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Targeted metabolomic profiling 
as a tool for diagnostics of patients 
with non‑small‑cell lung cancer
Ksenia M. Shestakova 1, Natalia E. Moskaleva 1, Andrey A. Boldin 2,3, Pavel M. Rezvanov 2,3, 
Alexandr V. Shestopalov 4, Sergey A. Rumyantsev 4, Elena Yu. Zlatnik 5, Inna A. Novikova 5, 
Alexander B. Sagakyants 5, Sofya V. Timofeeva 5, Yuriy Simonov 2, Sabina N. Baskhanova 1, 
Elena Tobolkina 6*, Serge Rudaz 6 & Svetlana A. Appolonova 2,3

Lung cancer is referred to as the second most common cancer worldwide and is mainly associated 
with complex diagnostics and the absence of personalized therapy. Metabolomics may provide 
significant insights into the improvement of lung cancer diagnostics through identification of the 
specific biomarkers or biomarker panels that characterize the pathological state of the patient. We 
performed targeted metabolomic profiling of plasma samples from individuals with non‑small cell 
lung cancer (NSLC, n = 100) and individuals without any cancer or chronic pathologies (n = 100) to 
identify the relationship between plasma endogenous metabolites and NSLC by means of modern 
comprehensive bioinformatics tools, including univariate analysis, multivariate analysis, partial 
correlation network analysis and machine learning. Through the comparison of metabolomic 
profiles of patients with NSCLC and noncancer individuals, we identified significant alterations in 
the concentration levels of metabolites mainly related to tryptophan metabolism, the TCA cycle, 
the urea cycle and lipid metabolism. Additionally, partial correlation network analysis revealed new 
ratios of the metabolites that significantly distinguished the considered groups of participants. Using 
the identified significantly altered metabolites and their ratios, we developed a machine learning 
classification model with an ROC AUC value equal to 0.96. The developed machine learning lung cancer 
model may serve as a prototype of the approach for the in‑time diagnostics of lung cancer that in the 
future may be introduced in routine clinical use. Overall, we have demonstrated that the combination 
of metabolomics and up‑to‑date bioinformatics can be used as a potential tool for proper diagnostics 
of patients with NSCLC.

In accordance with the WHO statistics, lung cancer is defined as the second most common oncological disease 
among both women and men worldwide. In 2020, 2.26 million cases of lung cancer and 1.8 million deaths were 
recorded worldwide. To date, one of the main reasons for such a high degree of severity of lung cancer is a low 
level of its diagnosis, associated primarily with the absence of clear clinical symptoms at first stages of the disease, 
as well as the complexity of pathogenesis. Approximately 80–85% of all cases associated with lung cancer are 
related to a subtype of non-small cell lung cancer (NSCLC), described in the present study.

It is well known that metabolites play an important role in the occurrence and development of oncologi-
cal  diseases1–3. Numerous studies have shown that certain endogenous metabolites or their ratios are effective 
biomarkers for lung cancer, particularly  NSCLC4,5. Moreover, abnormalities in the concentration levels of those 
metabolites may reveal metabolic perturbations in lung cancer patients, reflecting the pathological mechanism 
of the disease. In this regard, numerous biomedical studies utilize metabolomic tools for the diagnosis of vari-
ous heterogeneous diseases, including  NSCLC6,7. Metabolomics is a rapidly emerging field typically used for the 
identification and quantification of cellular metabolites. Therefore, metabolomic profiling may underline key 
factors of NSCLC development. Due to the complexity of metabolomic data, optimal information retrieval is 
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usually challenging and therefore up-to-date mathematical and computational  approaches8,9 for accurate data 
interpretation are urgently needed.

Traditional statistical methods applied to metabolomics focus on the formation of the relationships among 
dependent and independent variables, gaining meaningful statistical inferences of the measured variables with 
regard to the fact that the data are sampled from the larger  population10. In contrast, machine learning approaches 
are based on the application of ad hoc computational algorithms that are optimized or learned without the 
obligatory requirement for formal statistical  assumptions11. In the present study, we applied supervised ML 
algorithms to develop the most suitable classification model based on large-scale targeted metabolomic data for 
NSCLC diagnostics. Additionally, weighted coexpression network  analysis12,13 together with classical statistical 
analysis was applied for a deeper clarification of the nonlinear biochemical interconnections between the meta-
bolic changes and appearance of NSCLC, as well as for identification of new significant ratios of the metabolites.

