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A novel prognostic signature 
for hepatocellular carcinoma based 
on SUMOylation‑related genes
Jianping Wang 1, Peipei Cong 1, Zhipeng Jin 1, Lingli Liu 2, Dongxu Sun 1, Wenjing Zhu 3 & 
Guangjun Shi 1*

SUMOylation (SUMO modification) has been confirmed to play an essential role in the progression of 
various malignancies. As the value of SUMOylation‑related genes (SRGs) in prognosis prediction of 
hepatocellular carcinoma (HCC) has not been explored, we aim to construct an HCC SRGs signature. 
RNA sequencing was utilized to identify differentially expressed SRGs. The 87 identified genes were 
used in Univariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator 
(LASSO) analysis to build a signature. The accuracy of the model was validated by the ICGC and 
GEO datasets. The GSEA revealed that the risk score was associated with common cancer‑related 
pathways. The ssGSEA showed that NK cells in the high‑risk group were significantly reduced. The 
sensitivities of anti‑cancer drugs confirmed the sensitivity of the high‑risk group to sorafenib was 
lower. Further, our cohort showed that risk scores were correlated with advanced grade and vascular 
invasion (VI). Finally, the results of H&E staining and immunohistochemistry of Ki67 showed that 
higher‑risk patients are more malignant.

Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancer types  worldwide1. This severe 
disease, which accounts for the majority of the primary liver cancer cases, has high mortality and is typically 
developed from chronic hepatitis and  cirrhosis2,3. Despite the enormous advances achieved in diagnostic 
techniques, the overall survival period of patients with HCC is shorter due to late disease identification and 
 diagnosis4. Over the years, traditional treatments for HCC patients showed poor clinical  effects5. VI is a signifi-
cant factor affecting prognosis in  HCC6. Another study also reported that patients with VI, compared to those 
without evidence of VI, showed a shorter median  survival7. Hence, VI was included in our study as an important 
clinical indicator.

SUMOylation is a protein modification pathway that regulates various biological processes, including cell 
division, signal transduction, DNA repair, and cell  metabolism8. SUMOylation consists of a three-step enzymatic 
reaction, including activation, coupling, and  ligation9. Accumulating evidence has shown that many cancers have 
significantly enhanced SUMOylation  dynamics10. Thus, SUMOylation can be viewed as a global mechanism 
that increases the stability and robustness of complex signaling pathways, which, if unchecked or spuriously 
activated, can exert disastrous consequences for  cells10. The abnormal expression of SUMOylation might be a 
cause of tumor progression and could thus serve as a novel  marker11. Currently, due to the ease of access to public 
databases, a growing number of signatures have been discovered that predict the patients’ prognosis, whereas 
no SUMOylation-related risk signature has been identified in HCC patients.

In the present research, we screened out SRGs related to prognosis in HCC, and analyzed the TCGA database 
by Lasso Cox regression to develop a model. Moreover, the predictive accuracy of the risk feature was tested in 
ICGC, GEO cohort, and our cohort. The research might provide a new method for the clinical treatment of HCC.

Results
Identification of HCC prognosis‑associated DEGs. We obtained the expression data of the mRNA 
sequences of 50 normal tissue and 374 HCC tissue samples by searching the TCGA database. Differentially 
expressed SRGs in tumor and normal samples were filtrated by the limma package in R. We found that 2 and 85 
SRGs were significantly down-regulated and up-regulated, respectively. The information of these findings was 
displayed in the heat map and volcano map, depicted in Fig. 1a,b. Thirty-five SRGs were closely related to HCC 
prognosis by univariate Cox regression analysis (Fig. 1c).
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Identification of subtypes in HCC. The result of the consensus clustering algorithm revealed that k = 2 
seemed to be a desirable choice to divide the whole cohort into A (n = 73) and B (n = 219) (Fig. 2a). The K–M 
curve revealed that patients in subtype A had a more prolonged OS than patients in subtype B (Fig. 2b). There 
was no significant difference in clinical features between the two subtypes (Fig. 2c).

