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Supervised machine learning 
classification of psychosis biotypes 
based on brain structure: findings 
from the Bipolar‑Schizophrenia 
network for intermediate 
phenotypes (B‑SNIP)
Joshua D. Koen 1,2*, Leslie Lewis 1, Michael D. Rugg 1,3,4, Brett A. Clementz 5, 
Matcheri S. Keshavan 6, Godfrey D. Pearlson 7,8, John A. Sweeney 9, Carol A. Tamminga 3 & 
Elena I. Ivleva 3

Traditional diagnostic formulations of psychotic disorders have low correspondence with underlying 
disease neurobiology. This has led to a growing interest in using brain‑based biomarkers to capture 
biologically‑informed psychosis constructs. Building upon our prior work on the B‑SNIP Psychosis 
Biotypes, we aimed to examine whether structural MRI (an independent biomarker not used 
in the Biotype development) can effectively classify the Biotypes. Whole brain voxel‑wise grey 
matter density (GMD) maps from T1‑weighted images were used to train and test (using repeated 
randomized train/test splits) binary L2‑penalized logistic regression models to discriminate psychosis 
cases (n = 557) from healthy controls (CON, n = 251). A total of six models were evaluated across 
two psychosis categorization schemes: (i) three Biotypes (B1, B2, B3) and (ii) three DSM diagnoses 
(schizophrenia (SZ), schizoaffective (SAD) and bipolar (BD) disorders). Above‑chance classification 
accuracies were observed in all Biotype (B1 = 0.70, B2 = 0.65, and B3 = 0.56) and diagnosis (SZ = 0.64, 
SAD = 0.64, and BD = 0.59) models. However, the only model that showed evidence of specificity was 
B1, i.e., the model was able to discriminate B1 vs. CON and did not misclassify other psychosis cases 
(B2 or B3) as B1 at rates above nominal chance. The GMD‑based classifier evidence for B1 showed a 
negative association with an estimate of premorbid general intellectual ability, regardless of group 
membership, i.e. psychosis or CON. Our findings indicate that, complimentary to clinical diagnoses, 
the B‑SNIP Psychosis Biotypes may offer a promising approach to capture specific aspects of psychosis 
neurobiology.

Current diagnostic approaches in psychiatry are based almost exclusively on phenomenological observations 
rather than biological verification. Unlike other medical fields, in psychiatry objective biomarker measures are 
rarely used to support clinical decision-making. Growing evidence indicates that the existing diagnostic for-
mulations show poor correspondence to emerging biomarker-based  constructs1,2. The absence of biologically-
informed disease entities—e.g. for psychotic disorders—or actionable biomarkers within the global disease 
constructs hampers progress in understanding disease mechanisms and treatment development.

Recent strategies using underlying neurobiology have challenged diagnostic boundaries of psychoses. 
Instead of searching for biomarkers for ‘schizophrenia’ or ‘bipolar disorder’, data-driven approaches using 
broad biomarker panels have been applied to re-categorize psychosis cases into subgroups with more cohesive 
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neurobiological  profiles3,4. Using this approach, the Bipolar-Schizophrenia Network for Intermediate Pheno-
types (B-SNIP) recently developed biomarker-based psychosis constructs—Biotypes—that capture biologically-
distinctive groups of psychosis  cases3. Based on a multistep multivariate analyses using cognition, EEG, and 
oculomotor measures, three distinctive Biotypes emerged: Biotype1 (B1), characterized by poor cognitive and 
low sensorimotor function; Biotype2 (B2), with moderately impaired cognition and exaggerated sensorimotor 
reactivity; and Biotype3 (B3), with near normal cognitive and sensorimotor  functions3. Notably, the conventional 
diagnoses [schizophrenia (SZ), schizoaffective disorder (SAD), psychotic bipolar I disorder (BD)] mapped poorly 
onto the Biotypes, with all three diagnoses distributed across all Biotypes. Analysis of whole brain voxel-wise 
morphometry—an “external validator” not used in Biotype development—demonstrated a step-wise pattern 
of gray matter density (GMD) reductions across the Biotypes: in B1, extensive and diffusely distributed GMD 
loss, with the largest effects in frontal, anterior/middle cingulate, and temporal regions; in B2, intermediate in 
magnitude and more localized reductions, with the largest effects in insula and fronto-temporal regions; and in 
B3, modest GMD reductions primarily localized to anterior limbic  regions5. In the same sample segregated by 
conventional diagnoses, we observed highly similar (and diffusely distributed) GMD reductions in SZ and SAD, 
and modest, primarily frontal reductions in BD. Biotypes showed better between-group discrimination based 
on GMD features and were a stronger predictor of GMD alterations than the diagnoses. Additionally, distinct 
patterns of resting state  connectivity6 emerged across the Biotypes.

