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Investigation of the therapeutic 
role of native plant compounds 
against colorectal cancer based 
on system biology and virtual 
screening
Abbas Alibakhshi 1,4, Rahim Malekzadeh 2,4, Sayedeh Azimeh Hosseini 2 & Hajar Yaghoobi 3*

This study investigated the anticancer effects of compounds extracted from native plants on colon 
cancer following drug–target-network analysis and molecular docking. Based on the ChEBI database, 
compounds were identified in medicinal plants and weeds in the Chaharmahal and Bakhtiari provinces 
of Iran. A drug–target network was constructed based on candidate colon cancer protein targets 
and selective compounds. Network pharmacology analysis was conducted against the identified 
compounds and subjected to molecular docking studies. Based on molecular dynamics simulations, 
the most efficient compounds were evaluated for their anticancer effects. Our study suggests that 
TREM1, MAPK1, MAPK8, CTSB, MIF, and DPP4 proteins may be targeted by compounds in medicinal 
plants for their anti-cancer effects. Multiorthoquinone, Liquiritin, Isoliquiritin, Hispaglabridin 
A, Gibberellin A98, Cyclomulberrin, Cyclomorusin A, and Cudraflavone B are effective anticancer 
compounds found in targeted medicinal plants and play an important role in the regulation of 
important pathways in colon cancer. Compounds that inhibit MIF, CTSB, and MAPK8-16 appear to be 
more effective. Additional in vitro and in vivo experiments will be helpful in validating and optimizing 
the findings of this study.

Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with vague early and late 
symptoms of anemia, weight loss, and other systemic symptoms1. In addition to conventional surgical interven-
tion, other treatments are used, including the development of chemotherapy agents, finding new drug carriers, 
and combination therapy. Due to the side effects of some of these treatments, many studies have been conducted 
using natural compounds in cancer therapy2,3. The identification of natural compounds in herbal medicines that 
can be used as anti-cancer drugs has significantly reduced the mortality of cancer patients. In addition, natural 
compounds derived from medicinal plants have excellent anticancer effects as well as unique advantages such as 
low toxicity, fewer side effects, and lower cost. Several studies have focused on the therapeutic effects of herbal 
medicines on metastatic cancers. For example, cancer treatment using berberine, curcumin, resveratrol, and other 
bioactive compounds extracted from medicinal plants has been shown to target different factors that regulate 
tumor growth and metastasis. In contrast, the malignancy of cancer cells is typically caused by a combination 
of cellular and molecular factors4,5. Therefore, it can be claimed that choosing the proper intracellular factor or 
pathway as a therapeutic target is the first step in the therapy of such disorders. Identifying the active compounds 
of medicinal plants that influence various targets involved in the development of cancer cells can be considered 
an important step in cancer treatment.

Although routine studies based on natural substances, effective substances and their targets have already been 
selected based on experiences or impressions from previous studies, in such studies, the possibility of interaction 
between the effective substance and the target based on their physical structures and pharmacokinetic properties 
is not considered, and the possibility of finding several new potential substances and introducing unknown or 
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less investigated targets is lost. Therefore, one way can be the rigid analysis of previous studies using interpreta-
tion of biological data and the examination of molecules in terms of their physicochemical structures for strong 
interaction with their target, thereby inhibiting its activity, so that it can finally introduce several molecules 
and lead to a large reduction in the probability of trial and error. Investigating biological interaction networks, 
including the drug–target interaction network, using data mining and analyzing and simulating their interactions 
with the help of computer and bioinformatic methods can be very helpful in introducing potential molecules 
with hidden roles and finally using them in laboratory methods. High-throughput data such as genomic and 
proteomic data, have contribued significantly to mechanism-based drug discovery. In addition to accelerating 
drug target identification and screening, bioinformatics analysis also facilitates the identification of side effects 
and drug resistance. Laboratory investigations of molecular structures, as well as the development of molecular 
modeling and simulations alongside large molecular databases, have paved the way for more realistic investiga-
tions of molecular connections and more informative virtual screening6.

The purpose of this study was to use compounds identified from native plants to investigate their possible 
therapeutic effects on colon cancer using one or more molecular targets. This interaction has been investigated 
based on pharmacological approaches by modeling drug–target (DT) and drug–target-disease (DTD) networks 
and analyzing them using molecular docking and MD simulation approaches. Estimating this possible correla-
tion based on the molecular targets involved in different pathways of colon cancer could introduce anticancer 
compounds with low toxicity and side effects that simultaneously act against different pathways of carcinogenesis, 
including metastasis, proliferation, and angiogenesis.

