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Bound entanglement is not Lorentz 
invariant
Paweł Caban 1* & Beatrix C. Hiesmayr 2

Bound entanglement, in contrast to free entanglement, cannot be distilled into maximally entangled 
states by two local observers applying measurements and utilizing classical communication. In this 
paper we ask whether a relativistic observer classifies states according to being separable, bound or 
free entangled in the same manner as an unboosted observer. Surprisingly, this turns out not to be the 
case. And that even if the system in a given inertial frame of reference is separable with respect to the 
partition momenta versus spins. In detail, we show that if the spin state is initially bound entangled, 
some boosted observers observe their spin states to be either bound entangled, separable or free 
entangled. This also explains why a general measure of the entanglement property is difficult to find.

Detecting entanglement, even given the full information of the physical state, namely the density matrix is a 
NP-hard  problem1 (NP-hard stands for non-polynomial-time hard), because of the existence of bound or PPT 
(positive partial transposition) entangled  states2. Those states cannot be detected by taking the partial transpose 
in one subsystem and finding at least one eigenvalue negative, in which case we are dealing with free entangle-
ment. This mathematical property of the density matrix has crucial physical implementation, i.e. an ensemble 
of free entangled states can always be distilled to maximally entangled states by local operations and classical 
communication (LOCC), in strong contrast to bound entangled states. Those states can be generated by maxi-
mally entangled states, Bell states, but this entanglement is then bounded, i.e. cannot be distilled. This aspect 
of entanglement gave raise to a lot of speculations why Nature provides us with that kind of entanglement and 
for what it could be  useful3,4. Entanglement and other aspects of quantum information theory in the relativistic 
setting were discussed in many papers, see, e.g.,5–15 and references therein. However, up to our best knowledge, 
the behavior of bound entanglement under Lorentz boosts was not analyzed up to now. One of the reasons is 
that bound entanglement is difficult to detect. However, recent  works16–18 have shown some new insights on the 
structure of bound entangled states in the Hilbert space for the lowest dimensional cases of two qutrits or two 
ququarts. We use those results in our present work.

In this paper we analyze how bound entanglement changes under Lorentz boosts. To this end we consider a 
system of two massive spin-1 particles. In a one inertial frame of reference this system is prepared in a state that 
is separable with respect to the partition momenta versus spins and the spin part of this state is bound entangled. 
We show that there exist such states and boosts that the boosted state is also bound entangled or separable or 
even free entangled. This is also visualized in Fig. 1.

Methods
Two‑qutrit bound entangled states. Entanglement is a genuine quantum feature of multipartite sys-
tems. However, even in a bipartite case complete characterization of entanglement can be given only for systems 
with dimensions 2⊗ 2 and 2⊗ 3 . In these dimensions one can fully characterize entanglement with the help of 
the Peres–Horodecki Positive Partial Transpose (PPT)  criterion19,20. This criterion says that if ρTB

AB (where the 
superscript TB denotes partial transposition with respect to the system B) is not positive semidefinite then the 
state ρAB is entangled. For 2⊗ 2 and 2⊗ 3 dimensional systems also the inverse is true. However, for higher 
dimensional systems there exist entangled states ρAB such that ρTB

AB is positive  semidefinite2. Such states are called 
bound entangled, in opposition to free entangled states for which ρTB

AB possesses at least one negative eigenvalue. 
These names—free and bound entanglement—come from the fact that free entanglement can be distilled while 
it is impossible for bound entanglement.

The detection of bound entanglement is not an easy task—given method can certify entanglement of a certain 
family of states while it can be useless for  other16. One of the most useful and easiest in application methods is 
the realignment or computable cross-norm  criterion21,22, on which we focus firstly. In the last section we show 
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how those properties of states can be transferred via so called entanglement witnesses, i.e. hermitian observables, 
to an experimental realization. Let us denote

where 
∑

i σi(ρ̃AB) is the sum of all the singular values of the realigned matrix ρ̃AB , where [ρ̃AB]ij,ab = [ρAB]ia,jb . 
The realignment criterion says that if Realignment (ρAB) > 0 then the state ρAB is entangled. The above statement 
cannot be inverted—there exist entangled states ρ for which Realignment (ρ) < 0 . Moreover, this criterion can 
detect bound entanglement of certain classes of states.

Bound entanglement can be also revealed by other methods like the quasispin  criterion23 or with the help 
of entanglement witnesses (here the witnesses constructed with the help of mutually unbiased bases, so called 
MUB  witnesses24–26 are useful), which we discuss in the last section.