There has been a growing interest in using machine learning approaches to disentangle the heterogeneity of 
mental illness. A critical question is whether there are biological measures—especially those commonly used 
in clinical practice, such as structural MRI—that can accurately predict different psychosis groups according to 
conventional diagnoses or, of importance here, to a Biotypes classification scheme. Prior research has primarily 
focused on using structural MRI measures (e.g., GMD/volume, cortical thickness) to train classification algo-
rithms in order to discriminate psychosis groups (mainly SZ and BD) from healthy controls (CON). Previous 
reports have demonstrated that gray matter-focused features can discriminate SZ vs. CON with high levels of 
accuracy (0.66–0.89)7–12, including in multi-site  datasets13,14 (for related findings from “fusion” approaches, see 
Refs.15–19). Studies in BD have found somewhat lower classification accuracies for BD vs. CON (0.61–0.78)20–22 
relative to those for SZ. Few studies have attempted to discriminate SZ vs. BD in a single analysis, and yielded 
modest classification accuracies (e.g., 0.66 in Ref.23). The limited ability to differentiate between SZ and BD is 
likely due to the significant biological heterogeneity of the disorders, as previously demonstrated in our Refs.3,5 
and others’  work24–30. Recently, Mothi et al.31 investigated the utility of unsupervised machine learning for delin-
eating psychosis subgroups in the B-SNIP sample. Integrating symptom-based ratings and biomarker data, they 
identified three distinct subgroups (called “G1, G2 and G3”, different from the Biotypes). Subsequent analysis 
of external validators showed that the subgroups differed significantly in cortical thickness, oculomotor and 
general and social functioning measures, with G1 showing the greatest, and G3, the least impairments. Similar 
to the B-SNIP Biotypes, the psychosis subgroups identified in this study showed only limited correspondence 
with conventional  diagnoses31.

Building on our prior work demonstrating distinct VBM-based GMD alterations among the B-SNIP 
 Biotypes3,5, we used a supervised machine learning classification approach to determine whether GMD char-
acteristics can reliably discriminate between psychosis groups—categorized either according to Biotype or 
conventional diagnosis—and healthy individuals. We hypothesized that a GMD-based classifier would show 
more specificity for biologically-defined Biotypes relative to symptom-based diagnoses. In addition, we explored 
whether GMD-based classifier output for Biotypes is associated with clinical and other biomarker measures. This 
exploratory analysis aimed to examine if the GMD-based classifier captures dimensions of psychosis that fall 
along a continuum that is present in both psychosis cases and CON (i.e., independent of group membership).

Methods
Study sample. Voxel-wise GMD metrics from the Voxel-Based Morphometry  pipeline32,33 were extracted 
in 808 subjects [557 psychosis, 251 CON] initially categorized according to Biotype, and then, by DSM diagnoses 
(for demographic and clinical data, see Table 1 and Supplemental Table S1).

The B-SNIP study’s logistics and overall sample characteristics are described  elsewhere34. Psychosis subjects 
were stable, medicated outpatients. CON subjects had no personal history of psychotic or recurrent mood disor-
ders and no family history of schizophrenia/bipolar spectrum disorders in first- or second-degree relatives. Psy-
chiatric diagnoses (and absence thereof in CON) were established via formal diagnostic consensus conferences 
including a review of the Structured Clinical Interview for DSM-IV-TR Diagnosis (SCID-I/P)35 and all available 
clinical information. The study was approved by Institutional Reviews Boards at all B-SNIP data collection sites: 
(1) University of Texas Southwestern Medical Center, (2) Olin Neuropsychiatry Research Institute, Hartford 
Hospital, Yale School of Medicine, (3) Maryland Psychiatric Research Center, University of Maryland School 
of Medicine, (4) University of Illinois at Chicago, (5) Wayne State University, School of Medicine, (6) Harvard 
University Medical School. All subjects provided written informed consent after the study procedures had been 
fully explained, and all study procedures were performed in accordance with relevant guidelines and regulations.

Gray matter density parameters extraction for machine learning analyses. T1-weighted struc-
tural images were acquired on 3 T MRI scanners at 5 B-SNIP sites. Magnetization Prepared Rapid Gradient 
Echo (MPRAGE) or Inversion Recovery-Prepared Spoiled Gradient-Echo (IR-SPGR) sequences, as appropriate 
for the scanner brands, were used; image parameters were consistent with the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI1) protocol (http:// adni. loni. usc. edu/ metho ds/ docum ents/ mri- proto cols/). Images were 
preprocessed and analyzed using the optimized Voxel-Based  Morphometry32 toolbox (VBM8) for Statistical 
Parametric Mapping (SPM8) (http:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm8). The analysis pipeline incor-

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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Sample characteristics by Biotype