Construction of a SRGs‑based prognostic model. Subsequently, the 35 genes were analyzed by Lasso 
regression analysis for building a risk signature. 2 genes (CDCA8 and CBX2) remained with the minimum 
partial likelihood deviance, of which two were risk factors (Fig. 3a). Further research showed that the mRNA 
expression in the two model genes in normal tissue was significantly lower than that in the tumor tissue sam-
ples (Fig. 3b). In addition, the high expression levels of the two SRGs indicated a low survival rate in the K–M 
curve (Fig. 3c). Immunohistochemical (IHC) staining protein level obtained from the HPA database showed 
the results of protein expression were consistent with transcription levels (Fig.  3d). This prognostic signa-
ture was developed to calculate the risk score by the following formula: Risk score = (0.03166 × expressions of 
CDCA8) + (0.40426 × expressions of CBX2). Then, based on the median risk score, HCC patients were divided 
into two groups in the TCGA cohort: high-risk (n = 146) and low-risk (n = 146). We used K–M curves to com-
pare the difference in the overall survival between the two groups. The high-risk HCC patients, compared to 
the low-risk group, had a worse 5-year survival probability (Fig. 3e). Patient’s survival time was presented as a 
scatter plot, and the risk scores were ranked in ascending order, revealing that the high-risk patients had a worse 
prognosis (Fig. 3f).

Evaluating the prognostic value. Initially, the two model genes expression and clinical characters were 
shown on the heat map (Fig. 4a). Then, univariate Cox regression analyses demonstrated that age, stage, and 
risk score could predict the prognosis of HCC patients (Fig. 4b). Risk score and stage were found to be inde-
pendent prognostic factors by multivariate Cox regression analysis (Fig. 4c). Furthermore, the time-dependent 
ROC curves revealed that AUC values of 1-, 2-, and 3-year in the TCGA cohort were 0.723, 0.647, and 0.642, 
respectively. These results suggested that the prognostic model was effective in accurately predicting the survival 
time (Fig. 4d). To assess the clinical significance, we developed multi-factor ROC curves, which showed that the 
risk score (AUC 0.713) was better for predicting the survival time of HCC patients than those of other clinical 
factors (Fig. 4e).

Validation of the prediction ability by the ICGC database. We utilized the ICGC and GSE116174 
cohorts to validate the accuracy of the prognostic signature. First, the expression levels of two genes in the 
tumor tissues were found to be also higher than in the normal tissues (Fig. 5a). Next, based on the computa-
tional formula, the HCC patients in the ICGC database were also divided into two sets. The results showed that 
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Figure 1.  Identification of HCC prognosis-related DEGs. (a) Heatmap of the 87 identified SRGs; (b) Volcano 
map of the 87 identified SRGs; (c) Forest plot of the univariate Cox regression results.
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the patients in the low-risk group had a better survival time (Fig. 5b). The univariate and multivariate analyses 
suggested that risk score and stage could be used as independent indexes for prognosis prediction (Fig. 5c). In 
addition, the AUC values of the time-dependent ROC curves (1-, 2-, and 3-year) were 0.760, 0.745, and 0.774, 
correspondingly (Fig. 5d). In the GSE116174 cohort, we found that we found that higher-risk score meant worse 
OS (Fig. 5e). And 1-, 2- and 3-year AUC of OS were 0.790, 0.827 and 0.848, which showed that the risk signature 
met the criteria for prognosis prediction (Fig. 5f).

Correlations between the risk model and the clinical factors. The association between risk score 
and clinical factors was explored. Our results showed that the risk score was related to the grade, stage, and VI of 
patients (Supplementary Fig. 1a). The patients with advanced stage, higher grade and VI had higher risk scores 
in the TCGA database. Meanwhile, the risk score was related to the stage in the ICGC cohort (Supplementary 
Fig. 1b).