In this paper we use bound entangled states from the so called magic simplex for which recently a classifica-
tion into separable, bound entangled and free entangled states was possible with a success probability of 95% for 
 qutrits17 and for ququarts of 75%18. In the 3⊗ 3 dimensional case this simplex has the  form27,28

where Pk,l = |�k,l���k,l| and the Bell states |�k,l� can be generated from |�0,0� = 1√
3
(|00� + |11� + |22�) via the 

relation |�k,l� = Wk,l ⊗ I3 |�0,0� .  In the last equation Wk,l  are the unitary Weyl operators 
Wk,l ≡

∑2
j=0 ω

j·k |j��j + l| with ω = e
2π i
3  being the root of unity.

In particular we will use an interesting one parameter  state16

with

and 0 ≤ x ≤ 1
3 . This state is PPT for x ∈ [0, 2

15 ] , however, entangled for all values x except x = 0 . This means 
that for x ∈ {0, 2

15 ] it is bound entangled, which is detected by the realignment criterion (1) as well as by the later 
introduced MUB-witness24–26.

Action of Lorentz boosts on quantum states. Bound entanglement can be observed in a two-particle 
system with at least 3⊗ 3 dimensions, where in turn the PPT criterion is only necessary but not sufficient for 
entanglement. Thus, to analyze the behavior of bound entanglement under Lorentz boost, we consider here a sys-
tem of two massive, relativistic spin-1 particles. We identify the Hilbert space of states of such a particle, H , with 
the carrier space of the irreducible, unitary massive representation of the Poincaré group for spin 1. The space H 
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Figure 1.  This visualizes the state space and the effect of a relativistic boost on bound entangled state. An 
entanglement witness W is visualized as a line separating some entangled states from separable states.
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is spanned by the eigenvectors of the four-momentum operator |k, σ � , where k = (k0, k) , k2 = k0
2 − k

2 = m2 , 
denotes the four-momentum of the particle and σ = −1, 0, 1 its spin component along z-axis.

We denote here space-time coordinates with Greek indices running from 0 to 3, four-vectors by plain letters, 
spacial vectors by bold letters, e.g., k = (k0, k) . The Minkowski tensor is assumed to be η = diag(1,−1,−1,−1) . 
We also use natural units with c = � = 1.

We use the Lorentz-covariant normalization

The vectors |k, σ � can be generated from the standard vector |k̃, σ � , where k̃ = m(1, 0, 0, 0) is the four-momentum 
of the particle in its rest frame. We have |k, σ � = U(Lk)|k̃, σ � , where the standard Lorentz boost Lk is defined by 
relations k = Lkk̃ , L

k̃
= I4 . The explicit form of the boost Lk reads

With the help of the standard Wigner  procedure29–31 we get

where the Wigner rotation R(�, k) is defined as R(�, k) = L−1
�k�Lk and D is a three dimensional, unitary, irre-

ducible representation of the rotation group. It is well known that in each dimension there exists, up to unitary 
equivalence, only one unitary, irreducible representation of the rotation group. Therefore, the representation 
D (R) is unitary equivalent to R

and the explicit form of the matrix V is the following:

For more details on spin-1 irreducible, unitary representation of the Poincare group see, e.g., Refs.29–31.
For our computations we identify spin projection values −1, 0, 1 with indices of computational basis vectors 

0, 1, 2 in the following way: −1 ↔ 0 , 0 ↔ 1 , 1 ↔ 2.

Results
Bound entanglement under Lorentz boosts. Now, let us consider two inertial frames, O and O ′ , and 
let the frame O ′ move with the velocity v with respect to the frame O . In the frame O we prepare a two-particle 
state ρ . For simplicity we treat momentum degrees of freedom as discrete, i.e. we assume that momenta of the 
particles are chosen from the finite set {k1, . . . , kN } . To prove all of our results it is enough to limit to only two 
momenta {k1, k2} with

Consequently, our total state under interest acts in (2⊗ 2)mom ⊗ (3⊗ 3)spin = 36 dimensional space, i.e. in C36 . 
Of course, also higher dimensions in the momentum space are possible, but not necessary to obtain our results. 
Moreover, without loss of generality we can take

where E is a kinetic energy of the particle. Thus, the most general two-particle state we consider is of the form

where m, n,m′, n′ = 1, 2 , σ , �, σ ′, �′ = 0, 1, 2 and ρσ�,σ ′
�
′

mn,m′n′ fulfill all necessary conditions to guarantee that ρ 
is a valid density matrix. We have also reordered the products of momentum and spin components, i.e. 
|k, p; σ , �� = |k, p� ⊗ |σ , �� ≡ |k, σ � ⊗ |p, ��.