B1 (n = 150) B2 (n = 185) B3 (n = 222) CON (n = 251) Test statistic p value

Socio-demographic characteristics

 Age, years; mean (SD) 35.3 (13.1) 35.4 (11.9) 35.3 (12.6) 36.9 (12.1) F(3, 804) = 0.93 0.42

 Sex/Male; n (%) 80 (53.3) 87 (47.0) 116 (52.3) 109 (43.4) χ2 (3) = 5.38 0.15

 Handedness; n (%)

  Right-handed 127 (84.7) 163 (88.1) 188 (84.7) 217 (86.5)

χ2 (6) = 4.84 0.56  Left-handed 17 (11.3) 18 (9.7) 28 (12.6) 30 (12.0)

  Ambidextrous 5 (3.3) 2 (1.1) 4 (1.8) 2 (0.8)

 Ethnicity/Hispanic; n (%) 18 (12.0) 20 (9.7) 12 (5.4) 26 (10.4) χ2 (3) = 6.0 0.11

 Race; n (%)

  Caucasian 58 (38.7) 114 (61.6) 146 (65.8) 166 (66.1)

χ2 (6) = 43.2  < 0.001a  African-American 81 (54.0) 57 (30.8) 60 (27.0) 62 (24.7)

  Other 11 (7.3) 14 (7.6) 16 (7.2) 23 (9.2)

 Education, years; mean (SD) 12.4 (2.0) 13.1 (2.3) 14.1 (2.3) 15.1 (2.5) F(3, 803) = 52.84  < 0.001b

Clinical characteristics; mean (SD)

 Age of illness onset, years 20.5 (7.4) 20.8 (8.9) 20.3 (8.6) – F(2, 533) = 0.14 0.87

 Age of first hospitalization, years 22.2 (8.2) 23.2 (8.4) 23.3 (8.6) – F(2, 487) = 0.72 0.49

 Number of lifetime hospitalizations 5.6 (6.9) 5.8 (6.6) 5.0 (8.3) – F(2, 450) = 1.89 0.15

 PANSS

  Total 64.7 (17.6) 64.0 (17.1) 60.3 (16.2) – F(2, 544) = 3.85  < 0.02c

  Positive subscale 16.6 (5.8) 16.1 (5.9) 15.4 (5.2) – F(2, 545) = 2.34 0.10

  Negative subscale 16.3 (5.7) 15.3 (5.4) 13.9 (5.2) – F(2, 545) = 9.85  < 0.001

  General psychopathology subscale 31.8 (9.1) 32.6 (9.0) 31.1 (8.6) – F(2, 546) = 1.53 0.22

  YMRS 5.7 (5.7) 6.7 (6.6) 6.1 (6.2) – F(2, 541) = 0.85 0.43

  MADRS 10.0 (9.7) 11.1 (9.0) 10.5 (9.3) – F(2, 541) = 0.61 0.55

  GAF 48.9 (11.8) 53.1 (13.9) 55.8 (13.8) 86.6 (6.5) F(3, 795) = 482.0  < 0.001d

  BACS  − 2.6 (0.9)  − 1.9 (0.9)  − 0.2 (0.8)  − 0.02 (1.2) F(3, 777) = 315.5  < 0.001e

  WRAT-4 89.6 (13.1) 95.3 (13.6) 105.9 (14.4) 103.5 (13.8) F(3, 796) = 54.08  < 0.001f.

  SFS 117.4 (23.6) 124.4 (23.7) 132.0 (24.9) 157.7 (16.4) F(3, 621) = 100.3  < 0.001 g

Concomitant medications; n (%)

 Off psychotropic medications 2 (1.3) 13 (7.0) 18 (8.1) 240 (95.6) – –

 Antipsychotics 140 (93.3) 159 (85.9) 170 (76.6) 0 (0.0) – –

  CPZ equivalents 542.5(436.5) 502.7(469.7) 392.5(312.8) – F(2, 352) = 2.29 0.01 h

 Mood stabilizers

  Lithium 14 (9.3) 25 (13.5) 36 (16.2) 0 (0.0) – –

  Other 51 (34.0) 59 (31.9) 73 (32.9) 0 (0.0) – –

 Antidepressants 57 (38.0) 83 (44.9) 102 (45.9) 3 (1.2) – –

 Anxiolytics/Hypnotics 37 (24.7) 53 (28.6) 59 (26.6) 6 (2.4) – –

 Anticholinergics 35 (23.3) 15 (8.1) 26 (11.7) 0 (0.0) – –

 Stimulants 10 (6.7) 9 (4.9) 19 (8.6) 2 (0.8) – –

 Other 2 (1.3) 6 (3.2) 6 (2.7) 0 (0.0) – –

 Combined medications 125 (83.3) 141 (76.2) 160 (72.1) 3 (1.2) – –

Sample characteristics by DSM-IV diagnosis

SZ (n = 242) SAD (n = 138) BD (n = 177) CON (n = 251) Test statistic p value

Socio-demographic characteristics

 Age, years; Mean (SD) 34.4 (12.3) 36.0 (11.9) 36.1 (13.1) 36.9 (12.1) F(3, 804) = 1.70 0.16

