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Generation and decay of Higgs 
mode in a strongly interacting 
Fermi gas
Andrea Barresi 1, Antoine Boulet 1,2, Gabriel Wlazłowski 1,3* & Piotr Magierski 1,3

We investigate the life cycle of the large amplitude Higgs mode in strongly interacting superfluid Fermi 
gas. Through numerical simulations with time-dependent density functional theory and the technique 
of the interaction quench, we verify the previous theoretical predictions on the mode’s frequency. 
Next, we demonstrate that the mode is dynamically unstable against external perturbation and 
qualitatively examine the emerging state after the mode decays. The post-decay state is characterized 
by spatial fluctuations of the order parameter and density at scales comparable to the superfluid 
coherence length scale. We identify similarities with FFLO states, which become more prominent at 
higher dimensionalities and nonzero spin imbalances.

Spontaneous breaking of continuous symmetries inevitably leads to the appearance of associated collective 
modes of a physical system. In the case of a U(1) symmetry these are either gapless Goldstone mode, associated 
with oscillation of the phase of the order parameter, or the Higgs mode, which is associated with oscillations of 
the amplitude (for this reason, it is also called the amplitude mode). The Mexican-hat-like potential is typically 
drawn to visualize these modes. The Goldstone mode corresponds to motion around the hat in the minimum 
energy valley; in contrast, the Higgs mode is related to oscillations around the minimum in the perpendicular 
direction and consequently has much higher energy. Many studies related to the Higgs mode have been con-
ducted in condensed matter (see e.g.1 for review). In recent years, advances in cooling techniques also allowed 
investigating this phenomenon in highly controllable environments of ultracold  atoms2, 3, as well as develop-
ments in THz spectroscopy for  superconductors4–9. Simultaneously, many theoretical considerations have been 
presented concerning the Higgs mode in ultracold atomic systems: properties of small and large amplitude 
 oscillations10–14, impact of the trapping potential on the mode  characteristics15–17, angle-resolved photoemission 
spectroscopy (ARPES)18–20 and various other ways to induce collective  modes21–24. Moreover, many analytical 
results have been derived in the weak-coupling  limit13, 25–28. The most well-known property is that the frequency 
of small-amplitude oscillations is related to the equilibrium value of the pairing gap by �� = 2� . Through this, 
one can deduce the pairing gap by measuring the Higgs mode  frequency3, 29.

The most widely discussed method of generation of the amplitude mode, in ultracold atomic systems, is 
through the interaction  quench13, 30–36. This idea relies on the fact that the equilibrium value of the pairing field 
(order parameter) depends on the interaction strength, which is typically characterized by the dimensionless 
value akF , where a is the scattering length and kF = (3π2n)1/3 is the Fermi wave-vector for a gas of density n. 
Thus, by preparing the system in the ground state for a selected initial interaction strength a(initial)kF and then 
changing the interaction regime rapidly to the new value a(final)kF , one can induce oscillations of the order 
parameter within the range specified by [�(a(initial)kF),�(a(final)kF)] . Theoretical studies of such scenarios have 
been performed by use of the Bogoliubov de-Gennes (mean-field) method, which is justified for weakly interact-
ing systems with attractive interaction: |akF| ≪ 1 and a < 0 . On the other hand, Fermi superfluids produced in 
laboratories are typically strongly interacting |akF| ≫ 1.

A separate aspect concerns the stability of the amplitude (Higgs) mode. In the case of weak couplings and 
small amplitude oscillations, Dzero, Yuzbashyan, and Altshuler demonstrated by utilizing linear response theory 
that the mode is  unstable37. The mode decays into a new state with spatially nonuniform order parameter. 
Numerical simulations performed for the attractive Fermi–Hubbard  model30, 38 indicated that the mode is indeed 
dynamically unstable, which was consistent with the theoretical predictions.