Nomogram construction. To apply the prognostic model for the prediction of the survival time of HCC 
patients, we further combined the age, stage, grade, and VI with the risk score to build the 1-, 2-, and 3-year OS 
prediction nomograms. Based on the nomogram, we could build an average patient score to determine patients’ 
OS (Fig. 6a). In addition, and the calibration diagrams indicated that the nomogram had an excellent perfor-
mance (Fig. 6b). The AUC of the nomogram model revealed the satisfactory accuracy for 1-, 2- and 3-year OS 
(0.688, 0.632, 0.664) (Fig. 6c).

Pathways correlated with the risk score. To explore the signaling pathway underlying the SRGs model, 
we conducted GSEA. The results revealed that SUMOylation and several common tumor-related pathways, such 
as cell cycle, neurotrophin signaling pathway, pathways in cancer, base excision repair, MAPK, VEGF, and P53 
signaling pathway, were significantly enriched in the high-risk patients (Supplementary Fig. 2).

Correlation between the prognostic model and tumor immune micro‑environment. The 
ssGSEA showed that patients with high-risk scores had a significantly higher level of immune cell infiltra-
tion, including Macrophages, aDCs, Tfh, Treg, and Th2 cells, but lower proportions of Natural killer (NK) cells 
(Supplementary Fig. 3a). Interestingly, immune-related functional pathways, such as the score of Type-II IFN 
response, CCR, Checkpoint, MHC class I, APC co-stimulation, were different between the low- and high-risk 
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Figure 2.  SRG subtypes and clinical characteristics of two distinct subtypes. (a) Consensus matrix heat-map 
defining two clusters (k = 2); (b) Comparison of OS among two subtypes; (c) Comparison of clinical information 
between the fibrosis-related clusters.
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group in the TCGA cohort (Supplementary Fig. 3c). In the ICGC cohort, the ssGSEA demonstrated the result of 
immune cell infiltration (e.g., B cells, Neutrophils, NK cells and Th2 cells) and immune-related functional path-
ways (e.g., Type-I IFN Response and Type-II IFN Response) (Supplementary Fig. 3b,d). In conclusion, NK cells 
and Type-II IFN Response of high- and low-risk had statistically significant differences in TCGA and ICGC.

Drug susceptibility analysis. Eight common chemotherapy drugs were selected to analyze to examine 
the sensitivity of different risk groups to chemotherapy. We analyzed that the high-risk patients’ scores had 
lower IC50 values for paclitaxel, gemcitabine, doxorubicin, bleomycin (Fig.  7a), whereas the IC50 values of 
chemotherapeutics, such as sorafenib, gefitinib, docetaxel, and AKT inhibitor VIII were significantly lower in the 
patients with low-risk scores (Fig. 7b). To sum up, the aforementioned results showed that the risk scores were 
associated to drug sensitivity.

Verification of clinical tissue samples. Further, we validated the accuracy of the signature in our cohort 
from Qingdao Municipal Hospital. First, we standardized the expression level and obtained the risk score by the 
formula: Risk score = (0.03166 × relative expression of CDCA8) + (0.40426 × relative expression of CBX2). The 
median risk score was utilized as a cut-off value to classify patients into a high-risk (n = 5) or a low-risk group 
(n = 5). The risk scores of these ten patients and their clinical information are listed in Table 1. Next, we analyzed 
the relationship between the risk scores and clinical factors, which displayed that the risk score was associated 

Figure 3.  Development of a novel prognostic signature. (a) Partial likelihood deviance versus log (lambda) 
drawn. (b) Expression levels of two genes in HCC and normal samples; (c) The K–M curve of model genes; (d) 
Immunohistochemical staining protein level from the HPA database; (e) The patients in the low-risk groups 
have significantly longer OS outcomes than those in the high-risk groups; (f) Risk score distribution in HCC 
patients, overall survival and survival status of HCC patients in the TCGA database.
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with vascular invasion and tumor grade by Fisher Chi-square tests (Table 2). And results of H&E staining and 
immunohistochemistry in samples 1, 2, and samples 9, 10 are exhibited in Fig. 8a,b.