 Sex/Male; n (%) 165 (68.2) 58 (42.0) 60 (33.9) 109 (43.4) χ2 (3) = 57.27  < 0.001i

 Handedness; n (%)

  Right-handed 208 (86.0) 120 (87.0) 150 (84.7) 217 (86.5)

χ2 (6) = 10.03 0.12  Left-handed 26 (10.7) 12 (8.7) 25 (14.1) 30 (12.0)

  Ambidextrous 4 (1.7) 7 (4.3) 1 (0.6) 2 (0.8)

 Ethnicity/Hispanic; n (%) 21 (8.7) 16 (11.6) 13 (7.3) 26 (10.4) χ2 (3) = 2.06 0.56

 Race; n (%)

  Caucasian 112 (46.3) 75 (54.3) 131 (74.0) 166 (66.1)

χ2 (6) = 44.28  < 0.001j  African-American 109 (45.0) 54 (39.1) 35 (19.8) 62 (24.7)

  Other 21 (8.7) 9 (6.5) 11 (6.2) 23 (9.2)

 Education, years; mean (SD) 12.8 (2.2) 13.1 (2.2) 14.2 (2.4) 15.1 (2.5) F(3, 803) = 47.8  < 0.001 k

Clinical characteristics; mean (SD)

 Age of illness onset, years 21.3 (7.5) 20.2 (9.1) 19.8 (8.8) – F(2, 533) = 1.71 0.18

 Age of first hospitalization, years 22.6 (7.0) 22.6 (8.7) 23.8 (9.8) – F(2, 487) = 0.95 0.39

 Number of lifetime hospitalizations 5.6 (8.2) 6.2 (6.1) 5.5 (7.2) – F(2, 450) = 0.29 0.75

 PANSS

Continued
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Table 1.  Socio-demographic and clinical characteristics of the study sample by Biotype and Conventional 
Diagnosis. B1 Biotype 1, B2 Biotype 2, B3 Biotype 3, CON healthy controls, SZ schizophrenia, SAD 
schizoaffective disorder, BD psychotic bipolar I disorder, SD standard deviation, PANSS the Positive 
and Negative Syndrome Scale, YMRS the Young Mania Rating Scale, MADRS the Montgomery–Asberg 
Depression Rating Scale, GAF the Global Assessment of Functioning, BACS Brief Assessment of Cognition 
in Schizophrenia, WRAT-4 premorbid general intelligence estimate based on Wide Range Achievement 
Test-4 (reading subtest), SFS the Birchwood Social Functioning Scale, CPZ equivalents daily antipsychotic 
dose chlorpromazine equivalents. A one-way analysis of variance with a subsequent post hoc Tukey Honestly 
Significant Difference test and Yates corrected chi-square test were used, as appropriate, for demographic 
and clinical variables; only statistically significant (p < 0.05) between-group differences are reported. Biotype 
constructs: aRace: B1 had a higher proportion of African-Americans than Caucasians relative to B2 [χ2 
(1) = 18.31, p < 0.001], B3 [χ2 (1) = 27.98, p < 0.001] and CON [χ2 (1) = 33.78, p < 0.001]. bEducation: B1 had 
fewer years of education than B2 (p = 0.014), B3 (p < 0.001) and CON (p < 0.001). B2 had lower education than 
B3 (p < 0.001) and CON (p < 0.001). B3 had fewer years of education than CON (p < 0.001). cPANSS: Total 
score: B1 had higher score than B3 (p = 0.04). Negative symptoms subscale: B1 (p < 0.001) and B2 (p = 0.02) 
had higher scores than B3. dGAF: All Biotype groups had lower scores than CON (all p < 0.001). B1 had 
lower scores than B2 (p = 0.007) and B3 (p < 0.001). eBACS: B1 had lower score than B2, B3 and CON (all 
p < 0.001). B2 had lower score than B3 and CON (both p < 0.001). fWRAT-4 IQ: B1 had lower score than B2 
(p = 0.001), B3 (p < 0.001) and CON (p < 0.001). B2 had lower score than B3 (p < 0.001) and CON (p < 0.001). 
gSFS: B1 had lower score than B2 (p = 0.049), B3 (p < 0.001) and CON (p < 0.001). B2 had lower score than 
B3 (p < 0.01) and CON (p < 0.001). B3 had lower score than CON (p < 0.001). hDaily antipsychotic dose 
CPZ equivalents by Biotype: B1were treated with higher daily doses of antipsychotic medications than B3 
(p = 0.017). Conventional diagnoses: iSex: There was a higher proportion of males among SZ compared to SAD 
[χ2 (1) = 23.73, p < 0.001], BD [χ2 (1) = 46.96, p < 0.001] and CON [χ2 (1) = 29.59, p < 0.001]. jRace: SZ had a 
higher proportion of African-Americans than Caucasians relative to BD [χ2 (1) = 31.15, p < 0.001] an CON 
[χ2 (1) = 22.37, p < 0.001]. SAD had a higher proportion of African-Americans than Caucasians compared to 
BD [χ2 (1) = 13.90, p < 0.001] and CON [χ2 (1) = 7.43, p = 0.006]. kEducation: SZ had fewer years of education 
than BD (p < 0.001) and CON (p < 0.001). SAD had lower education than BD (p < 0.001) and CON (p < 0.001). 
BD had lower education than CON (p < 0.001). lPANSS: Total score: SZ and SAD had higher scores than BD 
(both p < 0.001). PANSS positive subscale: SAD had higher scores than SZ (p = 0.02) and BD (p < 0.001); SZ 
had higher scores than BD (p < 0.001). PANSS negative subscale: SZ and SAD had higher scores than BD 
(both p < 0.001). PANSS general subscale: SAD had higher scores than SZ (p = 0.01) and BD (p < 0.001); SZ had 
higher scores than BD (p < 0.001). mMADRS: SAD had higher scores than SZ and BD (both p < 0.001). nGAF: 
All psychosis groups scored lower than CON (all p < 0.001). SZ had lower scores than BD (p < 0.001). SAD had 
lower scores than BD (p < 0.001). oBACS: SZ had a lower score than BD and CON (both p < 0.001). SAD had 
a lower score than BD and CON (both p < 0.001). BD had a lower score than CON (p < 0.001). pWRAT-4 IQ: 
SZ had a lower score than BD (p < 0.001) and CON (p < 0.001). SAD had a lower score than BD (p = 0.002) and 
CON (p < 0.001). qSFS: All psychosis groups scored lower than CON (all p < 0.001). SZ had lower scores than 
BD (p < 0.001). SAD had lower scores than BD (p < 0.001). rDaily antipsychotic dose CPZ equivalents: Both SZ 
and SAD were treated with higher daily doses of antipsychotic medications compared to BD (both p < 0.001).