The purpose of the presented article is twofold. First, we examine the stability of the Higgs mode in strongly 
interacting Fermi gases—the systems that are of particular experimental interest. By means of time-dependent 
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density functional theory, we simulate the whole process: from the generation of the Higgs mode via the inter-
action quench, through the decay dynamics until the equilibration of the final (post-decay) state. Secondly, we 
investigate the properties of the post-decay state. We show that it is characterized by spatially inhomogeneous 
order parameter, bearing similarities to Larkin–Ovchinnikov (LO)39 or Fulde–Ferrel (FF)40 type oscillations. 
Upon introducing another degree of freedom to the problem in the form of spin imbalance, the post-decay state 
indeed acquires properties as predicted for spin-imbalanced  systems41–44, although the final state corresponds 
to an excited state.

Method and framework
We employ the Density Functional Theory (DFT) formalism to study the properties of the amplitude mode. 
Many variants of DFT methods exist; here we utilize the one known as Superfluid Local Density Approxima-
tion (SLDA), which has been specifically designed to simulate fermionic superfluid systems where interparticle 
interactions have short  range45, 46. It is a microscopic theory where the system is described in terms of fermi-
onic quasi-particles, defined through Bogoliubov amplitudes: ϕnσ (r, t) = [unσ (r, t), vn−σ (r, t)]T , where σ = ± 
indicates spin projection. Precisely, vnσ and unσ stand for amplitude probabilities for n-th state to be occupied 
by a particle and a hole with spin projection σ . Formally, the equations of motion have the same structure as 
Bogoliubov-de Gennes (BdG); however they are obtained as a result of energy minimization expressed as a 
functional of several densities characterizing fermionic superfluid:

The energy density E depends on the following densities (we skip position and time dependence for brevity):

• Normal densities 

• Kinetic densities 

• Current densities 

• Anomalous density 

The Fermi–Dirac distribution function fβ(E) = 1/[1+ exp (βE)] accounts for temperature T ( β−1 = kBT ), 
although in this work we mainly focus on the T → 0 limit. The densities are constructed from the quasiparticle 
amplitudes up to a certain energy cut-off Ec . This procedure accounts for regularization of divergences appear-
ing due to short-range  interactions47. The minimization yields static equations for the quasi-particle amplitudes 
(hereafter we use units where m = � = 1)

Note that there are two sets of equations for σ = ± . The time-dependent variant is obtained by replacing 
Enσ → i ∂

∂t . Chemical potentials, denoted as µσ , are used to control particle numbers Nσ =
∫

nσ (r)dr associ-
ated with a given spin component. The time-dependent formulation conserves the total number of particles of 
each species Nσ (t) = const . The single particle Hamiltonian hσ and the pairing potential � are defined through 
functional derivatives of the energy:

The pairing potential is a complex field �(r, t) that serves as the order parameter. In addition we have added an 
external pairing potential δ�ext that will be used to generate a perturbation when studying the stability of the 
amplitude mode. Due to symmetry of Eqs. (6) one needs effectively a solution for either σ = + or σ = − . The 
other one can be obtained through symmetry transformation (see e.g.48).

The energy functional defines the system. In almost all cases devoted to the studies of the Higgs mode in 
Fermi systems, the mean-field BdG equations were used. They are valid for weakly interacting Fermi systems, 
and upon specific choice of the energy density functional
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the formalism presented here becomes identical to the BdG. The single particle Hamiltonian and the pairing 
potential are then of the form:

The advantage of a description based on DFT is that it allows to incorporate so-called “beyond mean-field” 
effects, while keeping the numerical complexity at a level comparable to the mean-field methods. Here we use 
the functional known as  SLDAE49, which has the generic form