Thus, the main goal of the present study was to perform a deep biochemical interpretation of lung cancer 
development as well as to create the most suitable ML model for the classification of NSCLC and NC patients 
based on the results of targeted metabolomic profiling.

Material and methods
Study design. The study involved two experimental groups: patients diagnosed with NSCLC at different 
TNM stages (n = 100) and participants without any malignancies (NC group, n = 100). Informed consent was 
obtained from all the participants involved in the study. Additional information concerning the characteristics 
of participants is presented in Table 1.

The participants selected for the NSCLC group did not undergo antibiotics, pre- and/or probiotic prepara-
tions for 3 months and signed an informed consent form. The exclusion criteria for the noncancer participants 
included age under eighteen, the presence of oncological and severe somatic diseases, diabetes mellitus, any 
diseases of the gastrointestinal tract, any acute respiratory viral diseases, psychosis, alcoholism, drug addiction, 
pregnancy and lactation. For the comparative analysis, approximately 2.5 mL of blood sample was drawn in 
vacutainer tubes before the treatment of all the study participants after overnight fasting. Furthermore, samples 
were centrifuged at 10,000 rpm to extract serum and stored at -80 °C.

Ethical approval. The study was approved by ethical committee of Sechenov University (Document #25-
20, September 2020) and ethical principles of medical research involving humans stated in the Declaration of 
Helsinki.

Chemical reagents. Standard solutions for amino acid, tryptophan metabolism intermediates and acyl-
carnitine profiling, as well as methanol, formic acid, bovine serum albumin (BSA), sodium chloride, 6-hydroxy 
nicotinic acid, 3-indole acrylic acid, neopterin, biopterin, 1-tryptophan, and ascorbic acid were received from 
Sigma‒Aldrich (USA). Acetonitrile was received from Chromasolv® (Sigma‒Aldrich Chemie GmbH, Buchs, 
Switzerland). Ultrapure water was received through the Millipore Milli-Q purification system (Millipore Cor-
poration, Billerica, MA). Isotope-labeled standard solutions for tryptophan metabolism intermediate profiling 
were received from Toronto Research Chemicals (USA). Isotope-labeled standard solutions for metabolomic 
profiling were received from the MassChrom Amino Acids and Acylcarnitines Non Derivatized 57,000 Kit 
(Chromsystems, Germany).

Metabolomic profiling. Sample preparation and instrumental analysis for the metabolic profiling of tryp-
tophan metabolites, amino acids, acylcarnitines and NO-cycle metabolite panels were carried out in accordance 
with the methods presented in the referenced  literature14. The list of the analyzed metabolites is presented in 
Supplementary material Table S1.

Method validation. The applied analytical methods of wide-scale targeted metabolomic profiling were fully 
validated in accordance with the internal laboratory protocols for validation of bioanalytical methods developed 
based on the US FDA and EMA  guidelines15,16. Validation included the assessment of selectivity, linearity, accu-
racy, precision, matrix effect and stability. Quality control (QC) samples were utilized for the assessment of 
analysis reproducibility. Calibration parameters were based on the analysis of eight calibrators in three replicates 
during three analytical runs. Calibration curves were built using weighted linear regression models. Assessment 
of the inter- and intra- precision and accuracy was performed using QC samples in six replicates during three 

Table 1.  Characteristics of the subjects included in the study.

NSCLC patients Non-cancer patients

Total number (M/F) 100 (76/24) 100 (21/79)

Age (range) 36–81 23–70

Smoking (%) 45 37

Disease stage (%)
I—6%
II—22%
III—32%
IV—10%

–
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analytical runs. Stability was assessed using working solutions placed at room temperature (21 ± 3 °C), biological 
samples placed in an autosampler at (10 ± 0.5 °C) for 24 h and biological samples placed at (35 ± 1 °C) for 20 days. 
The matrix effect was assessed using QC samples at high and low concentration levels.

Statistical analysis and development of the machine learning models. Univariate statistical anal-
ysis was performed using the Stats package (Python software)17. First, the Shapiro–Wilk test was used to check 
the distribution of the variables. Further analysis of variance was conducted using Student’s T-test or the equiva-
lent nonparametric Mann‒Whitney U-test (p value < 0.05). Additionally, the diagnostic accuracy of the single 
metabolites was assessed through calculation of the areas under the curve (AUCs) obtained from the receiver 
operating characteristic curve analyses of the NCSLC and NC groups.

