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WormSwin: Instance segmentation 
of C. elegans using vision 
transformer
Maurice Deserno 1,2,4* & Katarzyna Bozek 1,2,3

The possibility to extract motion of a single organism from video recordings at a large-scale provides 
means for the quantitative study of its behavior, both individual and collective. This task is particularly 
difficult for organisms that interact with one another, overlap, and occlude parts of their bodies 
in the recording. Here we propose WormSwin—an approach to extract single animal postures of 
Caenorhabditis elegans (C. elegans) from recordings of many organisms in a single microscope well. 
Based on transformer neural network architecture our method segments individual worms across a 
range of videos and images generated in different labs. Our solutions offers accuracy of 0.990 average 
precision ( AP

0.50
 ) and comparable results on the benchmark image dataset BBBC010. Finally, it 

allows to segment challenging overlapping postures of mating worms with an accuracy sufficient to 
track the organisms with a simple tracking heuristic. An accurate and efficient method for C. elegans 
segmentation opens up new opportunities for studying of its behaviors previously inaccessible due to 
the difficulty in the worm extraction from the video frames.

Behaviour is the external output of an animal’s nervous system. The possibility to systematically observe, extract, 
and quantify an animal’s motion is a prerequisite to investigate and ultimately understand its behavioral reper-
toire. Alterations to an organism’s natural behavior is a phenotypic readout of the neural and other molecular 
changes that are causing them. To fully understand the functioning of neural mechanisms it is therefore essential 
to dissect their effect on an animal’s behavior.

Capturing behavior requires video acquisition systems allowing to either view or infer an entire posture of an 
organism and its change in time. One of the main challenges in obtaining complete and precise posture measure-
ments are the occlusions of animal body parts in a 2D video recording, especially if more than one individual 
is being imaged. To resolve this, extensive 3D motion capture systems have been  developed1 as well as methods 
that allow to impute the occluded parts of the  posture2.

These challenges have not yet been resolved for the model organism C. elegans. While imaging the nematode’s 
behavior is less complex than imaging of larger organisms and massively parallel recording systems allow to 
capture thousands of worms at a  time3,4, there are currently no end-to-end methods that resolve their postures 
when occlusions occur. The quantification of C. elegans strains’ behavior and characterization of their phenotypes 
is therefore based on segments of worm motion in which it does not coil or intersect with another worm. As a 
result, a large portion of the worm behavior, including its group behavior, cannot be quantitatively analyzed.

Here we propose an automated method for C. elegans posture extraction from 2D video recordings. Based 
on deep learning transformer architecture and a classical instance segmentation training objective, our solution 
allows to correctly infer an outline of an individual worm body in overlapping and occluded configurations. We 
train the neural network on randomly generated image data, obtaining a solution that generalizes to various real 
datasets. With the segmentation outputs of our method we are able to correctly infer worm trajectories with a 
simple position matching heuristics. WormSwin opens up new opportunities to study the full repertoire of C. 
elegans behavior including behaviors such as mating that were previously inaccessible to quantitative analysis.
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Related work
Over the past years different methods for C. elegans detection and segmentation have been proposed, either as 
part of a general approach to tracking and behavioral studies, or as a stand-alone method.

One of the first methods for automated worm tracking and behavior quantification was proposed by Baek 
et al.5. The method used a computer-controlled tracker for single worms, recording grayscale videos. The gray-
scale frames of a video were binarized based on the mean and standard deviation of pixel intensities and a pre-
defined threshold. The method computes features such as the area of foreground or the movement between two 
frames in the binarized videos and uses them as input to the  algorithm6 for classification of different C. elegans 
strains. Swierczek et al.7 proposed a tracking approach called Multi Worm Tracker. The method calculates a 
background estimate using pixel intensity values. Moving objects are found by searching for pixels darker than 
the background by a specific threshold. In the next frame, the objects are searched for in the vicinity of their 
previous location.