The state ρ as seen from the frame O ′ has the following form

Here �(e, ξ) is the Lorentz boost in the direction e = v/|v| with rapidity ξ , tanh ξ = −|v| , joining frames O and 
O

′ . Its explicit form is the following:

The action of U(�) on basis states of the space H is given in Eq. (7).

(5)�k, σ |k′, σ ′� = 2k0δ3 (k − k
′) · δσσ ′ .

(6)Lk =
1

m

(

k0 k
T

k mI3 + k⊗k
T

m+k0

)

.

(7)U(�)|k, σ � = D�σ (R(�, k))|�k, ��,

(8)D (R) = VRV†, V†V = I3,

(9)V =
1√
2





−1 i 0

0 0
√
2

1 i 0



 .

(10)k1,2 = (k0,±|k|, 0, 0)

(11)m = 1, k0 = 1+ E, |k| =
√

E(2+ E),

(12)ρ =
∑

ρ
σ�,σ ′

�
′

mn,m′n′ |km, kn; σ , ���km′ , kn′ ; σ ′, �′|,

(13)ρ′ = [U(�(e, ξ))⊗ U(�(e, ξ))]ρ[U(�(e, ξ))⊗ U(�(e, ξ))]†.
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The spin parts of the states ρ and ρ′ (i.e. ρspin and ρ′
spin , respectively) we obtain by tracing out momentum 

degrees of freedom and normalizing the result since in covariant normalization (5) basis vectors are orthogo-
nal but not orthonormal. Of course in the frame O ′ momenta of the particles belong to the set {k′1, k′2} , where 
k′i = �(e, ξ)ki , i = 1, 2.

Pure momentum part of the state. As the first case we consider the simple situation when in the frame O we 
prepare a two-particle state

where

and |ψmom� , |ϕspin
i � are momentum and spin parts of the state |ψi� , respectively. Thus, we assume that the momen-

tum parts of all of the states |ψi� are identical. Notice that the full state ρ defined in Eqs. (15, 16) is separable with 
respect to the partition: momenta versus spins (although it is not the most general separable state, the general 
separable state we consider in the next section). Therefore, we can write (15) as

and of course ρspin = Trmom(ρ) . We are interested in the situation when ρspin ia a bound entangled state.
The most general form of |ψmom� in our case reads

Now, we boost the state (17) and the spin part of the boosted state has the form

Following2 and using the property

we easily see that if ρspin is a PPT state then also ρ′
spin is also PPT. Thus, if the spin state of the two-particle state 

(17) is bound entangled then for all other inertial observers this state is PPT, i.e. also bound entangled or sepa-
rable. We now show that both of these cases can be realized. To this end we assume that

where k1, k2 are given in Eq. (10). Moreover, as a spin part of the state (17) we take the state ρb defined in Eq. (3). 
Thus, the state chosen in the frame O has the form

(15)ρ =
∑

i

pi|ψi��ψi|, pi ≥ 0 with
∑

i

pi = 1,

(16)|ψi� = |ψmom� ⊗ |ϕspin
i �, |ψi� ∈ H

mom ⊗H
spin,

(17)ρ = |ψmom��ψmom| ⊗
(

∑

i

pi|ϕspin
i ��ϕspin

i |
)

≡ |ψmom��ψmom| ⊗ ρspin,

(18)|ψmom� =
2

∑

i,j=1

aij|ki , kj�,
2

∑

i,j=1

|aij|2 = 1.

(19)ρ′
spin = Trmom(ρ′) =

2
∑

i,j=1

|aij|
[

D
T (�, ki)⊗D

T (�, kj)
]

ρspin
[

D
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]

.

(20)[(A⊗ B)ρ(C ⊗ D)]TB = (A⊗ DT )ρTB (C ⊗ BT )
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1 � =

1√
2
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Figure 2.  Value of the base-2 log of the sum of all singular values of the realigned spin density matrix for 
unboosted state (black, solid line) and states boosted with rapidity ξ = 0.5 (blue, dashed line), ξ = 0.8 (green, 
dotted line), ξ = 1 (red, dashed-dotted line).
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We further choose the boost direction e = (0, 0, 1) (compare with Eq. (14)) and kinetic energy of a particle E = 1 
(compare with Eq. (11)).

In Fig. 2 we plotted the value of the base-2 log of the sum of all singular values of the realigned spin density 
matrix versus x for the unboosted and boosted state (22). According to the realignment  criterion21, if this value is 
positive the state is entangled. We can see that for the unboosted state the realignment criterion detects entangle-
ment for all values of x except 0, in contrast to the boosted state ρ′

spin(x, ξ) where it detects entanglement only 
for x ∈ (x0, 1/3] . Thus, in the considered case there always exist such a x and ξ that the bound entangled state 
ρspin = ρb(x) after boost is also bound entangled.