Multivariate analysis, including unsupervised principal component analysis (PCA) and supervised orthogonal 
partial least squares discriminant analysis (OPLS-DA), was performed using SIMCA software (version 14.0, 
Umetrics, Umeå, Sweden). The first two principal components (PCs) utilized for the PCA model represented 
orthogonal transformation of the analyzed metabolites in linearly uncorrelated variables. Based on further OPLS-
DA, metabolites with variable importance in the projection (VIP) > 1 were selected as the most discriminative. 
The combination of the results of the VIP score, P-value and AUC ROC value served for the formation of the 
preliminarily selected metabolic biomarkers.

Debiased sparse partial correlation (DSPC) network analysis was performed using the desparsified graphical 
lasso modeling procedure. The modeling strategy is based on the fact that the number of connections between 
metabolites is less than the available sample size, so the true network of partial correlations is sparse. DSPC 
rebuilds the graphical model by providing partial correlation coefficients and p values for each pair of features. 
When using a smaller number of samples, this analysis allows us to detect connections between a large number 
of metabolites. The results of the analysis are demonstrated in the form of weighted networks. The nodes of this 
network are metabolites, whereas the edges are partial correlation coefficients or associated P values.

To assess the diagnostic ability of the metabolite combinations, ML-based classification models were devel-
oped. To elucidate the most appropriate algorithm and metabolite combination, different ML algorithms were 
generated using the following:

• absolute concentrations of the preliminarily selected metabolites in NSCLC and NC patient groups
• absolute concentrations of the preliminarily selected metabolites and significant metabolic ratios selected 

through correlation network analysis in NSCLC and NC patient groups

The datasets were randomly split into training (80%) and validation (20%) datasets using the Stratified K 
Fold Cross Validation method that served to evaluate the generalization ability of the models. The validation set 
was utilized for the quality assessment of the models. The assessment was performed using the following quality 
metrics: accuracy, precision, area under the curve of the receiver operator characteristics (AUCROC), and error 
matrix. The diagnostic accuracy of the developed ML model was further compared with the top five preliminarily 
identified biomarkers with the best predictivity values using AUC ROC analysis.

The open-source python scripts are available at https:// github. com/ FimaL ab/ lung_ cancer.

Results
The present study comprised a total of 200 plasma samples from NSCLC and NC patients (Table 1). Figure 1 
represents the workflow scheme characterizing the performed targeted metabolomic approach and further bio-
informatic analysis that served for the identification of the most significantly altered metabolites as well as for the 
development of the highly accurate diagnostic model of NSCLC. Metabolic profiling that included the analysis 
of 63 metabolites was identified through the application of quantitative HPLC‒MS/MS analysis. Furthermore, 
a global statistical bioinformatic analysis, consisting of correlation network analysis, univariate analysis, mul-
tivariate analysis and supervised machine learning modeling used to select the most appropriate classification 
model, was performed.

Univariate analysis of the metabolomic results. The final dataset of the received metabolomic profil-
ing results is presented in Supplementary material file 1. Comparison between the NSCLC and NC groups of 
patients using the nonparametric Mann‒Whitney U-test resulted in the identification of 38 metabolites with p 
values < 0.05. The box plots of these significantly altered metabolites related to NO cycle intermediates, amino 
acids, tryptophan metabolism intermediates and acylcarnitine profiles are depicted in Supplementary material, 
Fig. S1a–d, respectively.

Furthermore, the predictive ability of the individual metabolites in the discrimination of NSCLC and NC 
patients was assessed using AUC ROC analysis. As a result, twenty-eight metabolites demonstrated AUC scores 
higher than 0.65 and were considered significant. The highest AUC values were obtained for ADMA, SDMA, 
aspartic acid, C6-DC, and tryptamine (AUC > 0.75), which were further utilized as individual diagnostic markers.

Based on the results of the full profiling, an unsupervised PCA was constructed. Thus, a four-component 
PCA model was obtained with the parameters stated as follows: R2X = 0.398; Q2 = 0.145. The PCA score plot 
(Supplementary material, Fig. S2) shows relative separation between the patient groups. It interprets general 
differences in the metabolomic profiles between NSCLC and NC groups.