Discussion
HCC is a deadly disease with a very low 5-year survival  rate12. Therefore, it is critically important to build a reli-
able and effective prognostic model for patients with HCC. Numerous medical studies in the past have shown that 
SUMOylation is closely related to tumorigenesis, metastasis, and proliferation and is significantly upregulated 
in most  tumors13,14. In this study, we first screened 187 DEGs in the TCGA cohort. We analyzed the relationship 
between DEGs and HCC patients’ prognosis by univariate Cox analysis. We identified two specific molecular 
subtypes based on the expression of prognosis-related genes in our study. Then, we used LASSO regression 
analysis to develop a two-gene SUMOylation-related predictive model in the TCGA database and tested its 
accuracy using the ICGC and GEO databases. Further, we found that the high-risk patients had a worse prognosis 
compared with the low-risk patients. Finally, we estimated the performance of the risk model in the following 
aspects: clinical characteristics, GSEA, tumor immune micro-environment, and chemotherapeutic susceptibility 
to several drugs. The aforementioned results revealed that this prognostic signature had good clinical guidance 
significance and could be used to predict patient prognosis.

SUMOylation is necessary to maintain genome integrity and regulate gene expression and intracellular 
 signaling15. Both SUMOylation and de-SUMOylation were involved in the pathogenesis of  cancer16. This most 
likely represented a subtle homeostasis of the SUMOylation state of proteins involved in DNA repair, cell divi-
sion, and cell signaling in normal cells, as well as dysregulation in cancer  cells17. In addition, the interaction 
between ubiquitination-like and other reversible post-translational modifications (phosphorylation, acetylation, 
and ubiquitination) is a process that occurs repeatedly in vivo, because the dependence of one modification on the 
other greatly expands the specificity and regulatory potential of each reversible post-translational  modification18. 
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Figure 4.  Evaluation of the prognostic value. (a) A heat-map of two model genes in five clinical indicators in 
TCGA; (b) prognostic effect analysis of risk score and clinical features in HCC with univariate and multivariate 
Cox regression analysis; (c) Time-dependent ROC curves for predicting 1-, 2-, and 3-year OS of TCGA cohort; 
(d) The ROC analysis of the risk score and other prognostic clinical features in HCC.
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Figure 5.  Validation of the prediction ability in the external database. (a) The expression level of the two genes 
in the ICGC cohort; (b) K–M analysis of the high- and low-risk groups among the HCC samples in the ICGC; 
(c) The univariate and multivariate Cox regression analysis of the risk score; (d) Time-dependent ROC curves 
for predicting 1-, 2-, and 3-year OS of ICGC cohort; (e) K–M analysis in the GSE116174; (f) Time-dependent 
ROC curves of GSE116174 cohort.
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Figure 6.  Nomogram construction. (a) Nomogram for predicting the 1-, 2-, and 3-year OS in HCC patients; 
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However, the relationship between SRGs and the development of HCC is still unclear. In prevent study, the 
SUMOylation-related gene (SUMO-2 and SAE1) were up-regulated in HCC, and high levels correlated with a 
worse survival  time19.

The risk model included two genes (CDCA8 and CBX2). Two genes were over-expressed in HCC tissues, 
which was associated with a low survival rate. The previous study demonstrated HCC cell progression was 
inhibited by the knockdown of CDCA8. This process was achieved by restoring the ATF3 tumor suppressor and 
restraining the AKT signaling  pathway20. Molecular targeted therapy of CDCA8 might be an effective systemic 
approach to prevent tumor recurrence by eliminating cancer stem cells and cancer  cells20. CBX (Chromobox 

Figure 7.  Sensitivity of the different risk groups to chemotherapy. (a) Lower IC50 values in high-risk patients. 
(b) Higher IC50 values in high-risk patients.

Table 1.  Clinical parameters of 10 HCC from clinical patients.