Methods
Preparation of compounds.  All known medicinal plants and weeds in the Chaharmahal and Bakhtiari 
provinces of Iran were extracted from the flora book of this province and literature review. The names of the 
plants were searched in the Chemical Entities of Biological Interest (ChEBI) database for potential compounds7. 
ChEBI is a freely available database and the ontology of molecular entities focuses on small chemical com-
pounds. Among all the compounds in this database, the plant compounds identified in the study were down-
loaded in the SDF format (structural data file). After removing minor and duplicate compounds, the final com-
pounds were selected.

Preparation of targets.  The PharmMapper website (http://​www.​lilab-​ecust.​cn/​pharm​mapper/) was used 
to identify the potential target candidates for these compounds8. This web server finds the best mapping poses 
of the uploaded molecules against all targets in several web-accessible databases. The target set option was set to 
human protein targets, and the maximum number of reserved matched targets was set to 300. After eliminating 
duplicates, desired targets were selected for further evaluation. Colorectal cancer-related targets were identi-
fied using the NCBI database (https://​www.​ncbi.​nlm.​nih.​gov/​gene) and matched to the potential targets of the 
selected compounds. Common targets of the two groups were selected for further investigation.

A drug–target (DT) network was constructed using Cytoscape v3.6.0 software based on candidate protein 
targets and selective compounds. To provide a network diagram, the targets are represented by circular nodes 
and compounds by triangle-shaped nodes. The NetworkAnalyzer plugin9 was used to analyze the quantitative 
properties of the undirected network, in which parameters such as degree and betweenness centrality were 
estimated, and the nodes for each target and compound with the highest degree and betweenness centrality 
score were selected10.

Protein and ligand preparation and molecular docking study.  Targeted proteins were selected from 
the network analysis, and their structures were retrieved in PDB format from the Protein Data Bank (http://​
www.​rcsb.​org/​PDB) and converted to pdbqt using AutoDock software11. In addition, the selected compound 
structures in sdf format were converted into mol2 and pdbqt formats using OpenBabel and Raccoon software, 
respectively12. Vina software hosted in PyRx, a virtual screening software13, was used for docking, and PyMol 
and DiscoveryStudio were used to analyze docked complexes.

Pharmacokinetic and ADME study.  Compounds that showed interaction energy above − 7.5 kcal/mol 
against their targets were checked by the SwissADME website14 in terms of physicochemical descriptors, as well 
as to predict ADME parameters (absorption, distribution, metabolism, and excretion), pharmacokinetic proper-
ties, and drug-like nature using the Lipinski rule.

Molecular dynamic simulation.  United atom molecular dynamics (MD) simulations were performed 
using the GROMACS 2019.6 software package and the G43a1 force field in combination with the SPC water 
model for all protein and ligand–protein complexes. The system neutralization and physiological ionic strength 
of 0.14 M were achieved by adding suitable amounts of Na+ and Cl− ions15.

First, energy minimization for the relaxation of internal constraints was performed using the steepest descent 
method until the system converged. Equilibration in the NVT and NPT ensembles was then performed under 
positional restraints for 500 and 1000 ps, respectively. Finally, an MD production run was performed for 100 ns 
with a 2 fs time step for all proteins and ligand–protein complexes.

The Ewald particle mesh16 was used for long-range electrostatic forces, and the lengths of all bonds were 
constrained using the LINCS algorithm17. The temperature was set to 310 K using a V-rescale thermostat18 and 
the pressure was controlled at 1.0 atm using a Parrinello–Rahman barostat19.

http://www.lilab-ecust.cn/pharmmapper/
https://www.ncbi.nlm.nih.gov/gene
http://www.rcsb.org/PDB
http://www.rcsb.org/PDB
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Figure 1.   (A) The bipartite DT network. (B) The circle layout of DT network based on degree. (C) The circle 
layout of DT network based on betweenness centrality. (D) The betweenness centrality of nods. The green 
circular nodes represent the targets, and the brown triangular nodes represent the chemical compounds. The 
larger the size of the node, the greater the number of nodes and associations.

Table 1.   The compounds that were selected for molecular docking based on the number of degrees.