For better specification of the metabolic alterations associated with NSCLC, the OPLS-DA model was built 
comprising one predictive and five orthogonal components (R2Xcum = 0.78; R2Y = 0.72; Q2 = 0.629) (Supple-
mentary material, Fig. S3). Based on this model, VIP scores were calculated and later used for the analysis of the 

https://github.com/FimaLab/lung_cancer
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loadings reflecting the effect of each variable on the  response18. Thus, 27 metabolites with VIP > 1 were selected 
as significant (Fig. 2).

Table 2 represents the information on the 27 significantly altered metabolites that differed between NSCLC 
and NC patient groups and was extracted based on their FDR-corrected p value, AUCROC, Youden index and 
VIP score. The box plots of these **significantly changed metabolites are depicted in Fig. 3a–d.

Correlation network analysis. Additionally, correlation network analysis of the received results was 
conducted to facilitate nonlinear interconnections between the metabolites. Debiased sparse partial correlation 
(DSPC) was applied to lung cancer and noncancer patients separately and performed by  Cytoscape19. The data 
matrix with experimental measurements was uploaded into the Correlation Calculator. The program performs 
auto scaling and Pearson’s correlation analysis. Data were selected by setting a Pearson’s correlation coefficient 
threshold ± 1 and passed to DSPC. The result was visualized in  Metscape20. The width of edges is based on 
adjusted p- values with a range of 0 — 0.2.

Figure 4A,B represent the results of the Debiased Sparse Partial Correlation Network analysis of the profiled 
metabolites in the NC and NSCLC patients, respectively. Thus, the nodes correspond to the metabolites, and 
edges connect nodes if the corresponding metabolites are related.

In accordance with the correlation network analysis, we identified four modules of metabolites in the diseased 
group of patients and five modules in the noncancer patient group (the modules are matched with a stroke line). 
Moreover, it was found that the main hub metabolites in the diseased group included C0, C2, serine, threonine, 
xanthurenic acid, SDMA and serotonin. Additionally, based on the conducted correlation analysis, significantly 
altered ratios of the metabolites were found (Table 3).

The boxplots of the significantly altered ratios are presented in Fig. 5.
The diagnostic performance of single metabolites does not usually match high levels of accuracy due to the 

strong biological variability of their absolute concentrations in blood. Therefore, to develop sensitive and accu-
rate clinical prediction models, more comprehensive approaches need to be utilized. For this purpose, machine 
learning (ML) tools represent a unique opportunity for the development of supervised classification models 
based on the overall quantitative assessment of the key metabolic alterations in the studied biological fluids.

Figure 1.  A flowchart depicting the outline of the study, characterizing the performed targeted metabolomic 
approach and further bioinformatic analysis.
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Figure 2.  VIP score plot of the OPLS-DA model. The VIP score represents the overall contribution of a variable 
to the model and is calculated as a weighted sum of the squared correlations of the OPLS-DA components and 
the original variable.

Table 2.  Significantly altered metabolites with corresponding AUC scores, Younden index, P-value and VIP-
score.

