting Topics by Feature Weights” section, we observe that biologically 
related features (ex. sets of dinucleotides or genes utilized by bacteria in stressful environments) are all attributed 
to the same topic. This consistency indicates that biological relationships may be captured in this methodol-
ogy, and suggests that topic modeling may be used to broaden our understanding about gene, metabolite, and 
taxonomic species relationships. We found that topics learned in each omic dataset independently significantly 
correlated with other topics from other omics, which was not true of null simulated data. We hypothesize that 
this implies some universality of the processes represented by cross-omic topics, however, further research is 
needed to validate these topic distributions on independent datasets.
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One benefit of identifying sub-processes based on multiple omics is mitigation of bias. Each omic technique 
provides useful information about one level of biological processing, but each is inherently incomplete and 
subject to unique sources of bias during processing. 16S data acts as a census of the bacterial species repre-
sented in the community, and their relative abundances. Because it involves an amplification step, it represents 
a deeper sampling of the microbial diversity present, but is also subject to amplification bias37. It also has very 
limited capacity to represent function or metabolism within the bacterial community37. Shotgun metagenomic 
(MTG) data provides a shotgun representation of the community gene pool. Because it lacks an amplification 
step, it represents only the most common genes. It also represents only genetic potential, as opposed to those 
genes undergoing expression or translation38. Shotgun metatranscriptomic (MTT) data provides a shotgun 
representation of the community translation pool. Like MTG, it represents only the most common genes, and 
can be additionally highly variable between timepoints39. Metabolomic (MBX) data provides a measurement 
of the metabolites and relative concentrations present in an environment. Metabolites may originate from bac-
teria or host, and data is additionally limited to those most common metabolites40. Individually, all are subject 
to unavoidable bias, however, integrative multi-omic approaches such as topic modeling have the potential to 
mitigate these biases - phenomena that are represented in all data modalities are more likely to be ubiquitous, 
universal, and consistent phenomena.

Dietary habits as related to cross‑omic microbiome topics.  It is commonly accepted that diet influ-
ences microbiome composition and function and vice versa, and it is not known explicitly what dietary habits 
promote the healthiest microbiomes. We found that correlations between dietary variables and cross-omic top-
ics, which represent the relationship strength between specific dietary practices and microbiome composition 
and function, spontaneously group dietary choices into two groups. Group1 consists of fruit, vegetable, fer-
mented vegetables, meat, seafood, home prepared meals, and vitamins, while group2 consists of sugary and 
starchy foods, sweetened drinks, dairy, and ready to eat meals. Interestingly, self-assembled groups clearly fall in 
line with current pre-determined dietary health standards30.

In this case, it is impossible to distinguish between effects on the microbiome driven by lack of an important 
“healthy” food group versus presence of an “unhealthy” food group. Further studies may be designed to include 
participants actively eating all the necessary food groups in addition to some unhealthy options, as well as par-
ticipants lacking some healthy food group choices to understand whether presence or absence of healthy eating 
choices is more influential on the gut microbiome.

Cross‑omic microbiome topics as defined by microbial functions.  Topic1: healthy/general phenom‑
ena.  We hypothesize that Topic1 may represent base metabolism functionalities across many forms of life, in-
cluding beta-oxidation (metabolism of fats), cytochrome functionality, methane metabolism, and ion transport. 
This is supported by a strong correlation between Topic1 values and 16s-based alpha diversity metrics, which 
are strongly linked to increased resilience and general healthy status41–45. Topic1 correlates most strongly with 
dietary variables such as fruit, vegetable, fat/oil, home prepared meal, meat, seafood, and vitamin consumption 
frequency, which are largely in line with the Healthy Eating Index “adequacy components” (eating more cor-
responds to a healthier diet)46.