Sample Grade Stage VI Risk score Risk

1 G3 Stage III Invasion 0.43592 High

2 G3 Stage II Invasion 0.378746328 High

3 G4 Stage III Invasion 0.148692076 High

4 G3 Stage II Invasion 0.14270414 High

5 G3 Stage I Invasion 0.114524725 High

6 G2 Stage I No 0.088184136 Low

7 G3 Stage I No 0.083630926 Low

8 G2 Stage IV Invasion 0.07453907 Low

9 G2 Stage IV No 0.07453907 Low

10 G1 Stage I No 0.058986327 Low

Table 2.  The fisher Chi-square tests.

Characteristics

Risk

P valueHigh Low

Grade
1–2 0 4

0.0238
3–4 5 1

Stage
I&II 3 3

1
III&IV 2 2

VI
No 0 4

0.0238
Invasion 5 1
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Homolog 2) in the PRC1 complex SUMOylates CETN2 at an unknown residue with SUMO2,321. The knock-
down of CBX2 expression in HCC cells increased HCC cell apoptosis and suppressed HCC cell  proliferation22.

We constructed a risk model to provide further, more effective guidance on clinical diagnosis and treatment. 
Our study showed that the high-risk group was correlated with vascular invasion, advanced stage, and higher 
grade. In the present study, vascular invasion was a very important clinical  index23. Both micro-invasion and 
macro-invasion were correlated with poor  survival24. Pawlik et al.25 reported that patients with vascular invasion 
had significantly shorter median survival time compared to patients with no evidence of vascular invasion. We 
found that high-risk groups were more likely to develop vascular invasion in TCGA and our cohort. These results 
could guild the clinical works. For instance, high-risk groups need early surgical treatment to prevent vascular 
invasion. In addition, high-risk patients were more likely to experience tumor recurrence.

The GSEA indicated that a high-risk score was significantly associated with some common HCC potential 
pathways (e.g., SUMOylaton, neurotrophin signaling pathway, cell cycle, and so on). And the association of most 
of these pathways with the occurrence and therapy of HCC has been previously validated. For example, it was 
becoming clear that cancers exhibited substantially enhanced SUMOylation  dynamics10. Loss of normal cell cycle 
control was an important beginning of the tumor. Cancer cells accumulate alterations leading to unscheduled 
proliferation and genomic  instability26. Mesencephalic astrocyte-derived neurotrophic factor (MANF) levels were 
associated with the status of liver cirrhosis, advanced stage, and tumor  size27. We forecast that the activation of 
these pathways might be the reason for high-risk patients with poor survival. In recent studies, the application 
of the immune micro-environment has been used as a novel anti-cancer  therapy28. The results for NK cell and 
IFN response II had statistical significance in our study. NK cell was the main anti-tumor cell in the liver, which 
could affect other immune cells’ anti-tumor  behavior29. Previous studies had observed that the SUMOylation 
inhibitor enhanced the proportions of activated NK cells in vivo  treatment30. The results showed that the immune 
infiltration of NK cells in the high-risk group was significantly reduced, which could explain the reason for the 
high-risk group with the poor prognosis. IFN response plays a crucial role in promoting host anti-tumor immu-
nity and is considered to be pivotal component in the cancer-elimination phase of cancer  immunosurveillance31. 
In this study, the sensitivity of the high-risk group to sorafenib was lower than that of the low-risk, whereas 
higher gemcitabine sensitivity was observed in the high-risk patients. Therefore, high-risk patients resistant to 
sorafenib can be treated with gemcitabine, which may achieve better results.

We developed an SRGs-related risk model and tested the accuracy of the risk model using several approaches. 
Subsequently, we further explored the possible mechanism and pathways involved. Certainly, the risk model 
had limitations. First, only external cohorts and the Qingdao Municipal Hospital cohort (only ten samples) were 
included in this study. Second, no further functional in vivo or in vitro experiments were conducted to reveal 
the potential mechanisms of the gene model.

Materials and methods
The flow chart was presented in Fig. 9.

Patients and HCC specimens. HCC tissues were acquired from 10 HCC patients who received an 
operation at Qingdao Municipal Hospital (Qingdao, Shandong, China) in 2020 which were frozen for western 
blotting. Meanwhile, the clinical information of each patient was documented in detail. Each patient signed 
informed consent. The research had been approved by the Ethics Committee of Qingdao Municipal Hospital. All 
assays were consistent with the Declaration of Helsinki regulations.