Metabolite Metabolomic panel AUC score Younden index P-value VIP score

1 ADMA Urea cycle 0.80 0.51641  < 0.00001 2.27

2 Asp Amino acids 0.76 0.58881  < 0.00001 1.84

3 C6-DC Acylcarnitines 0.76 0.54105  < 0.00001 1.67

4 Tryptamine Tryptophan metabolism 0.76 0.54709  < 0.00001 1.85

5 SDMA Urea cycle 0.75 0.46616  < 0.00001 1.88

6 Indole-3-carboxaldehyde Tryptophan metabolism 0.74 0.64726  < 0.00001 1.71

7 Orn Amino acids 0.73 0.61618  < 0.00001 1.63

8 Phe Amino acids 0.70 0.5775  < 0.00001 1.48

10 C16-1 Acylcarnitines 0.69 0.54058  < 0.00001 1.34

11 Cit Amino acids 0.69 0.58911  < 0.00001 1.47

12 Indole-3-propionic acid Tryptophan metabolism 0.69 0.615  < 0.00001 1.05

13 C5-OH Acylcarnitines 0.68 0.54112  < 0.00001 1.32

15 C0 Acylcarnitines 0.68 0.59459  < 0.00001 1.34

16 Leu Amino acids 0.68 0.50.641  < 0.0001 1.24

17 C16-1-OH Acylcarnitines 0.67 0.54207  < 0.0001 1.17

18 Ile Amino acids 0.67 0.53259  < 0.0001 1.14

19 C16 Acylcarnitines 0.66 0.53065  < 0.0001 1.16

20 C18-OH Acylcarnitines 0.66 0.54106  < 0.0001 1.20

21 Quinolinic acid Tryptophan metabolism 0.66 0.56592  < 0.0001 1.07

22 Choline Urea cycle 0.66 0.50.109  < 0.001 1.16

23 Lysine Amino acids 0.65 0.52766  < 0.001 1.20

24 Proline Amino acids 0.65 0.49426  < 0.001 1.19
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ML algorithms such as random forest, logistic regression, gradient boosting or support vector machine repre-
sent a viable alternative to a multivariate OPLS-DA method in the analysis of metabolomics data. In the present 
study, we assessed the diagnostic performance of the supervised ML-based models based on the following:

• the absolute concentrations of the preliminarily selected metabolites (Table 2);
• the absolute concentrations of the preliminarily selected metabolites (Table 2) and metabolite ratios (Table 3).

For each dataset, different ML-based algorithms were applied, including logistic regression, random forest 
(RF), support vector classifier (SVC), and gradient boosting classifier (GB).

The performance of the models was tested through the application of different quality control metrics: accu-
racy, confusion matrix, AUCROC, sensitivity and specificity. The results of the assessment for the applied ML 
algorithms using the datasets consisting of the selected metabolites and selected metabolites with the selected 
metabolic ratios are presented in Tables 4 and 5, respectively.

Figure 3.  Box-plots of the preliminary selected significantly changed metabolites: (A)—NO-cycle 
intermediates; (B)—amino acids; (C)—Acylcarnitines; (D)—tryptophan metabolism intermediates. 
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.

Figure 4.  (A)—Correlation network obtained by DPSC algorithm using metabolites from lung cancer patients. 
(B)—Debiased Sparse Partial Correlation network constructed by using metabolites of the non-cancer patients. 
The size of the node represents the number of connections with other nodes. Width of edges is based on 
adjusted p-values. Colors of nodes are related to the corresponding metabolic panels of the metabolites.
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In both datasets, an algorithm of regularized logistic regression was found to be the most appropriate (Sup-
plementary material, Fig. S4, S5). In general, binary classification models based on logistic regression algorithms 
commonly utilize the sigmoid function to a linear equation that outputs a range of values between 0 and 1 and are 
later used for dividing data into two classes. Furthermore, to determine the best diagnostic panel, we compared 
the diagnostic accuracy of the single top significant metabolites extracted through univariate analysis, as well as 
the two logistic regression models described above. Figure 6 illustrates a comparison of the AUC ROC curves 
of the built models and individual metabolites.

The AUC value of the model comprising the selected metabolites and their metabolite ratios was 0.95, whereas 
the model including only the selected metabolites was 0.88. At the same time, the AUC values of the individual 
most significantly altered metabolites were between 0.75 and 0.80.

Table 3.  Significantly altered ratios of the metabolites identified through the correlation analysis.

Metabolite AUC score Younden index p-value

serotonin/HIAA 0.77 0.623387  < 0.00001

Xanthurenic acid/C6-DC 0.74 0.620732  < 0.00001

Serine/Aspartic acid 0.72 0.598536  < 0.00001

Tyrosine/tryptophan 0.71 0.534586  < 0.00001

Phenylalanine/Tyrosine 0.70 0.539697  < 0.00001

Threonine/C0 0.70 0.598083  < 0.00001

Xanthurenic acid/C5-1 0.69 0.597235  < 0.00001

Threonine/Proline 0.69 0.525804  < 0.00001

SDMA/C2 0.67 0.539809  < 0.00001

Citrulline/C8-1 0.66 0.514331  < 0.0001

Figure 5.  Ratios of the metabolites that significantly distinguished the NSCLC and the NC patient groups.

Table 4.  Quality metrics of the ML-algorithms applied to the selected metabolites.