Within the MBX topics, there are 3 that belong to cross-omic Topic1. The first is represented by high values of 
18 carbon, 3 times unsaturated lipids such as anacardic acid, heptadecatrienoate, and 18:3 glycerols. The second 
is represented by higher values of metabolites related to CYP1A2 metabolism of caffeine such as 1,3,7 trimethy-
lurate, AAMU (CYP1A2 caffeine metabolism products), and alpha tocopherol acetate (CYP1A2 inhibitor)47–49. 
We hypothesize that this topic may represent the products of CYP1A2 activity of the host, which may be modi-
fied with caffeine consumption (in the form of coffee, tea, or chocolate), as well as by cruciferous and apiaceous 
vegetable consumption50,51. The last is represented by high values of PAHSA and ximenoylcarnitine, long chain 
and very long chain fatty acids that relate to mitochondrial function. Specifically, PAHSAs are known for their 
anti-inflammatory and insulin controlling action, while ximenoylcarnitine is less studied, but as an acylcarnitine 
likely has to do with beta-oxidation activity in the mitochondria52,53. There are two MTG topics that cluster into 
cross-omic Topic1. They are characterized by ubiquitous functions like glutamine and serine/threonine kinases 
and by environmental adaptation genes like heavy metal and drug exporter pumps54,55. There are two MTT 
topics that cluster into cross-omic Topic1 as well. They are characterized by high values of methyl-coenzyme 
M subunits used in methane metabolisms, as well as eukaryote-specific genes such as yeast plasma membrane 
ATPase, and yeast amino acid transporter. This same topic is also high in ubiquitous functions like eukaryotic 
translation initiation factors, pyruvate decarboxylase, heat shock protein, and MFS sugar transporters56. While the 
methane metabolism transcripts most likely represent archaea activity in the gut57, the second MTT Topic1 more 
likely relates to eukaryotic metabolisms, specifically yeast. Contributing to this conclusion are the eukaryotic 
specific transcription factor and yeast specific genes that define this topic, as well as the fact that all transcripts 
mapping to the human genome were removed (see Methods), eliminating the main source of eukaryotic gene 
transcripts. Lastly, we see some Ruminococcaceae species along with unidentified Clostridia members highly 
represented, that, when combined with the high vegetable associations and hypothesized methane metabolisms, 
imply prevalent fermentation processes58.

Topic2: age‑associated phenomena.  In contrast, Topic2, which is also significantly inversely correlated with age, 
correlates with low quantities of the above food groups, and high quantities of starchy, sugary, pre-packaged and 
restaurant foods, which are largely in line with the Healthy Eating Index “moderation” components (eating less 
corresponds to a healthier diet)46. In MBX Topic2, we see high values of steroid sulfates, specifically androsten-
ediol mono and di sulfate, tetrahydrocortisol sulfate, and pregnenediol sulfate, DHEA sulfate, and alpha -CEHC 
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sulfate. These steroid compounds are responsible for physiological changes seen during puberty, but are inac-
tive in their sulfonated forms59. Thus, we hypothesize that Topic2 may capture the effect of age with an inverse 
relationship. While steroid sulfates are not considered actively hormonally, some do act as neurosteroids, which 
can modulate GABA and NMDA receptors among other targets60. Steroid sulfatase is a potential modifier of 
cognition in attention deficit hyperactivity disorder61. It is suggested that STS dysfunction (too many sulfates on 
hormones) predisposes an inattentive subtype of ADHD62. We did not find Topic2 to be associated with Autism 
severity, and it was not able to distinguish between autistic and TD individuals (data not shown).

In Topic2 MTG, we observed high values of a key enzyme in steroid hormone synthesis, phosphomeva-
lonate kinase, which is consistent with the steroid metabolites observed in the MBX data63. We also observe 
high values for genes used in bacterial horizontal gene transfer, namely competence proteins and transposases. 
Upregulation of these gene sets has been observed from bacterial in stressful environments, and diets heavy in 
starch and sugars can affect biofilm formation as well as competence64,65,65,66,66,67. Topic2 also represents high 
values Ruminiclostridium species, Blautia and Tyzzerella and Faecalitalea genera members, many of which are 
associated with chronic inflammation. Ruminiclostridium is considered a potential pathogen associated with 
obesity and inflammation, and has been found to be increased in younger individuals in macaques, dairy cows, 
and humans68–70. Tyzzerella was found to be profoundly overrepresented in Crohn’s disease patients, increased 
in patients with high cardiovascular disease risk profiles, and correlated with lower healthy eating scores71–73. 
It should be noted that while Topic2 was strongly inversely related to age, participants were no younger than 2 
years old and were not being breast-fed, and so Topic2 is not representative of a newborn gut microbiome. The 
precise relationship between the observed competence proteins, pro-inflammatory genera, and age remains to 
be elucidated.