where n = n+ + n− and eF = k2F
2 = 1

2 [3π
2n]2/3 is the associated Fermi energy. The dimensionless coupling func-

tions A, B and C are constructed in such a way to ensure the correct reproduction of thermodynamics quantities 
for a uniform system (equation of state, chemical potential, pairing gap, effective mass) over the entire interaction 
regime from weak (BCS regime) to strong (unitary Fermi gas regime). Their explicit forms are given in  paper49. 
The SLDAE functional has been designed to provide accurate results for spin-symmetric systems ( N+ = N− ), 
however it can be extended to spin-imbalanced systems as well. In this paper we will show a few selected results 
for spin-imbalanced systems ( N+ �= N− ). Since we are interested in qualitative aspects for such cases, we use the 
functional without further adjustments (in the same spirit as it is usually done with BdG approach). Note that 
further optimizations of the functional towards spin-imbalanced systems can be performed in a similar way as 
in Refs.46, 50, but from the perspective of this work it is not needed.

A quantity of special importance in the context of this work is the order parameter �(r, t) . It is a complex 
function, and both attributes (magnitude and phase) carry physical information. The amplitude/Higgs mode 
corresponds to uniform oscillations of the absolute value across the whole system. Thus, we consider a uniform 
system (no external trapping potential) in which we induce the mode through the interaction quench method 
(see next section for details). At the beginning of each simulation the density distributions (2–5) are uniform 
and may depend on time only. In order to study the stability, we solve the equations of motion on spatial grid of 
size Nx × Ny × Nz with lattice spacing dx = dy = dz = 1 (definition of the length unit). The lattice spacing sets 
a natural cut-off energy scale Ec ≈ k2c

2 = π2

2  . Most of the calculations will be presented for the constrained case, 
where we impose translational symmetries along y and z directions. It implies that quasiparticle wave-functions 
have a generic structure that can be written as

where ky and kz take discrete values of multiples of 2π/Ny and 2π/Nz , respectively. Under this assumption during 
the evolution (breaking of translational symmetry), the densities and the order parameter can acquire depend-
ence along the x direction only. To test the robustness of conclusions obtained from quasi-1D simulations, we 
have also performed additional simulations for quasi-2D case:

as well as fully unconstrained simulations in 3D. We specifically focus on the large amplitude mode induced in 
the strongly interacting regime ( |akF| → ∞ ), as the stability for this case has not been discussed in the literature 
to date. For the computation we use W-SLDA  Toolkit51–53. All technical parameters, needed to restore the calcula-
tions presented below are included into reproducibility packs (See supplementary files added to this submission). 
They also contain detailed information about the numerical setup and computation process.

Generation of the Higgs mode via the interaction quench
Rapid quenching of the interaction strength a(initial)kF → a(final)kF is the standard method of inducing the Higgs 
 mode10, 15, 17, 25, 29, 54. After the generation of the Higgs mode, it is interesting to test its stability with respect to ran-
dom perturbation. The perturbation is realized by adding the weak external potential δ�ext(r, t) . Consequently, 
in our simulations the emerging time evolution can be divided into 4 parts.

Initial configuration: ( −∞ < t ≤ t0)
The homogeneous gas characterized by s-wave scattering length a0 and (normal) density n0 = k3F/(3π

2) is 
in its ground state. We consider spin-symmetric simulations ( N↑ = N↓ ), and only in some cases we start 
simulations from states corresponding to spin-imbalanced ( N↑ �= N↓ ) systems.
Quenching of interaction: ( t0 < t ≤ tq)
The initial state is driven adiabatically towards the new interaction strength a0kF → a1kF in the time period 
t0 < t ≤ t1 , and then quasi-instantaneously driven back to the initial value a1kF → a0kF in the time inter-
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val t1 < t ≤ tq , where (t1 − t0) ≫ (tq − t1) . Explicitly, the time-dependent s-wave scattering length is para-
metrized as follows: 

 such that a(t) and the first derivative ∂ta(t) are continuous, leading to t1 − t0 = π/ω1 and tq − t1 = π/ω2 . 
Using this parametrization, the limit ω1 ≪ eF corresponds to an adiabatic process, i.e. a small energy transfer 
to the system. On the other hand ω2 � eF generates the rapid quench.
Higgs oscillations: ( tq < t ≤ td)
The interaction quench induces the Higgs oscillations with wave vector k = 0 (uniform oscillations) and 
frequency � . Thus, observables do not exhibit position dependence: for example, for the pairing field we 
have |�(x, t)| → |�(t)| . In order to investigate the stability of this mode, we add a weak perturbation to the 
system δ�ext(r, t) once the oscillations have developed. We have tested the stability of the Higgs mode with 
respect to two types of perturbation: local in momentum space and spatially localized. The explicit forms of 
perturbations read as: 