Compound name Degree Compound name Degree

12-Demethylmulticaulin 8 Formononetin 7-O-glucoside-6-O-malonate 6

Amentoflavone 8 Gibberellin A110 6

Calycosin 8 Hispaglabridin A 6

Epipinoresinol 8 Isoliquiritin 6

Multicaulin 8 Licoagroside B 6

Protopine 8 Matairesinoside 6

Acroptilin 7 Cyclomorusin A 6

Cyclomulberrin 7 Daturadiol 6

Parthenolide 7 Gibberellin A98 6

Xanthomicrol 7 “Guaia-4,6-diene” 6

Euphornin L 7 Multiorthoquinone 6

Arabinopyranoside 6 β-Acoradiene 6

(+)-Pisatin 6 12-Hydroxyjasmonic acid 6

(3E)-3-Hexadecenoic acid 6 Asperuloside 6

5α ± -Campestan-3-one 6 Kuwanone G 6

Cudraflavone B 6
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MM/PBSA binding free energy calculation.  The molecular mechanics Poisson–Boltzmann surface 
area (MM/PBSA) approach20 was applied to calculate the binding free energy of protein–ligand interactions 
using the last 50 ns of each simulation trajectory.

The total binding energy of the system was calculated using the following equation:

Principal component analysis.  We performed principal component analysis (PCA) of the α-carbon 
atoms in the 100 ns trajectories to further explore the dynamic properties of the investigated structures. PCA 
was obtained as the eigenvectors of a covariance matrix consisting of α-carbon displacements that reflects the 
overall conformational motions and flexibility of the systems during the simulations.

The first two principal components (PC1 and PC2) that dominate protein conformational fluctuations were 
used to analyze the proteins and protein–ligand complexes. The eigenvalue corresponding to each eigenvector 
represents the energy contribution of that particular part of the motion. Eigenvectors and eigenvalues were 
generated using the g_covar Gromacs utility by calculating and diagonalizing the covariance matrix. Eigenvector 
analysis was performed using the g_anaeig tool.

�GBinding = �GComplex−�GLigand−�GReceptor

Figure 2.   Two-dimensional representations of the Multiorthoquinone against TREM1. (A) Root-mean 
square deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.
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Ethical approval.  This article does not contain any studies involving human participants or animals per-
formed by any of the authors.

Results
Libraries preparation.  A total of 265 medicinal plants were selected and introduced into the ChEBI data-
base to extract the effective compounds. After removing duplicates, 87 potential compounds were obtained from 
the 265 native plant species. The PharmMapper website has introduced 423 potential target candidates for these 
compounds. In addition, the NCBI database has introduced 3312 colorectal cancer-related targets. Finally, 34 
human protein molecules were selected, which could be targets of these compounds and play a role in colorectal 
cancer.

Of these compounds, 7 did not have common targets in their top 30 targets. The names and 2D structures of 
both the groups of compounds used in the screening and their targets are listed in Supplementary Tables S1–S3.

DT network construction and analysis.  A DT network with 87 compounds and 34 targets was con-
structed consisting of 114 nodes and 416 degrees. The NetworkAnalyser results calculate parameters such as 
the number of degrees, betweenness, and edge betweenness centrality values, which are used to select the best 
molecular targets and potential chemical compounds (Fig. 1). Figure 1A shows a bipartite network configured 
with node sizes based on the number of degrees; the larger the node size, the greater is the number of associa-

Figure 3.   Two-dimensional representations of the Liquiritin against MAPK8. (A) Root-mean square deviation 
of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the simulation 
system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) Binding site 
interactions of 2D view.
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tions. Based on the network analysis, the compounds showed degrees ranging from 1 to 8. To screen the best 
compounds as ligands for molecular docking analysis against targets, compounds with six or more nodes were 
selected. Therefore, 31 compounds listed in Table 1 were selected for further study. Carbonic anhydrase 2, with a 
score of 0.44, showed the highest centrality among the targets, followed by mitogen-activated protein kinase 14 
(0.14), estrogen receptor (0.07), and angiogenin (0.07). The remaining molecules had a score of less than 0.05. 
Moreover, Carbonic anhydrase 2 (71), mitogen-activated protein kinase 14 (38), bone morphogenetic protein 2 
(35), and estrogen receptor (34) showed the most connections, based on the number of degrees associated with 
the nodes.