Topic3: transcriptional regulation phenomena.  In Topic3, we see high values of dinucleoside monophosphates 
and genes for RNA polymerase subunits, elongation factor G, and HSP20. Dinucleoside monophosphates have 
been recently suggested to function as RNA caps in bacteria, to either initiate transcription or protect against 
RNA degradation71,74. Alternatively, they may also be an artifact of metabolomics pipeline processing. In 16s 
data, we see high values for two species, one from the family Christensenellaceae and the other from Odori-
bacter. MTG and MTT data do not present strong feature attributions for Topic3, however, we do see that the 
overall topic weight across samples attributed to Topic3 is incredibly high (Supplementary Fig. 7), supporting the 
interpretation of Topic3 as transcription related factors.

Topic4: opportunistic pathogenesis phenomena.  Topic4 is characterized less strongly by metadata variables, but 
still represents lower intake of vegetable, fruit, fat/oil, meat, and home prepared meals. In MBX data, we see high 
values of sulfates, specifically catechol, dihydrocaffeate, and furaneol sulfates. Catechol is used as a pesticide 
and as a precursor to many chemical products, can be manufactured by multiple bacterial species including 
those found in the human gut75, and has been found to have both anti-bacterial and anti-fungal action76. Dihy-
drocaffeic acid is produced during colonic fermentation of wheat77. Interestingly, although children ages 2–7 
are unlikely to be consuming coffee, all three compounds are known to increase upon coffee consumption78,79. 
Additionally, metabolites that reflect beta-oxidation processes in the host are increased in MBX data, specifically, 
myristoylcarnitine, linoleoylcarnitine, 7-ketolithocholate, 3-hydroxyisobutyrate, and 2-O-methylascorbic acid. 
Acylcarnitines along with 3-hydroxyisobutyrate are intermediates of beta oxidation80,81, while 7-ketolithocholate 
and other bile acids contribute to fat absorption and may influence the availability of fatty acids for catabolism82. 
2-O-methylascorbic acid is understudied in the literature, however, 2-O-ethyascorbic acid, or Vitamin C, is 
a cofactor for carnitine biosynthesis which is necessary for beta-oxidation83. Interestingly, bacteria may also 
use carnitine as an osmoprotectant to increase thermotolerance, cryotolerance and barotolerance, and may use 
3-HB as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material81,84. High concentra-
tions of these metabolites contribute to the conclusion that Topic4 may represent a stressful or challenging 
environment for many microorganisms, and may increase the opportunity for opportunistic pathogen growth. 
In MTG, we see a strong contribution from genes associated with pathogenesis and metabolism in stressful 
environments. Autotransporter family proteins are often associated with virulence functions such as adhesion, 
aggregation, invasion, biofilm formation and toxicity, usher proteins facilitate pillus formation, and adhesin/
invasin can induce bacterial aggregation and biofilm formation85–87. Miniconductance mechanosensitive chan-
nel confers protection against mild hypoosmotic shock88 and bacteriophage proteins signal a stressful environ-
ment for commensals. In MTT, we see similarly high values of universal stress protein E, outer membrane usher 
protein, biofilm regulator BssR, as well as regulatory proteins RseB, molecular chaperone IbpA, and chromo-
some partition protein MukB. Many of these genes are upregulated during microbial adaptation to stressful envi-
ronments, and by opportunistic pathogens in particular89–91. Lastly, 16s data shows particularly high values for 
a Veillonella species, as well as for species from the Blautia, Faecalibacterium, Intestinibacter, and Anaerostipes 
genera. Veillonella species are the strongest contributors to Topic4; they are well known for their behavior as 
opportunistic pathogens in the human gut and dental plaque and exhibit strong adhesion and biofilm formation 
capacities mediated by autotransporters92.