The arrival of deep learning offered new opportunities to build more accurate methods for worm segmenta-
tion and tracking. Javer et al.8 developed a multi-object tracking framework able to track C. elegans as well as 
fish and drosophila larvae. The method requires manual tuning of segmentation parameters to best perform 
with the given recorded data and comes with a graphical user interface for the ease of use and evaluation of the 
results. Using the motion data, the framework extracts a large number of features characterizing worm move-
ment. Hebert et al.9 proposed a pose estimation method for videos of single moving C. elegans in challenging 
poses like coiling. Using a  ResNetV210-like architecture the centerline of worms is predicted. With the help of 
temporal information the head and tail position is determined. Wählby et al.11 proposed a phenotype analysis 
toolbox based on the open-source  CellProfiler12 project. To untangle clusters of worms the authors describe 
them as a mathematical graph and, using a learned model of worm postures, search for the best representation 
of true worms. The worm posture model is based on a training dataset of isolated single C. elegans shapes and on 
computed angle-based shape descriptors. One of the downsides of this approach is that unexpected phenotypes 
are likely to be discarded as debris. Banerjee et al.13 introduced a deep learning C. elegans tracking method in 
which the detection is based on  YOLOv514 and tracking on Strong SORT  algorithm15. For each detected object 
the method outputs its bounding box, then threshold-based segmentation and skeletonization are applied to 
infer shapes of the detected objects. Fudickar et al.16 developed a two-shot segmentation method based on Mask 
R-CNN17 with ResNet-10118 backbone, to segment C. elegans imaged in petri-dishes with a low-cost image cap-
turing system. However, the method did not solve the problem of segmenting overlapping worms and segments 
them as one object. Mais et al.19 developed a proposal-free instance segmentation method, called PatchPerPix, 
based on a convolutional neural network (CNN) trained to predict the shape of a C. elegans in a small patch 
of the whole image (local shape patches). The method uses a modified U-Net20 deep neural network and patch 
affinity graphs to reconstruct individual worm shapes. For each pixel the method predicts which shape patch it 
belongs to and, using a patch affinity graph, merges the patches to form complete instance shapes. Lalit et al.21 
proposed an embedding-based instance segmentation method for 2D and 3D microscopy data, called EmbedSeg. 
The method is based on ERF-Net22, predicting spatial embeddings of pixels. These embeddings are then clus-
tered into object instances. To train this method, an additional step of pre-processing the dataset is required to 
generate object-centered image patches for every object. The method was tested on different datasets including 
the C. elegans BBBC010 dataset.

Among the methods described above there are one- and two-shot detectors. One shot-detector architectures 
like  YOLO23 detect objects in one step. Pre-defined boxes (also called anchors) are placed onto a grid, laid over 
the image. For each box, the network predicts if the box contains an object. On the other hand, two-shot detectors 
consist of a region proposal network (RPN) proposing regions of interest (RoI) to a second network, refining 
these proposals to form the actual predictions. One-shot object detection methods  (like13) are in general less 
computationally expensive compared to two-shot approaches (e.g.16), although the latter ones achieve a higher 
precision especially in more challenging scenes. This is one of the reasons for the high popularity of two-shot 
networks such as Mask R-CNN in the domain of instance segmentation.

Usually more than one box is predicted per object. To only keep the best matching box, many methods apply 
non-maximum suppression (NMS). This approach consists of removing from the predicted highly overlapping 
bounding boxes those with lower probability values as potential false positive detections of the same object. 
However, NMS can lead to removal of correct detections, especially in dense scenes, where many objects in the 
image overlap.

In this paper we address the problem of segmenting objects in dense scenes by combining the well established 
architecture of two-shot detectors with state of the art vision transformer. To avoid the pitfalls of the NMS algo-
rithm, we apply Soft Non Maximum Suppression (Soft-NMS)24.

Methods
Datasets. CSB-1 dataset. The CSB-1 dataset consists of 56 videos with a length of ∼ 1.5 min, a frame rate 
of 5 Hz and frame size of 912× 736 px which were generated to describe the new C. elegans csb-1  strain25. We 
annotated 10 of those videos, where nine videos were reserved for training and one for testing. The videos do not 
contain any visible petri-dish edges, have different backgrounds and varying numbers of worms. We extracted 
frames from the videos using FFmpeg (https:// ffmpeg. org) and used them to generate our synthetic training 
dataset described below.