Sample characteristics by DSM-IV diagnosis

SZ (n = 242) SAD (n = 138) BD (n = 177) CON (n = 251) Test statistic p value

  Total 65.5 (17.2) 68.5 (16.1) 54.2 (13.9) – F(2, 544) = 37.3  < 0.001 l

  Positive subscale 16.7 (5.7) 18.2 (5.2) 13.1 (4.6) – F(2, 545) = 41.9  < 0.001

  Negative subscale 16.7 (6.1) 15.6 (4.7) 12.2 (3.9) – F(2, 545) = 40.0  < 0.001

  General psychopathology subscale 32.1 (8.8) 34.7 (8.9) 28.9 (8.2) – F(2, 546) = 17.7  < 0.001

 YMRS 5.7 (5.7) 7.3 (6.3) 5.9 (6.7) – F(2, 541) = 3.0 0.051

 MADRS 8.5 (8.1) 14.6 (10.4) 10.3 (8.9) – F(2, 541) = 20.3  < 0.001 m

 GAF 49.5 (12.6) 48.8 (11.7) 61.3 (12.5) 86.6 (6.5) F(3, 795) = 586.1  < 0.001n

 BACS  − 1.8 (1.3) − 1.5 (1.3) − 0.9 (1.3) − 0.02 (1.2) F(3, 777) = 83.7  < 0.001o

 WRAT-4 95.4 (16.0) 96.4 (14.8) 102.9 (13.7) 103.5 (13.8) F(3, 796) = 18.0  < 0.001p

 SFS 122.2 (24.3) 119.0 (25.4) 135.4 (22.1) 157.7 (16.4) F(3, 621) = 105.6  < 0.001q

Concomitant medications; n (%)

 Off psychotropic medications 13 (5.4) 7 (5.1) 13 (7.3) 240 (95.6) – –

 Antipsychotics 218 (90.1) 122 (88.4) 129 (72.9) 0 (0.0) – –

  CPZ equivalents 527.0(407.1) 536.8(463.9) 328.0(327.8) – F(2, 352) = 9.22  < 0.001r

 Mood stabilizers

  Lithium 14 (5.8) 16 (11.6) 45 (25.4) 0 (0.0) – –

  Other 41 (16.9) 62 (44.9) 80 (45.2) 0 (0.0) – –

 Antidepressants 87 (36.0) 78 (56.5) 77 (43.5) 3 (1.2) – –

 Anxiolytics/Hypnotics 55 (22.7) 38 (27.5) 56 (31.6) 6 (2.4) – –

 Anticholinergics 40 (16.5) 20 (14.5) 16 (9.0) 0 (0.0) – –

 Stimulants 13 (5.4) 7 (5.1) 18 (10.2) 2 (0.8) – –

 Other 5 (2.1) 5 (3.6) 4 (2.2) 0 (0.0) – –

 Combined medications 164 (67.8) 121 (87.7) 141 (79.7) 3 (1.2) – –
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porated the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL), a high-
dimensional nonlinear inter-subject registration  tool33,36. The MRI parameters, quality control procedures, and 
pipeline are detailed in Supplemental Methods.