Subsetting population by topics reveals metabolic differentials between ASD and TD cohorts‑ 
neurotransmitters and fatty acids.  In cluster1 (high topics 1 and 3), which corresponds to largely 
healthy eating habits including high quantities of vegetables, fruits, and home prepared meals, we found autistic 
individuals to have lower stool abundances of neurotransmitter precursors carboxyethyl GABA, glutamine, and 
tryptophan. Autism is characterized by complex neurobehavioral and neurodevelopmental criteria including 
social interaction, restricted and repetitive behavior, and altered sensory processing1,93. Many have reported 
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dysregulation in the glutamate-glutamine cycle in both plasma and brain tissues resulting in altered concentra-
tions of glutamine and GABA in people with Autism12–15. Likewise, multiple components of the tryptophan 
metabolism pathway are neuroactive, including serotonin, kynurenine, and quinolinic acid94,95. Dysregulation 
in tryptophan metabolism is hypothesized as a major contributing agent to the gut-brain axis, and is associated 
with Autism96. Tryptophan may also become NAD+ through the kynurenine pathway, where dysregulation may 
imply issues with metabolic regulation97. While CEGABA is less studied, evidence suggests that it is active in the 
central nervous system and may strengthen cortical inhibition and act directly on the lower brain stem96,98. It 
also demonstrated anti-convulsant activity in guinea pigs99.

In cluster2 (high topics 2 and 4), which corresponds to largely unhealthy eating habits including high quan-
tities of sugary and processed food and drinks and low quantities of fruits and vegetables, we found autistic 
individuals to have lower stool abundances of fatty acids, acylcarnitines, quinolinediol, and 3-hydroxy-5-chole-
noic acid. Mitochondrial dysfunction, as well as fatty acid and acylcarnitine concentrations in serum, has been 
implicated in subgroups of autistic individuals100–102. Concentrations of bile acids like 3-hydroxy-5-cholenoic 
acid have also been implicated in Autism, perhaps in part because bile acid concentrations directly influence 
the absorption and therefore availability of fatty acids103,104. We were unable to find reference to quinolinediol in 
ASD literature, however, quinolinic acid, a related compound, was found to be decreased in cerebrospinal fluid 
of 12 children with autism105. Quinolinic acid also serves as a precursor to NAD+, and this pathway may be used 
as an alternative to synthesize NAD+ in the context of oxidative stress as would be seen during mitochondrial 
dysfunction106. Mitochondrial dysfunction and oxidative stress has been reported in only 5% of autistic individu-
als, however, this is much higher than the expected 0.01% in the rest of the population102,106.

Both neurotransmitter imbalances and metabolic dysregulation have been implicated in Autism literature, 
depending on the study. This study implicates both factors depending on the subtype of the gut microbiome, 
which itself relates to both diet, microbial gene content and expression, and metabolic environment. This sub-
typing, along with correlations between some topics and specific behavioral metrics, lead us to suggest that the 
gut microbiome may be effective at identifying subgroups of Autism, and may give some indication as to the 
metabolic differences seen between those subgroups of autistic and typically developing children.

Methods
Cohort and Metadata.  Stool samples from 196 children between ages 2–7 from all over the United States 
were collected via a crowdsourced initiative. Children were all from families with two siblings, one previously 
diagnosed with Autism by a health care provider and one typically developing. Dietary, lifestyle, demographic, 
and host health information were reported by parents of guardians via a questionnaire for each child (see107). 
Parents and guardians also filled out a Mobile Autism Risk Assessment (MARA) to document autism-associated 
behaviors in their children with the Autism diagnosis108. Samples were then subjected to multi-omic sequencing. 
In total, 81 of the stool samples received all four omic measurements, and these data were used in defining cross-
omic topics and in differential abundance testing. However, some individuals provided multiple stool samples 
over time, and in topic modeling on each omic independently, all available data was used: 16S (456 stool samples 
across 152 individuals), MTG (193 stool samples across 186 individuals), MTT (178 stool samples across 178 
inviduals), and MBX (175 stool samples across 175 individuals (Table 1).