1. δ�
(1)
ext(x, t) = ǫ exp(ikx) exp(−(t − tp)

2/2σ 2) (induced decay by spatial modulation)
2. δ�

(2)
ext(x, t) = ǫδ(x) exp(−(t − tp)

2/2σ 2) (induced decay by Dirac-delta perturbation)

 where ǫ ≪ eF (weak perturbation) and σ eF � 1 (applied at much shorter times scale as the expected time 
scale of the Higgs oscillation). In numerical realization the Dirac function δ(x) is approximated by narrow 
Gaussian function.
Higgs mode decay: ( td < t ) After some time td we find that the Higgs mode decays and an inhomogeneous 
phase emerges. Namely, the observables depend now on position and time, for example for the quasi-1D 
calculations: n(x, t)  = n0 and �(x, t)  = �(t).

In Fig. 1 we present an example time evolution of the absolute value of the order parameter for a selected point 
in space |�(x = 0, t)| . The described stages of the numerical experiment can be easily identified.

As it will be shown in this paper, the Higgs mode is dynamically unstable, i.e. small perturbations amplify 
and destroy the mode. We note that even in the case of δ�ext(x, t) = 0 (no external perturbation) the mode 
decays spontaneously after some time tmax . In such case, the mode destabilizes due to numerical noise, since we 
integrate the equations of motion numerically with some precision. When measuring the lifetime of the Higgs 
mode, defined as the time from the weak perturbation to the decay, we limit our considerations to time intervals 
t < tmax to rule out complications related to imperfections of the numerical integration. We recognize that in 
the case of studies of the dynamical stability of physical phenomena by means of computational physics, code 
quality is an important issue. We note that the accuracy of time integrator implemented within W-SLDA, which 
is multistep Adams-Bashforth-Moulton of 5th order, has been tested in  work55. Namely, the dependence of the 
results with respect to the perturbations of the initial states for cases where no dynamical instability is expected, 
was tested. Moreover, the W-SLDA Toolkit has been applied to a variety of problems. Results were documented 
in  papers42, 44, 51, 56–59. We have confirmed stability of the results with respect to size of the integration time step dt 

(13)a(t) =







a0 +
a1 − a0

2
[1− cosω1(t − t0)], t0 < t ≤ t1

a1 +
a0 − a1

2
[1− cosω2(t − t1)], t1 < t ≤ tq

Figure 1.  The numerical experiment investigated in this work. The Higgs mode is induced in the uniform 
system by quenching the interaction strength in the time interval t0(= 0) < t ≤ tq . The mode persists for some 
time ( tq < t ≤ td ), after which it decays into a nonuniform state ( t > td ). The red line presents the absolute 
value of the pairing field for a selected point at the center of the lattice, |�(x = 0, t)| , normalized to the initial 
value. The presented case corresponds to a large amplitude Higgs mode.
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(all presented here results were obtained with dt = 0.0025e−1
F  ). We have also checked the stability of the results 

with respect to the lattice size. For the quasi-1D calculations (see "Lifetime of the Higgs mode and Properties 
of the post-decay state" Sections), we have checked that conclusions are stable if we vary lattice size from 256 to 
1024. Thus we regard the code as well tested, and the observed instability in the simulations is expected to be due 
to intrinsic properties of the studied problem, not due to artifacts generated by the numerical implementation.