GMDs were extracted from the segmented and modulated gray matter images (smoothed at 8 mm FWHM) 
within a gray matter mask. We adopted similar procedures to prior work (e.g. Ref.37) to restrict the classifica-
tion analyses to grey matter voxels. The mask included voxels that met two criteria: values > 0.40 and < 0.60 in 
the grey and white matter tissue probability maps, respectively. These thresholds were selected based on visual 
inspection by the first author to minimize including an excessive amount of white matter voxels in the mask 
and to minimize partial volume effects. Although visual inspection is a common and generally desirable step 
in imaging analysis as it allows to “screen-out” gross artifacts and other image irregularities, it can be limited 
because the decision processes can be difficult to replicate. We have included the specific mask in the Open Sci-
ence Framework repository for this project to support reproducibility of the analyses reported here (https:// osf. 
io/ 9ra6j/? view_ only= 02b0b d7639 c64bd dbb6e cc490 3c1e5 d7). No further feature reduction or selection steps 
were included in the analysis pipeline. Thus, all 371,243 features were used in the machine learning analyses.

Clinical and biomarker measures associated with machine learning classifier output. We fur-
ther explored associations between GMD-based classifier performance (specifically, the B1 classification model, 
the only model that demonstrated ‘specificity’, see “Model training and testing” and “Gray matter density-based 
classifier performance across the biotypes”) and several clinical and biomarker measures. The variables of inter-
ests for these analyses were chosen based on two rationales. First, these data were available on both psychosis and 
CON subjects which was necessary for testing “brain-behavior” associations dimensionally (i.e. across both psy-
chosis and CON individuals regardless of their group membership). Second, the selected clinical and biomarker 
variables were not used in the original Biotype  development3. This allowed us to avoid potential “circularity” in 
the association analyses. In total, six clinical and biomarker measures that satisfied both rationales were selected 
for the association analyses: an estimate of premorbid general intellectual ability [the Wide Range Achievement 
Test-4, Word Reading subtest (WRAT-4)], oculomotor function [the Smooth Pursuit Eye Movement (SPEM) 
task], EEG [intrinsic EEG activity (IEA) derived from inter-stimulus intervals during an auditory paired stimuli 
 task38], and general and social functioning [DSM-IV Axis V: Global Assessment of Functioning Scale (GAF), 
Birchwood Social Functioning Scale (SFS)34]. The SPEM and IEA data were reduced via a principal component 
analysis (PCA), yielding two PCA components for SPEM and one PCA component for IEA. Proportions of 
subjects with missing data across the 6 variables of interest, comparable across the Biotype and CON groups, are 
shown in Supplemental Table S2.

Machine learning analyses. Model training and testing. Machine learning analyses examined if patterns 
of GMDs can reliably classify psychosis cases organized by Biotype or diagnosis. We used a repeated train/
test split approach with 1000 iterations. For each iteration, a randomly selected a subset of the data was used 
to train the classification model, and the held-out data was used to test the performance of the classification 
model. All classification models were based on L2-normed logistic regression models (penalty = 1) using the 
liblinear  package39 implemented in the Princeton MVPA toolbox (https:// github. com/ princ etonu niver sity/ princ 
eton- mvpa- toolb ox).

The following methods apply to each iteration of the repeated train/test split approach. A random sample of 
88 cases from each Biotype (B1, B2, B3) and from CON was used for model training. This training set size was 
selected to ensure a minimum of 50 test cases in each group. The DSM categorization was not considered for case 
selection for the Biotype groups. The remaining cases were used as the test set (B1, n = 62; B2, n = 97; B3, n = 134; 
CON, n = 163). Three binary classification models were trained that discriminated one of the three Biotype groups 
vs. CON. The same n = 88 CON training sample was used for the three classification models in each iteration. The 
trained models were then applied to (i.e., tested on) every case in the held-out test groups. Classifier accuracy 
was computed using a balanced accuracy metric (i.e., unweighted average of each groups classification accuracy, 
or the average of the sensitivity and specific of the classifier) given the unequal number of cases in number of 
cases between two classes in the test data. A model’s classification accuracy was determined to be significant if 
the 99.17% confidence interval (CI) for overall classifier accuracy (i.e., aggregate classification accuracy across 
both groups in the model) across the 1,000 repeated train/test iterations did not encompass the nominal chance 
value of 50%. We used a 99.17% CI as a conservative approach to control for multiple comparisons (three) in 
the overall classification accuracies within each approach, i.e., Biotype or diagnosis.