Worms were annotated individually with a binary mask labelling foreground pixels, resulting in one mask 
image per worm per frame. These separate masks allow to mark all the worms also in cases where pixels of 
individual C. elegans overlap. The labeled CSB-1 dataset contains more than 60,500 individual worm masks. C. 

https://ffmpeg.org
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elegans at the image borders are ignored during the labelling process. Our data is available under https:// doi. org/ 
10. 5281/ zenodo. 74568 03 as a rich resource to develop better methods for animal tracking.

Synthetic dataset. For training the model we generated a synthetic dataset using the nine annotated videos 
from the CSB-1 dataset described above. We automatically cut out foreground objects from the original gray-
scale images, according to their polygon annotations and created patches with a worm in the foreground and 
transparent background. Additionally, we created background images as templates by removing all foreground 
objects using standard graphics software and filled them with patches of background, taken from the same 
background images.

The following pipeline was applied to create each image of the synthetic dataset: 

1. Randomly select 5–30 foreground objects and a background template
2. Randomly flip and rotate foreground objects and their corresponding annotations
3. Apply blurring to foreground objects by averaging the pixel values using a 2× 2 px kernel
4. Place foreground object patches on background image: 

(a) In 20% cases: place a foreground object on top of another one
(b) In 80% cases: place a foreground object randomly on the background image

The generated training dataset consists of 10,000 grayscale images with a size of 912× 736 px and more than 
175,000 labeled C. elegans and additional 1000 images for testing (see Fig. 1a). We randomly added grayscale 
rings of random sizes surrounding the center of the images (see Fig. 1b) to make the network robust against 
similar artifacts (e.g. petri-dish edges) in other test datasets. Foreground objects might overlap with the artificial 
petri-dish edges, but are only placed on the inside of the rings. Using the object masks of the original data, for 
each foreground object we generated a binary mask corresponding to its artificially generated location and shape. 
These masks are used as ground truth for model training and testing on this dataset. Our synthetic training 
dataset is available at https:// doi. org/ 10. 5281/ zenodo. 74568 03.

BBBC010. The “BBBC010—C. elegans live/dead assay”26 (BBBC010) dataset consists of 200 images, divided 
into 100 bright-field and 100 green fluorescent protein (GFP) microscopy images of the same scene. The images 
have a size of 696× 520 px and are saved as 16-bit grayscale TIFF files. For our experiments we converted the 
images to 8-bit grayscale PNG images. The images contain a black border surrounding the region of interest 
(ROI) with the C. elegans in the center (Fig. 1c) which makes up around 50% of the image. Ground truth con-
sists of binary foreground/background images for each worm separately, allowing to disentangle the overlapping 
shapes.

The images show C. elegans exposed to Enterococcus faecalis with a negative control group containing dead 
worms and a positive control group, which was treated with ampicillin and includes alive worms. While the alive 
C. elegans have the natural curved shapes (Fig. 1c), the negative control group appear rod-like with an uneven 
texture (Fig. 1d).

Mating dataset. The mating dataset (MD) was created from a 10 min. long video with a frame rate of 25 Hz and 
a frame size of 3036× 3036 px. It contains freely moving worms as well as mating ones. Mating behavior is par-
ticularly difficult to segment as the two individuals are strongly overlapping and parallel to one another (Fig. 1e). 
This dataset represents therefore the most challenging segmentation task for our method.

We downsampled the video to 5 Hz and selected 50 frames randomly for annotation and testing of our 
approach. More than 3900 individual worm postures were labeled in this dataset. The labeling includes only 
mature C. elegans, worms touching the image boundary were ignored. We split the frames into 450 images with 
a size of 1012× 1012 px without overlap. The grayscale images show C. elegans in a petri-dish with the edges 
visible (see example patch in Fig. 1f).

Network architecture
To predict bounding boxes and instance segmentation masks we use the Hybrid Task Cascade (HTC)27 neural 
network architecture, combined with Swin  Transformer28 as backbone (similar  to28).