Properties of the Higgs mode oscillations
We start by examining the properties of the amplitude mode. The aim of this section is to demonstrate that the 
interaction quench method induces the Higgs mode, having the well known properties. The mode is typically 
regarded as as oscillating system in the effective potential in the form of a Mexican hat:

The solutions for a classical particle moving in such potential are well  known1, 60. In the case of small amplitude 
oscillations around the minimum of the potential �0 = ±µ/

√
ǫ we have:

where ω is the oscillator’s frequency, φ is its phase, and A(t) is the amplitude, which in general may depend on 
 time13, 26. Moreover, for the small amplitude Higgs mode, the oscillation frequency is related to the equilibrium 
value of the pairing gap �ω = 2�0 . The oscillation of arbitrary amplitude are expressed by delta amplitude Jacobi 
elliptic function dn:

where �(t0) = �0 = 0.44eF (for strongly interacting Fermi gas) and the elliptic modulus parameter k is related 
to maximum and minimum values of the paring field during the oscillations:

 
In Fig. 2 we compare the numerically extracted time dependence of the pairing field �(t) after the interac-

tion quench with analytic predictions. The time-dependent variant of Eq. (6) has been solved numerically on a 
lattice of size 256× 32× 32 within quasi-1D geometry, see Eq. (11). In both cases, small and large amplitude 
oscillations, we observe a close match with analytic predictions. In particular, the well known property of the 
small amplitude Higgs mode, ω = 2�0 , has been reproduced with very good accuracy. The large amplitude mode 
oscillates with lower frequency � ≈ �0 and the parameter k = 0.9935 provided by the fit also agrees well with 
the expected value k = 0.9952 obtained by applying Eq. (17) . These findings are fully consistent with previous 
works, such  as10, 13, 26.

(14)V(�) = −
1

2
µ2|�|2 +

1

4
ǫ|�|4.

(15)�(t) = �0 + A(t) sin(ωt + φ),

(16)|�(t)| = |�(t0)|dn(�t + φ, k),

(17)k ≈ 1−
(

min[�(t)]
max[�(t)]

)2

Figure 2.  Time evolution of the pairing field (order parameter) magnitude in the center of the simulation 
domain �(x = 0, t) for times corresponding to the Higgs oscillation regime. (a) Large amplitude Higgs 
oscillations (blue line), induced by rapidly quenching the interaction from a1kF = −0.1 to a0kF = −10 . They 
are well reproduced by elliptic function (16) with � = 0.95�0 and k = 0.9935 (orange line). (b) Small amplitude 
Higgs mode (blue line), induced by rapidly quenching the interaction from a1kF = −5 to a0kF = −10 . The 
oscillation frequency is ω = 2�0 (orange line).
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Lifetime of the Higgs mode
The Higgs mode is attributed to oscillations of the amplitude of the order parameter, while the density of the 
system remains unchanged. Indeed, when the mode is induced in a uniform system, n(r, t) stays constant. The 
appearance of inhomogenities in the density is associated with the decay of the Higgs mode. To quantify the 
magnitude of spatial variations of the density we compute:

The decay time td is defined as the time for which the normalized standard deviation exceeds a threshold value 
σ [n](t > td) > γ = 0.01 . The dynamics of real system is always attributed by stochastic fluctuations (for exam-
ple, due to thermal effects) that may amplify in time in case of unstable modes. In the numerical scenario, we 
introduce the weak external perturbation δ�ext and check if induced fluctuations amplify or decay. In the case 
of the mode studied here, we find that it is unstable. One can also induce fluctuations by adding weak external 
potential that couples to the density. The final qualitative result does not depend on the perturbation method. We 
define the lifetime of the Higgs mode as the time from the external perturbation tp to the decay td . In Fig. 3 we 
have shown induced decay by the perturbation δ�(1)