Importantly, a model for each Biotype (e.g., B1) was also tested on the other two Biotype groups (e.g., B2 
and B3), allowing assessment of the ‘specificity’ of each model. The idea behind this approach is that if a given 
model (e.g., B1) classifies the designated Biotype group above nominal chance but fails to do so for the other 
two Biotypes, then the model is likely identifying GMD features that are specific to a particular Biotype group. 
If, however, a model classifies, or labels, the other Biotype groups at rates exceeded nominal chance, then the 
model is likely identifying non-specific GMD features indicative of psychosis as a whole.

The above methods were also employed to examine classification of the three diagnostic groups [SZ, SAD, 
BD]. Case selection for each iteration was not stratified with respect to the Biotype membership. The training 
set size was identical to that described above, and the remaining cases [SZ, n = 154; SAD, n = 50; BD, n = 89; 
CON, n = 163] were held out from model training to allow a test of classifier accuracy. Each diagnosis model 
(e.g., SZ vs. CON) was applied to all cases in the test set for the other diagnostic groups (e.g., SAD and BD) to 
test model specificity.

The classification accuracy data for all models were analyzed in  R40, and the raincloud figures used to visualize 
the data were created using  ggplot241. The feature importance weights for each voxel in each model were used 

https://osf.io/9ra6j/?view_only=02b0bd7639c64bddbb6ecc4903c1e5d7
https://osf.io/9ra6j/?view_only=02b0bd7639c64bddbb6ecc4903c1e5d7
https://github.com/princetonuniversity/princeton-mvpa-toolbox
https://github.com/princetonuniversity/princeton-mvpa-toolbox
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to create feature importance maps following a similar procedure as the classification accuracy measures. The 
procedures specific to this are described in the Supplemental Methods, and a brief description of these data are 
provided in “Feature weights for the classification models” below.

Associations between brain structure-based classifiers and other biomarker and clinical measures. We carried 
out exploratory analyses examining the relationship between GMD-based classifier output and additional bio-
marker and clinical measures (described in “Clinical and biomarker measures associated with machine learning 
classifier output”). These exploratory analyses were restricted to classifier output from B1 classification model 
because it was the only model that demonstrated ‘specificity’ (see “Model training and testing” and “Gray matter 
density-based classifier performance across the biotypes”). We conducted a series of regression analyses that pre-
dicted clinical and biomarker measures given classifier output (i.e., prediction probability) from the B1 model. 
This analysis was conducted on the entire test sample from each iteration of repeated train/test splits of the data. 
Using the cases across all four groups allowed us to test for an interaction between GMD-classifier evidence and 
group membership, and the clinical and biomarker measures. The rationale for this analysis is rooted in the idea 
that the GMD-based classifier model may provide a sensitive measure that can reliably predict an individual’s 
clinical and/or neurobiological profile regardless of group membership. Finding a group-invariant relationship 
would suggest that this GMD-based classifier approach might capture important biomarker and clinical charac-
teristics that span a “disease/CON” dimension, and that are not characteristic of only a single psychosis group.

Each multiple regression model included the biomarker or clinical measure as the outcome variable and a total 
of 7 predictor variables: classifier output from the B1 model, three dummy-coded group variables (one for each 
Biotype group; CONs served as the reference group), and three variables representing the interaction between 
each dummy-coded group variable and the B1 model evidence. Classifier evidence from the B1 model takes on 
values between 0 and 1, with higher values indicating increased classifier evidence that a data point showed a 
pattern of GMD characteristic of B1. B1 classifier evidence was mean centered before creating the interaction 
terms to reduce multi-collinearity between the predictor variables. The interaction terms allowed us to test if 
group membership moderates the association between GMD-classifier output and the examined outcome vari-
ables. Given the exploratory nature of these analyses, the model term for B1 classifier evidence (and all other 
regression model terms) was deemed significant if the 95% interval of unstandardized b values obtained across 
the 1,000 iterations of the repeated train/test splits did not include 0.

Results
Gray matter density‑based classifier performance across the biotypes. The results for the three 
Biotypes classification models are shown in Fig. 1 and Supplemental Table S3. For the model comparing B1 
and CON, overall model classification accuracy was significantly above chance. Classification accuracies were 
also significantly above chance for both the B1 and CON. Importantly, the model did not classify either B2 or 
B3 cases as belonging to the B1 group at rates above chance. We interpret this pattern of results as evidence for 
specificity in discriminating between B1 vs. CON based on GMD features.