RNA extraction and qRT‑PCR. After tissue grinding, total RNA was extracted with TRIzol reagent (Tian-
gen, China) according to the manufacturer’s protocol. cDNAs were obtained from total RNAs by using Prime-
Script RT reagent Kit (TaKaRa, Japan). The real-time PCR (qRT-PCR) experiment was performed using TB 
Green Premix Ex Taq II (TaKaRa, Japan). The expression levels were normalized with GAPDH. The primer 

sample2 sample10

High-risk group Low-risk group

sample1 sample9

a b

Figure 8.  HE staining of tumor tissues and immunohistochemistry was used to detect the expression of Ki67 in 
HCC tissues. (a) High-risk patient (Samples 1, 2); (b) low-risk patient (Sample 9, 10).
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sequences used in this study are displayed in Table 3. The reaction parameters included a denaturation program 
(30 s at 95 °C), followed by an amplification and quantification program over 40 cycles (5 s at 95 °C and 34 s at 
60 °C). Each sample was tested in triplicates, and each sample underwent a melting curve analysis to check for 
the specificity of amplification. The expression level was determined as a ratio between the model genes and the 
internal control GAPDH in the same mRNA sample and calculated by the comparative CT method. The expres-
sion levels of model genes were calculated by the 2 − δδCt method.

Data acquisition. We downloaded the data of the mRNA expression and the clinical information of the 
included HCC patients from the TCGA, ICGC, and GEO databases. Duplicate and missing data in databases 
were deleted. A total number of 187 SUMOylation-related genes were downloaded by gene sets “REACTOME_
SUMOYLATION” from the GSEA  website32. The data downloaded from TCGA, ICGC, and GEO (GSE116174) 
databases was freely publicly available. The clinical information from public databases were shown in Table 4.

Prognosis‑related DEG screening. First, we evaluated the differentially expressed SRGs from the TCGA 
database by the “limma” package in R software (version 4.0.2, https:// www.R- proje ct. org/)33, based on the fol-
lowing standard: |log2 Fold Change |> 1.0 and FDR < 0.05. The results were shown by heat map and volcano map. 
Next, the univariate Cox analysis was utilized to determine the prognostic SRGs.

Consensus clustering analysis. We used the R package “ConsensusClusterPlus” to establish a novel 
according to the expression of the prognosis-related  gene34. We further explored the OS of different molecular 
subtypes by R package “survival” and “survminer”. We next evaluated the correlations between molecular sub-
types and clinical characteristics.

Prognostic signature establishment. The Lasso regression analysis was employed to develop a formula 
using the “glmnet” package in R software. The signature genes were further analyzed by expression levels and 
survival rates in TCGA databases. The protein expression level of candidate genes was tested in the Human 
Protein Atlas database (HPA)35. Finally, the survival time of the high- and low-risk groups was established by 
the K-M curve.

HCC cohort 

from TCGA

87 Sumoylation-

related DEGs

187 Sumoylation-
related genes 

|logFC| > 1.0, 
FDR < 0.05

35 Prognostic sumoylation-

related DEGs 

Univariate Cox 
analysis

2-gene prognostic 

signature

Lasso regression 
analysis

Gene set 
enrichment analysis

Tumor immune 
microenvironment

Drug susceptibility 
analysis

Clinical correlation 
analysis

Independent 
prognostic analysis

Nomogram

HCC cohort 

from ICGC

HCC specimens 
from our clinical center

The training cohort

External validation

Time-dependent 
ROC curve

Kaplan–Meier 
curve

consensus 
clustering analysis

HCC cohort 

from GEO

Figure 9.  The flow chart.

Table 3.  Primer sequences for two genes and GAPDH.