Swin Transformer is a Vision Transformer (ViT)-based backbone  architecture29, which can be applied to 
different vision-related tasks (e.g. classification, detection or segmentation). Previous ViTs divided the input 
image into relatively large patches and computed self attention among them. ViTs showed lower computational 
complexity, but did not account for small details in large images. To tackle this problem Swin Transformer intro-
duced a Shifted Window approach to reduce the computational complexity of standard multi-head self attention 
(MSA) modules. Additionally, Swin Transformer builds hierarchical feature maps, merging image patches in 
deeper layers, enabling small-sized patches, leading to more detailed predictions. We chose Swin-L architecture 
variant in our study which was pre-trained on ImageNet-21K30 with an image size of 384× 384 px (similar  to28).

HTC improves the architecture of Cascade Mask R-CNN31 by introducing interleaved bounding box regres-
sion and instance segmentation mask prediction. The information flow is optimized by adding direct connections 
between the individual mask branches (Fig. 2). Additionally, a semantic segmentation branch is added to the 
original architecture to help to distinguish between foreground and background. In our experiments we do not 
use this additional semantic segmentation branch.

https://doi.org/10.5281/zenodo.7456803
https://doi.org/10.5281/zenodo.7456803
https://doi.org/10.5281/zenodo.7456803
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To further improve the accuracy when training on small batches, we exchanged the default Batch Normali-
zation (BN)32 with Group Normalization (GN)33 and Weight Standardization (WS)34 in HTC (similar  to34). We 
also replaced the Shared 2 Fully-Connected Bounding Box heads (Shared2FC) by Shared 4 Convolution + one 

(a) (b)

(c) (d)

(e) (f)

Figure 1.  Example images from the datasets used in this study: (a) synthetic dataset example with added ring, 
(b) synthetic dataset without ring, (c) BBBC010 dataset example with mostly alive C. elegans, (d) BBBC010 
dataset patch with mostly dead C. elegans, (e) mating dataset with petri-dish ring, (f) zoomed-in mating dataset 
patch with many overlaps.
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Fully-Connected Bounding Box head (Shared4Conv1FC) (as described  in33). To suppress low quality detections 
but keep high quality predictions in dense and overlapping scenes we use Soft-NMS instead of the traditional 
NMS algorithm for the R-CNN during test time (see HTC++28).

Training. We used multi-scale training with a size between 480 and 800 px for the shorter side and 1333 px 
at most for the longer side,  AdamW35 as optimizer, Cosine Annealing Learning Rate  Scheduler36 and Linear 
Warm-Up37 (similar  to28). The learning rate was set to 2.5e-5 and weight decay to 0.1. The number of warm-up 
iterations of the linear warm-up and learning rate scheduler was set to 1000, warm-up ratio to 0.1 and mini-
mum learning rate ratio to  1e-5. During training and testing the NMS threshold for the RPN was set to 0.7, the 
Soft-NMS of the R-CNN was set to 0.5 during test time. We used random flipping with a probability of 0.5 and 
 AutoAugment38 for multiscale resizing and cropping. Additionally, we used the pre-trained weights for the Swin 
backbone, trained on ImageNet-21K with an image size of 384× 384 px (similar  to28). We tested our approach 
on three different datasets: the publicly available BBBC010 dataset, MD and CSB-1 datasets. During testing all 
images were resized to 800 px on the short side and to no more than 1333 px on the longer side, preserving the 
original ratio. We excluded all instances touching image borders as incomplete C. elegans instances.

In all our experiments we used the MMDetection  framework39. Our code and network configuration file for 
the MMDetection framework are available at https:// github. com/ bozek lab/ worm- swin.

WormSwin was trained using 4 Nvidia Tesla V100-SMX2 32 GB GPUs, 6 cores of an Intel Xeon Gold 6248 
CPU @ 2.50 GHz and 100 GB of RAM. With a batch size of four (one image per GPU) and two workers per GPU, 
training for 36 epochs took ∼ 19 h. Evaluation on the test set runs at a speed of 2.7 images/s.