In Fig. 3 we plotted the purity Tr (ρ2) versus realignment of 156600 magic bound entangled states on a grid 
in the magic  simplex16, where only some are detected by the realignment criterion. The other ones are detected 
by different criteria. After the boost with ξ = 0.8 the purity decreases and fewer states are still detected by the 
realignment criterion. Thus the interesting question is: Does a boost of a bound entangled state result sometimes 
also in separable states?

To find that out we can try to apply other entanglement criteria such as the quasispin  criterion23 
or the MUB  witness24 which failed. Thus, for e.g. x = 1

15 , ξ = 0.8 we tried to show that ρ′
spin is separa-

ble and were successful. We performed this by numerically minimizing the Hilbert-Schmidt distance 
[

Tr
((

∑k
i=1 p

sep
i |ψsep

i ��ψsep
i | − ρ′

spin

(

1
15 ,

4
5

))2)]1/2 , where psepi > 0 , 
∑k

i=1 p
sep
i = 1 , and |ψsep

i � represent 
separable states, for some large enough k. For k = 10 we found probabilities psepi  and vectors |ψsep

i � such that

i.e. practically equal to zero. The explicit form of probabilities psepi  and vectors |ψsep
i � we give in Supplementary 

Material. We were also successful for other ξ values and other x values like x = 1
10 , but not for x > 2

15 , the NPT 
area.

In summary, we have found at least some states which are after the boost separable, which is apparently 
against the intuition if it depends on the boost of the observer whether a state is classified as bound entangled 
or separable.

General separable state momenta versus spins. Now, let us assume that in the frame O we prepare the most gen-
eral state that is separable in the partition momenta versus spins, i.e.

where pi > 0 , 
∑

i pi = 1 . The spin part of this state has the form

As previously, we are interested in the situation when the whole state ρspin is bound entangled.

(22)ρ1(x) = |ψmom
1 ��ψmom

1 | ⊗ ρb(x).

(23)
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1/2

≈ 7× 10−8,

(24)ρ =
∑

i

pi ρ
i
mom ⊗ ρi

spin,

(25)ρspin = Trmom(ρ) =
∑

i

pi ρ
i
spin.

Figure 3.  This picture visualizes the purity Tr ρ2 versus the realignment 
∑

i
σi(ρ̃AB)− 1 of 156600 bound 

entangled magic simplex  states16. Those states result in 2228 (blue) points and if boosted with ξ = 0.8 they 
result in 87116 (red) points for our particular choice of boost. This shows that the relativistic boost changes the 
amount of entanglement (in this case measured by the realignment criterion) not in dependence of the initial 
amount of entanglement. This is also the case if other entanglement measures or purity measures are chosen.
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Now, we boost the state (24) and calculate the spin part of the boosted state as ρ′
spin = Trmom(ρ′) and we 

obtain

where

i.e. cimn,mn > 0 , 
∑

m,n c
i
mn,mn = 1.

Now, we ask whether the transformation (26), the relativistic boost, preserves PPT. However, applying Eq. (20) 
we have to take into account that the whole state 

∑

i piρ
i
spin is PPT but some of the states ρi

spin can be NPT. Next, 
factors cimn,mn change relative weights in the sum (26). Thus, we cannot conclude that (26) preserves PPT. In 
fact, we can find such states and boosts that (25) is bound entangled while (26) is free entangled. For example, 
let us consider the following state:

where 0 ≤ p ≤ 1 , ρ1(x) is given in Eq. (22) and

with

and

The spin part of the state ρ0(0.04, 7
60 ) , ρ

spin
0 (0.04, 7

60 ) is PPT and

thus it is bound entangled.
Now, if we boost this state in the direction e = (0, 0, 1) with ξ = 0.95 we obtain the state ρ′

0(0.04,
7
60 ) . The spin 

part ρ′,spin
0 (0.04, 7

60 ) is not PPT, thus it is free entangled and obviously no longer bound entangled.
In summary, we have shown that starting from a bound entangled state, we can boost to a separable, bound 

entangled or an free entangled state. In the next section we discuss how those counter-intuitive classifications 
of inertial observers relates to the principle that the physics observed, i.e. probabilities and expectation values, 
should be Lorentz invariant.