Primer name Primer sequence

CDCA8 forward AGC AGG ACA GTT GGC AGC AG

CDCA8 reverse AGT CCC ACT GAC CAC CTC CC

CBX2 forward GCG GCT GGT CCT CCA AAC AT

CBX2 reverse TGG CAG TGA GCT TCC TTG GC

GAPDH forward GAC CTG ACC TGC CGT CTA 

GAPDH reverse AGG AGT GGG TGT CGC TGT 

https://www.R-project.org/
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Signature accuracy validation. First, univariate and multivariate Cox analyses were employed to vali-
date the independent prognostic value of the risk score. Next, time-dependent receiver operating characteristic 
(ROC) curve analysis was applied to evaluate the accuracy of the signature by the “timeROC”  package36. A 
C-index value > 0.6 was considered to have an acceptable predictive value. The multi-factor ROC was utilized for 
comparisons of the prognostic superior values of the signature and important clinical factors, such as gender, 
age, stage, grade, and VI. Finally, ICGC and GEO (GSE116174) were chosen as external cohorts to verify the 
accuracy of our model.

Nomogram construction. Recently, nomograms have been extensively utilized to predict survival time. 
In this study, we first used the “rms” package in R to establish a nomogram based on the signature and clinical 
factors to predict patients’ overall survival. Then, calibration curves were developed to evaluate the accuracy of 
the nomogram. The 1 -, 2 -, and 3-year ROC curves were used to verify the accuracy of the nomogram.

Relationship between the SRGs model and the clinical features. The “ggpubr” package was uti-
lized to determine the relationship between the risk score and clinical factors, including the stage, grade, and VI 
in HCC patients.

GSEA. To explore the enriched pathways associated with our model, Gene set enrichment analysis (GSEA) 
was performed using GSEA 4.2.1  software32. FDR < 0.05 was considered to indicate statistical significance.

Association between the signature and immunocytes. We further employed the single-sample 
gene set enrichment analysis (ssGSEA) in the "gsva" package to assess the difference of 16 immune cells and 13 
immune-related pathways in high- and low-risk  groups37.

Drug sensitivity prediction. The half-maximal inhibitory concentration (IC50) was applied to explore the 
association between the risk score and anti-cancer drugs. The IC50 of each HCC sample was predicted using the 
pRRophetic package in  R38.

Statistical analysis. The statistical analysis was used by R software (4.0.2) and Perl language packages. A 
K–M curve was used to compare the overall survival time of the different groups via the log-rank test. The com-
parisons between the two groups were analyzed by Wilcoxon rank-sum test. Spearman correlation and Fisher 
Chi-square tests were performed to measure the correlation between variables. P < 0.05 indicated statistically 
significant differences.

Ethics declarations. All methods were carried out by relevant guidelines and regulations.

Table 4.  The clinical characteristic information of the HCC patients in TCGA and ICGC.

Characteristics TCGA (%) ICGC (%)

Number 292 228

Age

 < 65 176 (60.27) 81 (35.53)

 ≥ 65 116 (39.73) 147 (64.47)

Gender

 Male 194 (66.44) NA

 Female 98 (33.56) NA

Survival status

 Alive 205 (70.21) 185 (81.14)

 Dead 87(29.79) 43(18.86)

Stage

 Stage I&II 232 (79.45) 141 (61.84)

 Stage III&IV 60 (20.55) 87 (38.16)

Histological grade

 G1–2 177 (60.62) NA

 G3–4 115 (39.38) NA

Vascular invasion

 None 192 (65.75) NA

 Micro or macro 100 (34.25) NA
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Data availability
The datasets analyzed during the current study are available in public, open access repositories listed in this arti-
cle. The datasets we analyzed during the current study are available in the TCGA, ICGC and GEO. These datasets 
can be freely and openly accessed respectively at https:// cance rgeno me. nih. gov/= TCGA; https:// dcc. icgc. org 
and GEO Accession viewer (nih.gov) = GSE116174. The SUMOylation-related genes were downloaded by gene 
sets “REACTOME_SUMOYLATION” from the GSEA website (https:// www. gsea- msigdb. org). The statistical 
analysis was analyzed using R (version 4.0.2, https:// www.R- proje ct. org/).
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