Results
We trained WormSwin on data synthetically generated based on the CSB-1 dataset. The procedure of data gen-
eration allows us to control the degree of overlap among individuals and to train the network on a large number 
of images containing overlapping worms to improve segmentation of dense scenes. Once trained, we evaluated 
the model on a synthetic test set (see Table 1) as well as on three independent datasets: BBBC010, MD and CSB-
1. These datasets come from different labs, show visual variability, and contain different number and degree 
of overlapping C. elegans. We report our results mostly as COCO Average Precision (AP)40 calculated using 
pycocotools (https:// github. com/ cocod ataset/ cocoa pi). For the BBBC010 dataset, we report our results as DSB 
AP for comparison to other methods. AP is the area under the precision-recall curve and its values are between 
0 and 1, with a higher AP representing better performance. Precision and recall of the detection is calculated for 
instances that show intersection over union (IoU) with the ground truth above a predefined threshold. DSB mAP 
calculates a mean Jaccard Index by using different IoU thresholds. COCO mAP uses a more complex approach: 
detections are sorted by descending confidence score. The calculation iterates over all detections in this order, 
marks them as True Positive (TP) or False Positive (FP) and adds them to calculate the precision until a recall 
of 1.0 is reached or iterated over all detections. Different IoU thresholds are used to label detections as TP or FP.

We report our results mostly for two IoU thresholds: 0.5 and 0.75 as well as a mean AP (mAP) for thresholds 
from 0.5 to 0.95 with a step size of 0.05. One of the most challenging parts for instance segmentation of C. elegans, 
as well as other biological systems, are overlapping objects in dense configurations. To measure the accuracy of 
our approach explicitly for overlapping objects, we added a dedicated AP metric. We defined overlapping objects 
as those whose ground truth bounding boxes overlap by more than 25% or whose segmentation masks that any 
overlap (>0% IoU). We report the AP for all objects as well as for the overlapping objects separately (Table 2).

CSB-1 dataset. Although trained on synthetically generated data, our method generalizes fairly well to 
the real video data with a mAP of 0.819 and 0.585 for the bounding box and mask respectively, lower by only 
∼ 0.09 mAP compared to the synthetic data. The same metric on the overlapping worms in the CSB-1 dataset 
are 0.551 and 0.527. While the mAP is lower for the overlapping C. elegans compared to the results on the entire 
dataset, the AP0.50 of the bounding box and mask on the overlapping worms are 0.883 and 0.975, respectively. 
This result suggests that the worms are detected correctly in principle but there exist errors in mask prediction. 
What these mask prediction errors are, is however not clear at a first glance. Despite the difference between the 
AP0.50 and AP0.75 in the overlapping worms, we found that the segmentation masks align in general well with 
the ground truth (Fig. 3), however pixels on the edges of each object tend to be imprecisely segmented. Due to 

Figure 2.  Network architecture based on Swin-L backbone and HTC. Batch norm (BN) layers in HTC are 
replaced by group norm (GN) + weight standardization (WS). Bounding box heads are changed from the 
original Shared2FC architecture to Shared4Conv1FC.

https://github.com/bozeklab/worm-swin
https://github.com/cocodataset/cocoapi
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(a) (b) (c)

Figure 3.  Example from the CSB-1 dataset (box and mask colors are selected randomly). (a) Ground truth 
annotations, (b) predicted bounding boxes and masks, (c) TP (green), FP and FN (red) pixels.

Table 1.  Test results on all instances. “Box” and “mask” refer to the accuracy of detection of the bounding 
box and segmentation mask, respectively. PatchPerPix ppp+dec refers to the network variant, introduced  by19. 
(*Multi-scale testing, †additional training data).

AP0.50 AP0.75 mAP0.50:0.95

CSB-1

 WormSwin (box) 0.990 0.976 0.819

 WormSwin (mask) 0.990 0.675 0.585

Synthetic

 WormSwin (box) 0.989 0.978 0.909

 WormSwin (mask) 0.977 0.918 0.679

BBBC010

 PatchPerPix ppp+dec (mask) 0.939 0.891 0.775

 WormSwin (box)† 0.985 0.949 0.823

 WormSwin (mask)† 0.954 0.801 0.622

 WormSwin (mask)*, † 0.964 0.815 0.629

MD

 WormSwin (box)† 0.990 0.968 0.832

 WormSwin (mask)† 0.980 0.551 0.542

Table 2.  Test results for overlapping worms only (* multi-scale testing, †additional training data).