ext(x, t) . We clearly observe a sensitivity of the decay time with 
respect to the spatial modulation wavelength � ∼ 1/k . The perturbation with k = 0 (top panel) corresponds to 
preserving translational symmetry and therefore it does not have any impact on the dynamics of the system. The 
mode starts decaying due to the amplification of numerical errors only, after a time tmaxeF � 150 . On the other 
hand, perturbations corresponding to k > 0 induce a decay whose onset time td depends on the wavelength of the 
spatial modulation, see Fig. 4a. Clearly, there exist an optimal value of k (resonance) that triggers the instability 
almost immediately. The location of the optimal value depends on the interaction strength quench. For tested 
cases it is located around k/kF ≈ 0.2 to 0.4. In Fig. 4b we show the Fourier spectra of the order parameter after 
applying the perturbation, but before the decay. It is seen that the uniform Higgs mode ( k = 0 ) first decays into 
two modes with +kd and −kd . The diagram representing schematically the decay of small amplitude mode is 
shown in inset of Fig. 4b. 

Instead of using a perturbation with well defined wave length 2π/k , one can instead use a spatially localized 
perturbation such as δ�(2)

ext ∼ δ(x) =
∫

dk
2π e

ikx . In numerical realization, we model the δ(x) function by a narrow 
Gaussian. Similarly, we observe that the amplitude mode decays and the state after the decay is nonuniform. In 
Fig. 5 we compare spatio-temporal evolution of the order parameter after applying different types of perturbation. 
The decay dynamics depend on the perturbation type; however there are gross properties that remain unchanged. 
Namely, in the Fourier spectra of the order parameter |�(k, t)| we observe dominant wave-vectors ±kd into 
which the mode decays. These are typically in the range of 0.1 � kd/kF � 0.5 . It is comparable to the wave-vector 

(18)σ [n](t) =
√

�n2�(t)− �n�2(t)
�n�(t = 0)

, with �nk�(t) =
1

V

∫

nk(r, t) dr.

Figure 3.  Time evolution of the normalized standard deviation of density σ [n](t) and amplitude 
of the order parameter in selected point in space �(0, t) after the applied perturbation in form 

�
(1)
ext(x, t) = ǫ exp(ikx) exp

(

− (t−tp)
2

2σ 2

)

 . In these simulations the large amplitude mode is induced by rapidly 
quenching the interaction from a1kF = −0.1 to a0kF = −10 . The perturbation function parameters are 
ǫ/eF = 10−3 and σ eF = 0.5 . Each panel corresponds to various wave-vectors k, indicated on the respective 
labels. Calculations were executed with quasi-1D geometry on a lattice of size 512× 32× 32.
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associated with the coherence length scale kξ = 1/ξ = �/kF . Namely, for results presented in Figs. 3, 4 and 5 the 
wave-vector associated with the coherence length reads kξ /kF ≈ 0.22 , which translates into 0.5 � kd/kξ � 2.3.

The results obtained for the δ-kick need extra clarification (top right panel of Fig. 5). In general, one can 
expect that the fluctuation induced by a localized perturbation should propagate with speed not exceeding the 
speed of sound. Indeed in such case, we should see the perturbation only in the causality cone. It is visible only 
for times (t − tp)eF � 75 . For later times one may conclude from the graph that the causality is violated. Such a 
conclusion is incorrect. The observed effect is a numerical artifact. Namely, we model δ(x) function by narrow 
gaussian, as the numerical scheme assumes that all derivatives are continuous and smooth. This implies that our 
perturbation is not localized in practice but affects the system in the whole spatial domain.

Dzero et al.37 demonstrated that the small amplitude Higgs mode is unstable. Their result has been obtained 
within mean-field (BdG) treatment, which is valid for weakly interacting superfluid Fermi gases. In such case, 
the presence of dynamical instability was demonstrated analytically within the framework of the linear response 

Figure 4.  Panel (a): Decay time as a function of the modulation wave vector k/kF for different stregths of the 
quench; values on the label indicate the values of a1kF and a0kF = −10 is fixed. Panel (b): Fourier spectra of 
the order parameter just before the decay induced by the external modulation k/kF = 0.4 for the case with 
a1kF = −0.1 . Inset: The decay diagram for the small amplitude Higgs mode.