Stool collection and storage stool.  Samples were collected by the parents using a preservative buffer 
(Norgen Biotek, ON, Canada). We collected two samples per child: one sample was preserved at room tem-
perature in a preservative buffer, and the second one was collected in a tube without a preservative buffer but 
immediately frozen at home at −20. This frozen sample was shipped back overnight with two ice packs provided 
to the participants, while the samples in preservative were shipped at room temperature. Once received, stool 
samples were stored at −80 °C until processing.

Profiling techniques.  The following profiling and data processing techniques are originally described in 
West et al.109. All methods were performed in accordance with the relevant guidelines and regulations.

16S sequencing.  DNA was extracted using the Qiagen MagAttract PowerMicrobiome DNA/RNA Kit accord-
ing to manufacturer’s guidelines. DNA was quantified using the Qubit� Quant-iT dsDNA High Sensitivity Kit 
(Invitrogen, Life Technologies, Grand Island, NY). The V4 regions of the 16S rRNA gene were amplified using 
primers as described in110, and PCR products were quantified by fluorometric method (Qubit or PicoGreen from 
Invitrogen, Life Technologies, Grand Island, NY). Equimolar amounts of amplicons were mixed and sequenced 
using Illumina MiSeq for 250 cycles at Second Genome. All samples from the same families were sequenced in 
the same batch. Samples with fewer than 20,000 reads were re-sequenced up to three times.

Shotgun metagenomic (MTG) and metatranscriptomic (MTT) sequencing.  The MTG library was constructed 
with the same DNA extracts as 16S-V4. For MTT, DNA extraction and digestion was performed using Qia-
gen MagAttract PowerMicrobiome RNA Kit and Invitrogen TURBO DNA free kit according to manufacturer’s 
guidelines. rRNA depletion was also performed using Ribo-Zero Gold rRNA Removal Kit (Epidemiology). All 
samples were prepared for sequencing with the Illumina NexteraXT kit and quantified with Quant-iT dsDNA 
High Sensitivity assays. Libraries were pooled and run with 150 bp paired-end sequencing protocols on the 
Illumina NextSeq 550 platform.
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Metabolomics.  Untargeted metabolomics was performed on the preservative-free stool samples by Metabo-
lon, Inc. Samples were extracted with methanol to precipitate protein and dissociate small molecules bound to 
protein or trapped in the precipitated protein matrix, followed by centrifugation to recover chemically diverse 
metabolites. The resulting extract was divided into five fractions: two for analysis by two separate reverse phase 
(RP)/UPLC-MS/MS methods using positive ion mode electrospray ionization (ESI), one for analysis by RP/
UPLC-MS/MS using negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS using negative ion mode 
ESI, and one reserved for backup. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 
(UPLC-MS/MS) was performed. All methods utilized a Waters ACQUITY ultra-performance liquid chroma-
tography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced 
with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass reso-
lution. The sample extract was dried then reconstituted in solvents compatible with each of the four methods. 
Each reconstitution solvent contained a series of standards at fixed concentrations to ensure injection and chro-
matographic consistency. One aliquot was analyzed using acidic positive ion conditions, chromatographically 
optimized for more hydrophilic compounds. In this method, the extract was gradient-eluted from a C18 column 
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 μm) using water and methanol, containing 0.05% perfluoropenta-
noic acid (PFPA) and 0.1% formic acid (FA). A second aliquot was also analyzed using acidic positive ion condi-
tions, but was chromatographically optimized for more hydrophobic compounds. In this method, the extract 
ias gradient eluted from the aforementioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 
0.01% FA, and was operated at an overall higher organic content. A third aliquot was analyzed using basic nega-
tive ion optimized conditions using a separate dedicated C18 column. The basic extracts were gradient-eluted 
from the column using methanol and water, however with 6.5 mM Ammonium Bicarbonate at pH 8. The fourth 
aliquot was analyzed via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 
2.1 × 150 mm, 1.7 μm) using a gradient consisting of water and acetonitrile with 10 mM Ammonium Formate, 
pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. The 
scan range varied slightly between methods, but covered approximately 70–1000 m/z.