AP0.50 AP0.75 mAP0.50:0.95

CSB-1

 WormSwin (box) 0.883 0.643 0.551

 WormSwin (mask) 0.975 0.409 0.527

Synthetic CSB-1

 WormSwin (box) 0.983 0.958 0.853

 WormSwin (mask) 0.959 0.821 0.613

BBBC010

 WormSwin (box) † 0.911 0.821 0.661

 WormSwin (mask) † 0.873 0.565 0.488

 WormSwin (mask)*, † 0.895 0.573 0.501

MD

 WormSwin (box)† 0.822 0.633 0.505

 WormSwin (mask)† 0.893 0.079 0.355
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the small size of a worm mask with ∼ 500 px, errors at the edges of the predicted masks represent ∼ 30% of all 
foreground pixels.

To test the hypothesis that most error occur on the mask edges, we implemented an alternative version of the 
IoU: if a pixel in either ground-truth or predicted mask is at the border of an object (when the 4-way neighbor-
hood is not fully foreground) then it is set to the value of the pixel at this position in the other mask. This way, 
object border pixels which otherwise would be considered as false negative (FN) or false positive (FP) do not 
influence the IoU calculation in a negative way. Using this calculation, the mean IoU on the test subset raised 
from 0.827 to 0.961 (+13.4% increase) on the CSB-1 dataset.

BBBC010 dataset. Because of the very limited number of training samples (50 images) the predictions 
of the network trained on BBBC010 were of poor quality. Therefore, we used the network pre-trained on our 
synthetic data and fine-tune it on 50 randomly selected images from the BBBC010 dataset. We compared the 
performance of our approach to two existing methods:  PatchPerPix19 and  EmbedSeg21. To enable this compari-
son, instead of the COCO AP metric (see Table 1) we used (Data Science Bowl) DSB AP (https:// www. kaggle. 
com/ compe titio ns/ data- scien ce- bowl- 2018/ overv iew/ evalu ation) as accuracy evaluation on this dataset which 
was used in the original EmbedSeg method  publication21 (see Table 3).

We used the alternative IoU calculation already used for the CSB-1 dataset, to calculate the DSB accuracy 
without considering object edges. With the IoU defined this way, using the DSB metric we achieve 0.769 mAP 
(+0.233), 0.929 AP0.50 (+0.012) and 0.823 AP0.80 (+0.487) (compare to Table 3).

Mating dataset. Finally, we tested WormSwin on the MD dataset using weights pre-trained on our syn-
thetic dataset. In this dataset we annotated 50 images, which are larger in size and contain a higher number of C. 
elegans compared to the BBBC010 dataset. Further, we split them into patches of size 1024× 1024 px. We report 
our results in Table 1). Despite the challenging configurations of worms in this dataset, our method correctly 
identifies the segmented objects, as indicated by the AP0.50 which is comparable to the AP0.50 in other data-
sets. However the AP0.75 and mAP0.50:0.95 suggest that, while correctly detected, the segmentation masks of the 
detected objects are imprecise. Similar to other datasets, we hypothesise that these errors occur on the bounda-
ries of the segmentation masks (Fig. 4) as well as are due to the very challenging object overlaps in this dataset.

Tracking. To test if our segmentation results are sufficiently accurate to allow for worm tracking and fur-
ther behavioral analysis, we implemented a simple IoU-based matching method (Fig. 5) and applied it on our 
predicted instance segmentation masks in the CBS-1 test set. Between two consecutive frames, objects with the 
highest overlap in mask are matched into a trajectory. Iterating the matching procedure over all video frames 
results in object trajectories. In this simple approach, if an object is not detected in a frame but detected in a 
subsequent frame its trajectory is disrupted and two separate trajectories are created instead. We attempt to 
reconnect such trajectories in a post-processing step: for 10 frames after loosing an object, starting points of 
new trajectories are compared with the endpoint of the lost trajectory. If the segmentation masks at these points 
overlap with at least 50%, the trajectories are reconnected. In the frames with missing segmentation masks the 
positions of C. elegans can be interpolated between two ends of reconnected trajectories.

While a tracking method is outside of the scope of this study, our simple approach allows to build trajectories 
of interacting mating worms (Fig. 5). Tracking these challenging C. elegans interactions opens up new possibili-
ties of studying its behavior.