Finally, the compounds showed a number of degrees ranging from 1 to 8. To screen the best compounds as 
ligands for the molecular docking step against the targets, all compounds with six or more nodes were selected, 
in which there were 31 compounds with six, seven, or eight nodes.

Molecular docking and simulation.  After checking using the GEPIA database, the TOP targets that 
showed increased expression in colorectal cancer were selected. The target structures were downloaded from the 
PDB database (PDB IDs: 6AY2 for CTSB, 5T4E for DPP4, 6FVE for MIF, 7AUV for MAPK1, 4QTD for MAPK8, 
and 1SMO for TERM1). The Chimera 1.8.1 software was used for essential protein preparations, including 
removing water, ATP, ligands, and adding hydrogen charges. Critical ligand-binding sites were considered and 

Figure 4.   Two-dimensional representations of the Isoliquiritin against MAPK8. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11451  | https://doi.org/10.1038/s41598-023-38134-5

www.nature.com/scientificreports/

docked to 31 compounds using the PyRx software. 31 molecules were selected after analyzing the pharmacoki-
netic properties and parameters of ADME. The centroid of the binding sites for the targets was calculated as the 
coordinates of the centroid of the ligand-binding sites using the UniProt database. The docked complexes were 
analyzed using PyMol and DiscoveryStudio software. Finally, molecules that presented the highest interaction 
energy against their target (above − 7.5 for TERM1, − 8 for CTSB and MIF, above − 9 for DPP4 and MAPK1 and 
above − 10 for MAPK8), respectively and had more binding with the amino acids of the binding site in the study 
with DiscoveryStudio. These findings led to the selection of Multiorthoquinone, Liquiritin, Hispaglabridin A, 
Isoliquiritin, Gibberellin A98, Cyclomulberrin, Cyclomorusin A, Cudraflavone B for simulation (MD), which 
produced a more stable complex with a lower energy level than TREM1, MAPK8, MAPK1, MAPK8, CTSB, 
MAPK1, MIF, and DPP4, respectively. The positions and amino acids involved in the binding are illustrated in 
Fig. 2, 3, 4, 5, 6, 7, 8 and 9, Supplementary Tables S4–S6. The RMSD score showed slight fluctuations and was 
approximately 0.2 nm. These findings indicate the stability of the compounds in the target complex. The RMSF 
values for all protein structures were computed to accurately determine how the binding of the compounds 
affects flexibility.

Analysis of the liquiritin- and isoliquiritin-associated RMSF plots revealed that Liquiritin and Isoliquiritin 
flexibility were significantly different in the five regions of 35, 183, 199, 246, and 307 and two regions in 200 and 
328 in MAPK8, respectively. In addition, multiorthoquinone flexibility was extremely high in the three regions 
34, 76, and 107 in TREM1, which may be attributed to a lack of interaction between the three regions and mul-
tiorthoquinone. For Cyclomulberrin and Hispaglabridin A residues 94–320, and 35, 300–350 in MAPK1, the 
flexibility of amino acids was lower and higher, respectively. The RMSF plot associated with DPP4 indicated high 

Figure 5.   Two-dimensional representations of the Hispaglabridin A against MAPK1. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.
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interaction between most regions of DPP4 and Cudraflavone B. Additionally, Cyclomorusin A and Gibberellin 
A98 flexibility were extremely different in the two regions of 50–70 and 150–170 in the CTSB, and 80–100 region 
in the MIF, respectively.

RG nature was constant for the individual domains during the entire simulation period associated with 
Gibberellin A98, Cyclomorusin A, and Cudraflavone B, indicating that the individual domains did not melt or 
unfold. These compounds did not affect the secondary structures of CTSB, MIF, or DPP4. However, the RG value 
associated with Liquiritin, Isoliquiritin and Hispaglabridin A, Cyclomulberrin throughout the MD simulation 
led to unfolding and activation of MAPK8 and MAPK1, respectively.