Algorithm Accuracy

Confusion matrix 
(tp, fp,
tn, fn) AUC ROC Sensitivity Specificity

Logistic regression
(’C’—1.44, ’penalty’—’l1’, ’solver’—’liblinear’) 0.79

95 23
0.88 0.80 0.80

23 77

Support vector machine
(C’—1, ‘gamma’—0.1) 0.78

102 32
0.86 0.86 0.76

16 68

Random forest
(’criterion’: ’entropy’, ’max_depth’: 10, ’max_features’: ’log2’, ’n_estimators’: 100) 0.77

94 24
0.87 0.80 0.80

24 76

Gradient boosting
(‘learning_rate’ : 0.5, ’loss’: ’exponential’, ’max_features’: ’log2’, ’n_estimators’: 50, 
’subsample’: 0.6)

0.76
93 28

0.83 0.79 0.77
25 72
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Discussion
Uncertainty in the etiology and mechanisms of lung cancer forces researchers from the biomedical field to 
develop novel strategies for deeper investigation. Metabolomics, as one of the OMIC technologies, provides an 
opportunity to uncover complex tumor-associated changes in a wide variety of quantitatively measured small 
molecules using a data-driven profiling strategy.

Because the sample size of the presented metabolomic study was relatively small, especially in comparison 
with the number of quantified metabolites, we assessed the metabolic pathway/set-wide differences between 
NSCLC patients and noncancer individuals to obtain our results. There were two complementary analyses con-
sisting of a novel agnostic approach using correlation network analysis and common analysis that incorporates 
common knowledge on metabolic pathways.

Study of the biological role of the metabolites included in the final novel metabolic panel makes it possible 
to uncover new aspects and patterns of lung cancer and provides deeper characterization of the mechanisms 
associated with disease progression.

Meaningful differences in concentration levels of the amino acids found in serum samples of patients with 
NSCLC compared to the NC individuals included changes in the levels of aspartic acid, leucine, isoleucine, 
phenylalanine, citrulline and ornithine. Generally, such perturbations in the concentration of blood amino acids 

Table 5.  Quality metrics of the ML-algorithms applied to the selected metabolites with ratios.

Algorithm Accuracy

Confusion matrix 
(tp fp
fn tn) AUC ROC Sensitivity Specificity

Logistic regression
{’C’: 6.16, ’penalty’: ’l1’, ’logreg__solver’: ’liblinear’} 0.88

107 16
0.95 0.91 0.87

11 84

Support vector machine
{’C’: 1000.0, ’gamma’: 0.001, ’kernel’: ’sigmoid’} 0.84

102 20
0.92 0.86 0.84

16 80

Random forest
{‘criterion’: ’gini’, ’max_depth’: 3, ’max_features’: ’sqrt’, ’n_estimators’: 100} 0.80

98 20
0.91 0.83 0.83

20 80

Gradient boosting
{’learning_rate’: 0.1, ’loss’: ’exponential’, ’max_features’: ’sqrt’, ’n_estima-
tors’: 30, ’subsample’ : 0.3}

0.85
98 19

0.94 0.83 0.84
20 81

Figure 6.  AUC ROC curves of the built models and individual metabolites. The ML model consisting of the 
selected significantly altered metabolites and significant ratios provides the best AUC value.
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characterize tumor growth and  proliferation21. The identified changes in the amino acid profile were mainly 
associated with the Krebs cycle and acetyl coenzyme A. The Krebs cycle is one of the central elements of cell 
biosynthesis.

Carnitine and acylcarnitines play a significant role in the energy and mitochondrial metabolism of fatty 
acids as well as in the regulation of free coenzyme  A22. Carnitine and acylcarnitines are involved in the trans-
port of fatty acids for β-oxidation in the mitochondrial matrix. Previously, abnormal amplification of fatty acid 
β-oxidation was found in NSCLC patients, presumably reflecting the proliferation, survival, drug resistance 
and metastasis processes of cancer  cells23. At the same time, while short-chain fatty acids may freely diffuse 
through the interior side of the mitochondrial membrane, middle- and long-chain fatty acids are transported by 
acylcarnitines. Metabolic reprogramming of cancer cells affects acylcarnitine concentrations in blood. Cancer 
cells utilize acylcarnitines for the regulation of energy and synthesis of metabolic intermediates for more rapid 
 proliferation24. Therefore, the overall tendency for the elevation of long-chain acylcarnitines in NSCLC patient 
blood compared to that of NC individuals identified in the present study may be associated with the enhanced 
β-oxidation of fatty acids. Despite the fact that acylcarnitine concentration in plasma does not fully reflect its 
metabolism in tissues, it apparently represents the block or inhibition of the overall fatty acid circulation in the 
body, which in this case is not controlled by the common homeostasis mechanisms. Interestingly, lower levels of 
hydroxylated long-chain acylcarnitines were identified in NSCLC patients than in noncancer individuals. This 
may characterize inhibition of hydroxylation in long-chain acylcarnitines that needs further exploration. At the 
same time, short-chain acylcarnitines significantly altered in the presented research are known as intermediates 
of BCAA metabolism and are also strongly affected in NSCLC patients.