Discussion
In this work we present WormSwin, a deep learning approach for instance segmentation of microscopy images 
of C. elegans. Our method combines several recent improvements in deep learning and instance segmentation 
(Transformer Networks, HTC, Group Normalization, Weight Standardization, Soft-NMS) into a single approach 
trained end-to-end. WormSwin does not require any pre-processing of the image data, enabling researchers to 
directly apply it on their video or image data.

Together with our method we provide a large dataset of C. elegans images with instance mask annotations to 
help researchers develop better segmentation approaches in the future. The new dataset is by an order of magni-
tude larger compared to the BBBC010 dataset, enabling training deeper network architectures.

The small size of the BBBC010 benchmark dataset is a limiting factor to extensively train and test our method 
on this dataset. The accuracy of our method is lower on this dataset compared to the CSB-1 which might be 

Table 3.  Test results using DSB metric (* multi-scale testing, †additional training data, ‡alternative IoU 
without object edges, mAP for IoUs in range 0.5–0.95, step size 0.05).

AP0.50 AP0.60 AP0.70 AP0.80 AP0.90 mAP

BBBC010

 PatchPerPix ppp+dec19 0.930 0.905 0.879 0.792 0.386 0.727

  EmbedSeg21 0.965 0.934 0.896 0.762 0.326 –

 WormSwin (mask)*, † 0.917 0.884 0.785 0.336 0.005 0.536

 WormSwin (mask)*, †, ‡ 0.929 0.920 0.890 0.823 0.483 0.769

https://www.kaggle.com/competitions/data-science-bowl-2018/overview/evaluation
https://www.kaggle.com/competitions/data-science-bowl-2018/overview/evaluation
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attributed to the differences in the color intensities, size and appearance of C. elegans between the two datasets. 
Since retraining of WormSwin on a small amount of BBBC010 images improved the methods performance, we 
suggest that to accurately segment datasets differing from CSB-1 characteristics, a similar retraining is necessary.

Notably, our method shows a decrease in AP in the higher IoU threshold categories (e.g. Table 3AP0.80 ). 
Despite this precision drop, the segmentation masks appear overall correct (Figs. 3, 4). We therefore hypothesize 
that the major errors in the segmentation masks occur on the boundaries of the foreground area and further 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.  Results on the Mating Dataset (box and mask colors are selected randomly). (a,c,e,g) Segmentation 
results, (b,d,f,h) TP (green), FP and FN (red) pixels.
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substantiate this by calculating accuracy metric that does not take into account boundary pixels. The reason for 
this type of error might be e.g. variation in human-generated labeling. We introduce blurring in the synthetic 
training data which might additionally change the appearance of the object contours. Despite these errors, 
individual C. elegans poses are captured by the predicted segmentation masks and can be subject to further 
quantitative analysis.

As a major future improvement of this work we see models exploring temporal information to improve 
segmentation of overlapping objects. Information on how C. elegans individuals arrive in a specific configura-
tion is of great help in disentangling their postures. Previous work by Fontaine et al.41 model C. elegans using 
planar curves and Central Difference Kalman Filter (CDKF) to track multiple worms. This approach shows good 
results even when occlusion occurs. Similarly, Alonso et al.42 proposed a deep learning approach for detection 
and tracking in high density microscopy data, based on splines as shape descriptors. They test their approach 
on different dataset including videos of C. elegans and achieve high accuracy in dense scenes with a high degree 
of occlusion. Such methods are a step towards combining segmentation with tracking in a single training objec-
tive. While generating training datasets for multi-object tracking is a massive work burden, the accuracy of our 
segmentation approach allows to build preliminary trajectories in an automated fashion.

Data availability
The datasets (except for the BBBC010 dataset) generated during and/or analysed during the current study are 
available in the Zenodo—WormSwin: C. elegans Video Datasets repository, https:// doi. org/ 10. 5281/ zenodo. 74568 
03. The BBBC010 dataset is available at https:// bbbc. broad insti tute. org/ BBBC0 10. Source code and configuration 
files are available at https:// github. com/ bozek lab/ worm- swin.
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