Figure 6.   Two-dimensional representations of the Cyclomulberrin against MAPK1. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.
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Principal component analysis.  Supplementary Fig. S1 shows the projection of the trajectories on special 
eigenvectors (vectors 1 and 2) and time-dependent motions of the components in a particular vibration mode. 
The overall analysis of the eigenvector plots indicated that most vibrations occurred along eigenvector 1. Accord-
ing to the first two PCs, TREM1 and MIF proteins have almost the same trace values of the covariance matrix 
for the bound and unbound states with a slight shift. This indicates that the ligand is well equilibrated and sta-
bilized with the protein, as reflected by theleast conformational changes due to reduced collective motions from 
unbound states. However, in other cases, 2D projection plots of the trajectories revealed that the ligand reduced 
the conformational diversity during the simulations, leading to a more compact cluster distribution. Sampling of 
different regions and showing different movement behaviors of protein–ligand complexes compared to unbound 
proteins points to the binding of ligand effects on the rigidity of the structural conformation, which also affects 
the function of proteins.

MM/PBSA binding free energy.  The MM/PBSA binding free energy results are shown in Table 2 includ-
ing the van der Waals energy (kJ/mol), electrostatic energy (kJ/mol), polar solvation energy (kJ/mol), SASA 
energy (kJ/mol), SAV energy (kJ/mol), WCA energy (kJ/mol), and binding energy (kJ/mol), are shown in 
Table 2. Compared to liquiritin, isoliquiritin had the lowest binding energy score of 183.04 kJ/mol interact-
ing with MAPK8 and formed a stronger binding. In addition, hypoglabrin A and cyclomulbrin interact with 
MAPK1 at almost the same binding energy (− 154 kJ/mol). However, the number of hydrogen bonds in the 

Figure 7.   Two-dimensional representations of the Cudraflavone B against DPP4. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.
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interaction with hypoglabrin A is relatively high. MIF-Cyclomorusin A, with the most negative energy score 
(− 243.768 kJ/mol), showed the strongest interaction among all docked complexes.

Discussion
Recently, phytoscience researchers have described a wide range of bioactive chemicals with various biological 
effects on plants. This issue has led to the allocation of pharmaceutical resources for the investigation and intro-
duction of novel drugs from herbal sources. In this regard, identifying natural bioactive components and thera-
peutically active chemicals through the screening of plant extracts is the first step in the development of these 
drugs. A network pharmacology analysis, represented by the bipartite DT network, was performed to evaluate 
the potential interactions between the chemical compounds of medicinal plants and proteins identified in colon 
cancer. The results of the investigation of the target genes related to the signaling pathways of colon cancer and 
the names of the plant compounds are presented in Supplementary Tables S1 and S2.

Findings identified the genes MAPK1, MAPK8, TREAM1, CTSB, MIF, and DPP4 interacted most effectively 
with the compounds. Liquiritin and Isoliquiritin from Glycyrrhiza glabra effectively interact with MAPK8. In 
addition, Cyclomulberrin and Hispaglabridin A from Morus species and Glycyrrhiza glabra effectively inhibited 
MAPK1. Previously, Hispaglabridin A isoflavonoid isolated from Glycyrrhiza glabra was introduced as a potential 
agent for the development of an effective drug for colon cancer21,22. Many previous studies have provided evidence 

Figure 8.   Two-dimensional representations of the Gibberellin A98 against CTSB. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.
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Figure 9.   Two-dimensional representations of the Cyclomulberrin against MIF. (A) Root-mean square 
deviation of the complexes (RMSD). (B) Radius of gyration (Rg). (C) Hydrogen bond analysis from the 
simulation system. (D) Root-mean-square fluctuation (RMSF). (E) The binding conformation of 3D view. (F) 
Binding site interactions of 2D view.

Table 2.   MM-PBSA results. SASA solvent accessible surface area, SAV solvent accessible volume, WCA​ weeks-
chandler-andersen potential.

Energy Forms 
(kJ/mol)

TREM1—
Multiorthoquinone

MAPK8—
Liquiritin

MAPK8—
Isoliquiritin

MAPK1—
Hispaglabridin A

MAPK1—
Cyclomulberrin

CTSB—
Gibberellin A98

MIF—
Cyclomorusin A

DPP4—
Cudraflavone B

Van der Waal − 158.643 ± 1.833 − 200.289 ± 3.237 − 207.328 ± 3.231 − 228.656 ± 1.11 1.591 ± 1.309 − 176.028 ± 0.805 − 259.193 ± 1.262 − 259.028 ± 1.065

Electrostatic − 30.848 ± 1.237 − 4.575 ± 0.806 − 33.317 ± 1.116 − 3.96 ± 0.334 1.591 ± 0.907 − 22.762 ± 1.556 − 38.108 ± 0.644 − 25.021 ± 0.6