Figure 5.  Evolution of the order parameter in coordinate space (top row) and its Fourier spectra (bottom 
row) for perturbation δ�(1)

ext(x, t) with k/kF = 0.4 (left column) and δ�(2)
ext(x, t) (right column). The �(k = 0, t) 

component was removed from the Fourier spectra for better visibility. The amplitude of the perturbation was 
ǫ/eF = 10−3 and evolution is shown only after the perturbation is applied. Maps generated by Matplotlib 
 library61.
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theory. In the present study, we have released these constraints by considering large amplitude and strongly 
interacting regime and we have demonstrated the instability of the mode. Namely, we have shown that similarly 
to the small amplitude regime, the mode decays predominantly into a state where the spatial modulation of the 
pairing field is given by ∼ 1/kd , i.e. �(x, t) = �(t)+ A(t)[e−ikdx + eikdx] , where A(t) is the amplitude of the 
perturbation which grows rapidly in time. Consequently, this implies that after the decay the order parameter 
exhibits fluctuations of the type �(x) ∼ cos(kdx) . Indeed, in Fig. 5 (right panel) one can clearly see lines where 
|�(x, t)| = 0 (called nodal lines) for later times. These are lines where the order parameter changes sign. The 
spatial fluctuations of �(x) ∼ cos(kx) are typically regarded as a fingerprint of Larkin-Ovchinnikov (LO)  state39, 
if they emerge in spin-imbalanced system in a ground state. None of these requirements is satisfied in the cases 
discussed so far. However, it is interesting to note that the state emerging from the decay process shares similari-
ties with the exotic type of superfluidity. This issue will be discussed in more detail in next section.

Properties of the post-decay state
We now consider the properties of the state after the decay. To better visualize the typical characteristics of the 
post-decay state, we switch to a quasi-2D geometry, ansatz (12). The calculations were executed on a 64× 64× 16 
lattice. Qualitatively, we observe the same phenomena as reported above for quasi-1D cases: the mode decays to 
a state that is attributed by the non-homogeneous distribution of the order parameter. The structure of �(x, y) 
consists of regions where the phase changes by π , which are separated from each other by nodal lines defined as 
|�(x, y)| = 0 . The development of inhomogeneities of the pairing field is accompanied with spatial modulations 
of density distribution which are induced simultaneously. One needs to emphasize that it is a transient state, 
which evolves on much longer time scale (see Fig. 6a,b with comparison at different times from the perturbation). 
For later times (larger time scale than reachable in numerical computation), we expect the system to thermalize 
again to the state with uniform density distribution and the order parameter.

Interestingly, the transient state that emerges from the decay shares similarities to states as predicted for spin-
imbalanced  systems41–43. The main difference is that if the imbalance is present ( N↑ �= N↓ ), the majority particles 
tend to accumulate in the nodal regions if such are developed in the system. It can be understood from the point 
of view of the system’s energetics: not all particles can form Cooper pairs (superfluid component), and the ener-
getically lowest price is paid if we store them close to the nodal lines where the pairing correlations vanish. The 
local spin polarization, defined as p(r) = [n↑(r)− n↓(r)]/[n↑(r)+ n↓(r)] , acts as a stabilizer and converts the 
states consisting of nodal lines into meta-stable structures. Such structures, stabilized by the spin polarization, 
were recently the subject of studies where they were called  ferrons42 or ring  solitons63. The size of these grains 
depend on the global population imbalance of the system P = [N↑ − N↓]/[N↑ + N↓] . For small imbalances 
P � 10% their sizes can by of the order ∼ 10ξ , and decrease to ∼ ξ as the imbalance increases, and finally con-
verting to well known Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)  state41. Suppose we induce the Higgs mode 
in the spin-imbalanced system and let it decay, precisely in the same manner as we did for the spin-symmetric 
case. Then, we indeed find that the post-decay state is stabilized by the spin-polarization, which at time scales 
larger then the time scale associated with the Higgs mode decay evolves towards state consisting of many spin-
polarized impurities, see Fig. 6c,d. Note that just after the decay, the typical modulation wave-length for the order 