Data processing.  16S.  DADA2 (Callahan et al. 2016) was used to generate Amplicon Sequence Variants 
(ASVs). Raw sequence reads were processed applying default settings for filtering, learning errors, dereplica-
tion, ASV inference, and chimera removal. Truncation quality was set to 2. Ten nucleotides were then trimmed 
from each terminus of each read, both forward and reverse. ASVs were mapped to an in-house strain database: 
StrainSelect (StrainSelect, http://​strai​nsele​ct.​secon​dgeno​me.​com/, version 2019) using USEARCH (Edgar 2018). 
StrainSelect is a repository of monikers for known isolated microbial strains, their various synonyms and their 
genomic sequence identifiers. A DNA sequence observed from clinical material was assigned a strain-level an-
notation only when it uniquely matched one and only one strain. 6150 ASVs were generated from this process.

MTG and MTT.  Reads were trimmed for adapter sequences and low-quality ends with Trimmomatic (Bolger, 
Lohse, and Usadel 2014), then contaminant sequences were removed with Bowtie2 (Langmead and Salzberg 
2012). Host sequences were identified and removed with Kraken (Wood and Salzberg 2014). For MTT data, an 
additional step for rRNA removal was performed using SortMeRNA 2.0 (Kopylova, Noé, and Touzet 2012) prior 
to the host sequence removal. Filtered DNA sequences from MTG and MTT were mapped against a reference 
database of proteins within the KEGG (May 2019 release) and hits that spanned more than 20 amino acids with 
more than 80% similarity were collected. A total of 10,543 KOs were observed in MTG data, and 10,625 KOs 
were detected in MTT data.

MBX.  Raw data were extracted, peak-identified, and quality control (QC) processed using Metabolon’s hard-
ware and software. Compounds were identified by comparison to library entries of purified standards or recur-
rent unknown entities. Peaks were quantified as area-under-the-curve detector ion counts. For studies spanning 
multiple days, a data adjustment step was performed to correct block variation resulting from instrument inter-
day tuning differences, while preserving intraday variance. 1267 metabolites were identified, and 1025 annotated 
metabolites were used in the downstream analysis.

Data analysis.  Normalization.  To select a normalization method, we sought to minimize the within sib-
ling to between sibling distance ratio using manhattan, euclidean, canberra, clark, bray, kulczynski, jaccard, and 
altGower distances from the vegan package. We found that DeSeq2 normalization minimized the ratio for all of 
the distance metrics in 16S data, and the highly related Relative Log Expression (RLE) normalization minimized 
the ratio for MBX data especially. Differences in the sibling ratio for MTG and MTT were slight, and so RLE was 
selected for these data as well for the sake of consistency (Supplementary Fig. 12). The R packages DeSeq2 and 
edgeR were used to normalize data respectively.

The high counts of the MTG, MTT, and MBX datasets made the Gibbs samples strategy for topic model train-
ing too computationally expensive. Additionally, in order to mitigate issues associated with heteroskedasticity, 
we log transformed the counts of each dataset after normalization and before model training.

To validate that the count-based approach of LDA would be appropriate to apply to the continuous MBX 
dataset, we calculated a distribution of all feature values across the population per omic dataset. We found that 
after the above transformations, features values possessed similar distributions across omic datasets, with 16s/
MBX and MTG/MTT matching the most in general shape 13.