Polar solvation 49.704 ± 1.332 59.473 ± 1.569 76.214 ± 1.464 99.315 ± 1.622 1.591 ± 1.63 68.8 ± 0.737 72.135 ± 1.018 84.784 ± 0.694

SASA − 12.637 ± 0.113 − 18.136 ± 0.313 − 18.967 ± 0.307 − 20.1 ± 0.1 1.591 ± 0.092 − 13.791 ± 0.056 − 18.568 ± 0.089 − 19.461 ± 0.071

SAV 0 0 0 0 0 0 0 0

WCA​ 0 0 0 0 0 0 0 0

Binding − 152.141 ± 2.088 − 163.657 ± 3.341 − 183.044 ± 3.251 − 153.478 ± 1.591 ± 1.591 ± 1.678 − 143.916 ± 1.308 − 243.768 ± 1.184 − 218.717 ± 1.12



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11451  | https://doi.org/10.1038/s41598-023-38134-5

www.nature.com/scientificreports/

that Liquiritin and Isoliquiritin have anticarcinogenic activity in various types of cancer cells, especially colon 
cancer cells, by regulating different pathways, including PI3K/AKT, P53/P21, and miR-671/HOXB3 signaling. 
These compounds show anticancer activity, such as inhibition of tumor growth and cell proliferation and promo-
tion of chemosensitivity and cell apoptosis23–29. MAPKs are one of the most important factors that regulate cell 
proliferation in cancer by regulating growth factor receptors. Disrupting their regulation could be an approach 
in cancer therapy. This study confirmed the inhibitory effects of these compounds on cell proliferation through 
the introduction of a new target.

C-cudraflavone derivatives showed anticancer activity in human colorectal, melanoma, and oral cancer by 
regulating the MAPK, SIRT1, NF-κ B, and PI3K/AKT pathways30–32. The results of this study showed that the 
B-cudraflavone derivative also interacted with DPP4. Dipeptidyl peptidase 4 (DPP4) is a cell surface protein that 
acts as a tumor suppressor or activator depending on its expression. An in vitro analysis is required to investigate 
the function of DPP4 and the effect of cudraflavone on its function in colon cancer.

Autophagy is one of the strategies used by cancer cells to escape cell death. Increased CTSB levels are required 
to complete autophagy, and studies have shown that treatment with compounds that induce ERK phospho-
rylation reduces CTSB levels and blocks autophagy. Several studies have confirmed the oncogenic role of this 
protein in cell proliferation, invasion, metastasis, and drug resistance. Chemotherapy based on CTSB-depleting 
compounds suppresses autophagy rescue in cancer cells, ultimately leading to increased antitumor effects33–35. 
This study confirmed that cyclomulberrin induced CTSB folding and inhibited CTSB function. ERK-activating 
compounds, such as Liquiritin and Isoliquiritin, can be used in combination with cyclomulberrin to study the 
inhibition of drug resistance and proliferation in solid tumors, especially in colon cancer.

Multi-orthoquinones, Gibberellin A98, and Cyclomorusin A interact with TREM1, MAPK1, and MIF signal-
ing pathways and have selective anti- or tumor-inducing activities. These results provided new insights into the 
mechanisms of action of these compounds. However, further studies are required to determine its exact effects.

Conclusion
Network pharmacology analysis revealed the key pathways involved in the anti-cancer activities induced by 
natural compounds found in medicinal plants. Eight pathways were obtained from the drug–target network 
analysis (MAPK1, MAPK8, TREM1, CTSB, MIF, and DPP4), and molecular docking studies of these pathways 
revealed that the identified chemical compounds had strong binding affinities with these pathway components. 
The current study revealed that Multiorthoquinone, Liquiritin, Isoliquiritin, Hispaglabridin A, Gibberellin 
A98, Cyclomulberrin, Cyclomorusin A, and Cudraflavone B are effective anticancer compounds found in target 
medicinal plants and play an important role in the regulation of important pathways in colon cancer. Compounds 
that inhibit MIF, CTSB, and MAPK8-16 appear to be more effective. Additional in vitro and in vivo experiments 
will be helpful for validating and optimizing the findings of this study.

Data availability
The datasets generated and/or analyzed during the current study are available upon request from the corre-
sponding author.
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