Figure 6.  (a) and (b) 2D configurations for P = N↑−N↓
N↑+N↓

= 0% , respectively after a short and long time from the 
perturbation is applied. (c) and (d): 2D configurations for P = 10% . Panels on the bottom row (rainbow palette) 
show the absolute value of the order parameter, normalized to eF ; panels on the top row (heat palette) show the 
phase of the order parameter. (e) 3D configuration for P = 5% . Upper colorbar indicates local spin polarization 
p(r) on the right panel; colorbar on the right shows the absolute value of the order parameter |�(r)| , normalized 
to eF . Inner inset shows the contour surface for which the order parameter is zero. The dimensionless size of the 
box is LkF = 64 in each direction. Maps and 3D view created by VisIt  software62.
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parameter (and also for the density) is close to the the wave-length of the fastest decaying mode. Precisely, the 
average size of the structures we observed in Fig. 6a,c translate into wave-vectors k/kF = 2π/�kF ≈ 0.2 for both 
P = 0% and P = 10% at the onset of the oscillation. Clearly, these values correspond to the minimum location 
in Fig. 4. Once the disordered structure is set by the decayed Higgs mode properties, it is driven to the new con-
figuration by effects related to dynamics of the spin polarization. They operate on longer time scales, and in large 
time scales ( teF ∼ 103 ) the polarized system evolves towards to the known from past studies  configurations41–43.

Finally, we demonstrate that the observations hold for fully 3D cases, as shown in Fig. 6e. These results were 
obtained for a lattice of size 64× 64× 64 . Similarly to the quasi-2D case, we introduce the spin-imbalance to 
the system in order to stabilize the final state. The post-decay state, at large times, consists of many bubble-like 
structures. Inside each bubble, the phase of the order parameter is shifted by π . The overall properties of the post-
decay state remain fully consistent with results obtained for simplified geometries (quasi-1D and quasi-2D). The 
insensitivity of the results at the quantitative level with respect to the computation dimensionality demonstrates 
the robustness of derived conclusions.

Conclusions
We have studied the life cycle of an ultracold atomic gas after the interaction quench from weak to strong cou-
pling. The quench applied to uniform system induces the large amplitude Higgs/amplitude mode. This mode 
turns out to be dynamically unstable and it decays to a state with spontaneously broken spatial symmetry. It is 
of a different type than discussed so far in  literature13, 26, 64, where the decay of amplitude of Higgs oscillations 
was inspected while the uniformity of the system was maintained.

The relation between frequency of the small amplitude Higgs mode and strength of the pairing correlations 
( �ω = 2�0 ) makes it a very valuable tool from the perspective of experimental measurements. For this reason, 
recent works (such  as54) focus on the stabilization of this mode. Here, and also  in37, we demonstrate that the non-
uniform state emerging from the decay of the mode can provide access to new class of states with order parameter 
that is periodically modulated in space. Such states are frequently associated with exotic types of superfluidity, 
generically related to FFLO phase—a state that is routinely discussed in the context of spin-imbalanced systems. 
Indeed, when introducing a spin-imbalance to the configuration, the states emerging from the decay consist 
of many spin-polarized  droplets41, 42. Surprisingly, experiments devoted to Higgs modes in strongly interacting 
Fermi gases may contribute to deeper understanding of exotic states emerging in superfluids.

Tunable ultracold atomic gases confined in box traps can be potentially used to verify the findings of this 
 work65. Such setups have already demonstrated their high capabilities for detecting the system’s nonuniformi-
ties. For example, there were successfully used to visualize density modulations due to the propagation of sound 
waves up to wavelengths of the order 0.1 kF66—the resolution that should be sufficient to detect predicted here 
inhomogeneities in the post-decayed state.

 Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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