The arginine biosynthetic pathway plays a crucial role in different pathophysiological mechanisms, such as 
cell signaling, immune response and protein  synthesis31–33. In the present study, arginine pathway intermediates, 
including ornithine, citrulline, ADMA and SDMA, were significantly elevated in the blood of NSCLC patients. 
ADMA and SDMA are typically synthesized during protein breakdown and act as inhibitors of arginine syn-
thesis. At the same time, increased concentrations of ADMA and SDMA were found in endothelial dysfunction 
associated with different cancers and chronic  diseases34. Other significantly changed metabolites—citrulline 
and ornithine—take part in the urea cycle serving for the conversion of ammonia into urea, as well as acting 
as transcriptome reprogramming in cancer  metabolism25. Thus, we hypothesize that significant accumulation 
of ornithine and citrulline in the plasma of NSCLC patients is associated with dysregulation in the urea cycle. 
As a result, during carcinogenesis, dysregulated metabolic pathways may promote tumor survival and growth.

Intermediates of tryptophan metabolism provide complex and multifaceted effects on lung cancer cells as 
well as on cancer-associated cells in immune escape. These metabolites are responsible for oxidative stress and 
inflammation. Thus, in the present study, the accumulation of quinolinic acid in the blood of NSCLC patients 
may be explained by its ability to inhibit T and natural killer cell proliferation, which promotes tumor  growth26. At 
the same time, xanthurenic acid, another downstream metabolite of the kynurenine pathway, was downregulated 
in NSCLC patients, which complies with a previously conducted study on NSCLC  patients27. Indole tryptophan 
derivatives (indole-3-carboxaldehyde and indole-3-propionic acid) related to gut microbiota were significantly 
lowered in the blood of the NSCLC group. Previously, numerous studies showed a direct strong association of 
gut microbiota with the risks and development of lung  cancer28,29.

Overall elevation of the selected metabolites presumably represents novel therapeutic targets for the treatment 
of patients with NSCLC. Figure 7 illustrates a schematic overview of the interconnections of all significantly 
changed metabolites measured in blood samples of the NSCLC patients compared to that of the NC individuals.

In general, the metabolism of biological systems is usually represented as a network of metabolites, whose 
interconnections are predominantly based on enzymatic reactions that catalyze their  interconversions30. However, 
through application of graph theory, such metabolic networks may be utilized not only for the visualization of the 
main biochemical pathways involved in the pathogenesis of the disease but also for interpretation of nonintuitive 
mechanisms and structures of metabolic relationships.

While application of the univariate and multivariate analyses serves to identify metabolites that better dis-
criminate the studied groups, in many cases they analyze perturbations only in fragmented parts of the whole 
system that may result in the loss of the important nonlinear information extracted from the complex metabo-
lomic data. The information gained from the correlation network analysis may show associations between dis-
tantly located (from a biochemical point of view) metabolites. It may underline complex and full information 
on interactions among metabolic pathways and associated biological effects on a systematic level. Moreover, this 
method allows the identification of highly connected hub metabolites (nodes) that may more likely become new 
relevant biological markers.