Topic modeling.  We performed Latent Dirichlet Allocation (LDA) as a form of dimensionality reduction 
and multi-omic integration. LDA is a generative statistical model traditionally used in natural language process-

http://strainselect.secondgenome.com/
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ing that models documents as deriving from a set of topics, and topics as deriving from a set of words. In our 
case, we treat samples as documents and microbial features as words. As such, each sample is defined by a prob-
ability vector over K possible topics, and each topic is defined by a probability vector over V possible microbial 
features (e.g. ASVs, KOs, metabolites).

Under LDA, to generate each word in a document ( wdn ), first get that document’s (d) topic probability vector 
( θd ) and select a topic ( zdn ) by drawing from a multinomial. Then, get that topic’s word probability vector ( βzdn ), 
and select a word ( wdn ) using a multinomial. Each of the topic probability vectors is modeled as a Dirichlet dis-
tribution over hyperparameter α , and each of the word probability vectors is modeled as a Dirichlet distribution 
over a different hyperparameter γ . After model fitting, the � and β matrices can be accessed to obtain the topic 
distribution per document and the word distribution per topic. In this case, we access these matrices to obtain 
the topic distribution per sample and the microbial feature distribution per topic (Fig. 1D). Models were trained 
using the topicmodels package in R.

   

 

Selecting number of topics per model.  Models for each omic were trained independently, and the 
number of topics was selected per model. To evaluate model fit, we simulated sample count data drawn from 
each model, and compared it to the true distributions observed. We used three metrics, correlation of quantiles 
of sample distributions, correlation of quantiles of feature distributions, and correlation of pairwise marginal 
distributions (correlation of feature correlations). For each omic, we used the heuristic “elbow method” to select 
the minimum number of topics that produced the highest correlation across all of the three metrics. The final 
number of topics selected were 4 for 16s data, 5 for MTG data, 4 for MTT data, and 7 for MBX data (Supple-
mentary Fig. 14).

In selecting the number of topics, we prioritized the pairwise marginal distribution correlation between 
features, because 1. This was the most variable across numbers of topics and 2. It was the most intuitively insight-
ful (i.e. a model fits well when it captures feature-feature relationships across samples). The decision to choose 
the number of topics by comparing simulated and observed data stems from the intuition that data generated 
from a model should fit the actual data distribution well if the model is to be considered a good fit. Unlike using 
a simple likelihood calculation, this approach provides the added benefit of defining just how many topics is 
optimal for this modeling strategy, but also how well the final model actually captures the statistical properties 
of the original data.

Identifying cross‑omic topics.  To determine the optimal number of cross-omic topics, we selected the 
minimum number of topic clusters that minimized the gap statistic amongst clustered topics. First, we clustered 
topics into n groups based on their spearman correlation across samples. Then, for each cluster, we calculated 
the average distance between topics in that cluster (within group distance), and divided by the average distance 
between topics in that cluster and all other topics (between group distance). We used manhattan, euclidean, 
and inverse correlation as distance metrics, and selected the minimum number of clusters that minimized the 
above ratio adequately. In the end, we selected 4 cross-omic topic clusters (Supplementary Fig. 2A). Topics were 
visualized by PCoA on the topic distribution across samples using manhattan distance (Supplementary Fig. 2B).

We additionally found that single-omic topics within a cross-omic topic group significantly correlated with 
one another far more frequently than would be expected by random chance. To test this, we created 15 null 
count tables, drawing each sample from a multinomial where probabilities are assigned for each feature using a 
random sample’s actual feature distribution. We then fit an LDA model to each of the null count tables using the 
same process, parameters, and random seeds as were used in the original models. We then clustered the topics 
produced from the null models into four clusters, as was done with the original data, and counted the number of 
significant (spearman correlation test, p < .05) correlations existed between topics that shared the same cluster. 
We found that null topics in the same cluster shared very few significant correlations and null topic distribu-
tions across 15 permutations had correlation structures stronger than the true data (Supplementary Fig. 2C). 
We additionally visualized a correlation matrix between null topics (Supplementary Fig. 2D) and between true 
topics (Supplementary Fig. 2E).