Discussion
Obviously, the physics for every observer should be the same. In our case this means that the values that a 
boosted or not boosted observer obtains by computing Tr (O ρ) for some observable O = O

† are identical. 
An observable W for which

does not hold for all states ρ is called an entanglement witness. The upper and lower bounds define the so called 
separability window of the witness and can be obtained by mirroring the  witness32. A particular witness, decom-
posable into mutually unbiased bases (MUBs), is capable to detect bound  entanglement24–26 and as it contains 
a recipe how to realize it experimentally, it gave raise to the first experiment detecting bound entanglement in 
bipartite  systems33. We will use this witness to show how we can solve the apparent puzzle. Obviously, we have

for any chosen boost on the total space. But this does not mean that this is the case also for the subsystem, i.e. an 
partition into first and second momentum versus first and second spin or first momentum and first spin versus 
second momentum second momentum nor first momentum and second spin versus second momentum and first 
spin nor in particle A (first momentum/first spin) versus particle B (second momentum/first spin) as we show 
in the following (for more details on the behavior of entanglement under different partitions see, e.g., Ref.10).

The MUB-witness for two qudits that is capable of detecting bound entanglement by the upper bound is 
defined by

(26)ρ′
spin =

∑

i,m,n

pic
i
mn,mn

[

D
T (�, km)⊗D

T (�, kn)
]

ρi
spin

[

D
∗(�, km)⊗D

∗(�, kn)
]

,

(27)ρi
mom =

∑

m,n,m′ ,n′
cimn,m′n′ |km, kn��km′ , kn′ |,

(28)ρ0(p, x) = p ρ1(x)+ (1− p) ρ2,

(29)ρ2 = |k1, k2��k1, k2| ⊗ |ϕspin��ϕspin|,

(30)|ϕspin� =
2

∑

k,l=0

ak,l |�k,l�,

(31)

(

a0,0 a0,1 a0,2
a1,0 a1,1 a1,2
a2,0 a2,1 a2,2

)

=
(

0 2/9 2/9
0 2/9 1/18

5/18 0 0

)

.

(32)Realignment
(

ρ
spin
0

(

0.04, 7
60

)

)

= 0.183 > 0,

(33)min
ρsep

(Tr (Wρsep)) ≤ Tr (Wρ) ≤ max
ρsep

(Tr (Wρsep))

(34)Tr (Wρ) = Tr (Wboostedρboosted)
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for which the orthonormal basis {ik}d+1
k=1 are mutually unbiased |�ik|jl�|2 = δk,lδi,j + (1− δk,l)

1
d . Thus we can 

boost each MUB vector and by that achieve the observable Wboosted that is seen by a boosted observer. On the 
total space we find for our particular example (optimization of the lower and upper bound via the composite 
 parameterization34)

for every boost value ξ . This inequality is obviously not violated since our total state was chosen to be separable 
(momentum versus spin).

Obviously, the situation changes when we consider the spin or momentum subspaces, which we achieve by 
partial tracing over the respective subsystems. For the spin part we find for the unboosted case

which is obviously violated if x  = 0 . And e.g. for ξ = 0.8 we have

i.e. no violation for any x. Consequently, if one ignores in the boosted case the momentum degrees of freedom, 
one does not consider the full experimental situation and this explains why an unboosted bound state becomes 
a separable, bound entangled or free entangled one when ignoring part of the systems, though, against our intui-
tion, the momentum part of the witness is just the unity operator for any boost.

In this paper we analyzed the behavior of the bound entangled states under Lorentz boosts. To this end we 
considered a system of two spin-1, massive particles. In a given inertial frame of reference this system is prepared 
in a state which is separable with respect to the partition momenta/spins and such that its spin part is bound 
entangled. Next, we boost this state to a different inertial frame of reference and analyze the entanglement of 
its spin part. We showed that the boosted state can be also bound entangled. However, we were also able to find 
such states and boosts that the boosted state is separable or even free entangled. Thus, surprisingly, we found 
that Lorentz boosts can activate bound entanglement.

In the last section we explained how such a counter-intuitive classification of different inertial observers relates 
to the principle that measurement outcomes are invariant under Lorentz boosts. Boosting a state means that one 
boosts also the observable which means taking the trace gives the same result. But ignoring the momentum part, 
the situation changes drastically and leads to all three separability possibilities as we have shown by exemplary 
boosts and states.

From the purely practical point of view, we have presented a method to systematically produce different 
bound entangled states by application of different relativistic boosts, which may further be explored to reveal 
the very Nature of bound entanglement.

Data availability
Numerical data necessary to produce figures were taken from published works. The data are available from the 
corresponding author on reasonable request. No other data were created during the preparation of the paper.
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