In the present study, correlation network analysis was performed using the DSPC method, which demon-
strated significantly different interconnections of the analyzed metabolites. We may underline the relatively 
unchanged connections in medium- and long-chain acylcarnitines and branched chain amino acids (valine, 
leucine, isoleucine) between NSCLC and NC patients. At the same time, major perturbations were found in the 
amino acid profile, where in the diseased group, the number of new interconnection bonds was significantly 
altered, forming two main hubs—serine and threonine. We hypothesize that carnitine (C0) and acetylcarnitine 
(C2) play crucial roles in the development of NSCLC, as they become main metabolic hubs connecting trypto-
phan metabolism intermediates, long-chain acylcarnitines and amino acids in the lung cancer group. According 
to the correlation analysis, several changes were also found among tryptophan catabolites. Thus, whereas in 
the NC patients, metabolites from this panel were separated from other modules, in the case of NSCLC, they 
showed a strong correlation with short-chain acylcarnitines through the connection with xanthurenic acid. 
Moreover, the concentration ratios of xanthurenic acid with C5-1 and C6-DC were found to be significant and 
were further utilized for diagnostic model development. As a result, the application of correlation analysis reflects 
new significant ratios of metabolites, most of which did not have significant differences in their absolute values.
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The classification models obtained through the application of machine learning methods utilize the dis-
criminative abilities of multiple combinations of metabolites. Robust and consistent ML models may provide 
new biological interpretations of the disease through enhanced and deep statistical analysis of the NSCLC and 
NC patient metabolome. Thus, the presented analysis provides an assessment of the predictive power of biofluid 
metabolomics for machine learning-based diagnostics of NSCLC. We compared the diagnostic accuracy of the 
individual most significantly altered metabolites (ADMA, aspartic acid, tryptamine, SDMA, C6-DC) with the 
diagnostic accuracy of the metabolic panel comprising multiple combinations of the selected metabolites and 
the metabolic panel comprising multiple combinations of the selected metabolites and concentration ratios 
based on correlation network analysis. We may conclude that the best diagnostic accuracy was achieved for 
the metabolomic panel of the selected metabolites and metabolic ratios. The diagnostic accuracy of the logistic 
regression method was relatively higher than that of the other four supervised ML methods across the investi-
gated quality metrics.

We have demonstrated that the ML model using absolute concentration values of the selected metabolites 
and metabolite ratios provided the best diagnostic accuracy in NSCLC patients. Single biomarkers may not have 
the ability to accurately diagnose NSCLC, whereas ML tools that use tentatively selected metabolites and their 
ratios significantly enhance the specificity of diagnostics.

Utilisation of the developed metabolic panel certainly needs to be validated in external patient cohorts as 
well as between different stages of LC. Furthermore, in the present study we did not evaluate the clinical factors 
that could influence the results obtained, such as differences in the M/F ratio of the patient groups considered. 
However, the present study provides a novel metabolic panel with significant diagnostic capabilities that may be 
suitable for future preliminary screening tests. It is suggested that future studies should also focus on the pro-
cesses associated with a deeper investigation of β-oxidation in mitochondria, with particular attention to fatty 
acid metabolism. In particular, the possible changes in the concentration of long-chain fatty acids in the blood of 
lung cancer patients and their correlation with the above-described changes in long-chain acylcarnitines could 
be addressed. Besides this, interesting findings have recently been made in relation to mitochondrial β-oxidation 
and deuterium depletion. It was found that the ratio of deuterium/hydrogen isotopes (2 H/1 H) may influence 
abnormal cell proliferation and tumour  progression35. For example, the results of the in vivo study showed that 
a low concentration of deuterium in water is able to inhibit lung tumour  growth36. In addition, the replacement 
of normal water with deuterium-depleted water (DDW) contributed to an increase in median survival time in 
patients with prostate  cancer37. Long-chain fatty alcohols as metabolites were observed to be associated with 
survival in patients with lung cancer, possibly due to the low deuterium content of ketogenic  substrates38. The 
resulting oxidation of ketogenic substrates in the low deuterium water of the TCA cycle promotes the subsequent 
synthesis of DNA with more stable hydrogen  bonds39.

Figure 7.  Scheme of the significantly altered metabolites and metabolic pathways in blood samples of the 
NSCLC patients compared to the NC individuals.
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Conclusions
The developed machine learning lung cancer model may serve as a prototype for timely diagnostics of lung cancer 
that may be introduced in routine clinical use in the future. Overall, we have demonstrated that the combina-
tion of metabolomics and up-to-date bioinformatics can be used as a potential tool for proper diagnostics of 
patients with NSCLC.

Data availability
All data generated or analyzed during this study are included in this published article, please consult Supple-
mentary Information files.
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