It is relevant to note that the treatment of MTT topics differed slightly from the rest. The total attributable 
weight across all samples to topic3 MTT was orders of magnitude higher than the other MTT topics (Supple-
mentary Fig. 7). In addition, no specific features differentiated topic3 MTT from the other MTT topics (data not 
shown). Because this over attribution of topic3 MTT was not informative of differences between samples nor 
interpretable, and because its inclusion swayed all downstream clustering analyses considerably, we removed 
this component.
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Interpreting topics by feature weights.  We used the feature weight vectors ( β )s to interpret each cross-
omic topic. We limited features to those with high standard deviations across topics, as we wanted to identify 
features that were specific to certain topics and not ubiquitous across topics. Specifically, we identified features 
where the max value was less than 1.5 standard deviations over the median. We also limited features to those 
with high values along axes of maximal variation between topics, as these are the features driving topic defini-
tions and separation most strongly. Specifically, we performed singular value decomposition on the topic by 
feature weight matrices independently (including all features), and recorded features with weights along the 
PCA axes above the 99th percentile for 16s and MBX data, and above the 99.9th percentile for MTG and MTT 
features. Features that fulfilled both of the above criteria are reported in Fig. 2. These thresholds were selected 
heuristically based on the maximum number of features that could be clearly visually represented.

Generalization of modeling approach to outside datasets.  To demonstrate that topics may be 
observed in other independently collected datasets, we utilized 16s data from David et al.111 and metabolomics 
data from Telleria et  al.112, which utilized similar data collection and processing methods to this study. We 
normalized original data in the same fashion as presented above. We then trained LDA models with the same 
parameters as used in this paper, and subsequently calculated feature-feature cosine distance matrices based on 
the feature-topic distributions (betas) in each model. We compared the feature-feature matrices derived from 
the independent studies to those from this study using a mantel test. Then, we permuted the rows of one feature-
feature distance matrix 10,000 times to simulate mantel z-scores under the null hypothesis, and compared this 
distribution to the true mantel z-score.

Clustering samples by topic distribution.  To cluster samples by their topic distribution, we used the R 
package pheatmap, which performs hierarchical clustering using inverse correlation as a distance metric.

Differential analysis.  Differential analysis was performed to determine the association between any given 
microbial feature between the Autism and typically developing cohorts after clustering. First, we selected likely 
candidates using the Boruta package in R. The method performs a top-down search for relevant features by com-
paring original attributes’ importance with importance achievable at random, estimated using their permuted 
copies, and progressively eliminating irrelevant features to stabilize that test113.

In more detail, filtering features with Boruta works as such: 1) create an extended dataset by adding columns 
of randomly permuted features; 2) train a random forest classifier on the extended dataset to predict phenotype 
(Autism vs. typically developing) and calculate feature importance as the mean decrease in accuracy; 3) if the 
true feature Z score is higher than the maximum Z score of it’s permuted versions over 100 runs, consider this 
feature “important”. To increase consistency and generalizability, we repeated this described test 100 times, and 
tallied the number of times any given feature was considered “important”. Features in the top 90th percentile 
of tallied counts were passed to a subsequent Wilcoxon rank sum, and were reported if their differential was 
significant (p < .05) after Benjamini & Hocherg correction114.

Number of input features for each omic and number of features that passed the first step of Boruta filtering 
are reported here: 1187 features input and 7 features passed filtering (MBX), 10543 features input and 15 features 
passed filtering (MTG), 10625 features input and 8 features passed filtering (MTT), 5265 features input and 4 
passed filtering (16S).

Ethical approval and informed consent.  This study was authorized by the Stanford University Institu-
tional Review Board protocol number 30205. Informed consent was obtained from all subjects and/or their legal 
guardian(s).

Data availability
All analyses and processed data files are available at: https://​github.​com/​Maude​David​Lab/​multi​omics_​topic_​
model​ing. All sequence data and de-identified participant responses can be found in NCBI under project 
PRJNA895487.
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