For the model comparing B2 and CON, the overall model classification accuracy was significantly above 
chance. Classification accuracies were also significantly above chance for both B2 and CON. However, this 
model did not demonstrate specificity: although B3 cases were not misclassified as B2 at above chance levels, B1 

Figure 1.  Raincloud plots from the analysis of the GMD classifiers for the (a) Biotype group 1 (B1) versus 
Control (CON), (b) Biotype group 2 (B2) versus CON, and (c) Biotype group 3 (B3) versus CON. In each 
panel, the dots represent balanced classifier accuracy for each of the 1000 iterations, the density plot shows 
the distribution of accuracy values across iterations, and the black dot and line reflects the mean and 99.17% 
interval of the accuracy values, respectively. Overall accuracy reflects on the two groups in the model (e.g., 
overall accuracy for the B1 model is the combined accuracy of B1 and CON cases). The other columns of the 
figure reflect accuracy for individual groups. Note that accuracy for groups not included in the training model 
(e.g., B2 and B3 for the B1 model), the ‘accuracy’ value reflects the rate of classifier guesses for being in the 
psychosis group (B1).
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cases were misclassified as B2 significantly above chance. Thus, it appears that classification accuracy of the B2 
model was driven by GMD features common to both B1 and B2, relative to CON, and not features specific to B2.

Lastly, overall classification accuracy for the B3 vs. CON model was significantly above chance. However, 
neither the separate classification accuracies for B3 nor for CON exceeded chance levels. Moreover, the model 
did not show specificity as B1 cases were misclassified as belonging to the B3 group at rates greater than nominal 
chance. B2 cases were not misclassified as B3 above nominal chance. This pattern of results suggests that classifica-
tion performance of the B3 model was driven by GMD characteristics common to both the Biotypes and CON.

Gray matter density‑based classifier performance across conventional diagnoses. The results 
for the three conventional diagnoses classification models are shown in Fig. 2 and Supplemental Table S4. Over-
all classification accuracy for the SZ vs. CON model, as well as accuracies for both SZ and CON, were signifi-
cantly above chance. However, the model misclassified SAD cases as belonging to SZ at above chance levels (at a 
similar rate to SZ cases). BD cases were not misclassified as SZ above nominal chance. Therefore, the SZ vs. CON 
model appeared to be nonspecific and driven by GMD features common to both SZ and SAD.

Overall classification accuracy for the SAD vs. CON model was significantly above chance. CON, but not 
SAD, group was classified at above chance rates. The model misclassified SZ cases as belonging to SAD at above 
chance level, while BD were not misclassified as SAD. Thus, similar to the SZ vs. CON model, the SAD vs. CON 
model appeared to be nonspecific and driven by brain structural characteristics common to SZ and SAD.

Lastly, overall classification accuracy for the BD vs. CON model was significantly above chance. However, 
neither classification accuracy for BD nor CON were above nominal chance. The model also misclassified SZ, 
but not SAD, as belonging to BD group at an above chance rate. Thus, classification performance of the BD vs. 
CON model appeared to be driven by GMD features common to BD and SZ, and CON.

Feature weights for the classification models. The voxel-wise feature maps across the Biotype and 
conventional diagnosis groups (Supplementary Figs. S1 and S2) paralleled the spatial voxel-wise GMD maps 
from the original VBM  analyses5. A stepwise distribution of classifier feature weights was observed across the 
Biotypes, with the most diffusely distributed, consistent and strong features in B1, considerably fewer consist-
ently strong features in B3, and intermediate number of features in B2 (Supplemental Fig. S1). In contrast, across 
the conventional diagnoses (Supplemental Fig. S2), the consistent and strong classifier features were more spa-
tially similar to each other, echoing our VBM findings of poor separation of the SZ, SAD and BD groups based 
on GMD. It is important to note that it is difficult to make claims as to whether the identified features are signifi-
cant in a statistical sense, or if they are the most important. The contribution of a feature in any machine learning 
model in part, depends on the other features that are included in the model. Thus, these feature maps and results 
should not be taken as evidence that these features in isolation would produce the same results reported above in 
“Gray matter density-based classifier performance across the biotypes” and “Gray matter density-based classifier 
performance across conventional diagnoses”.

Figure 2.  Raincloud plots from the analysis of the GMD classifiers for (a) Schizophrenia (SZ) versus Control 
(CON), (b) Schizoaffective disorder (SAD) versus CON, and (c) Bipolar disorder (BD) versus CON. In each 
panel, the dots represent balanced classifier accuracy for each of the 1000 iterations, the density plot shows 
the distribution of accuracy values across iterations, and the black dot and line reflects the mean and 99.17% 
interval of the accuracy values, respectively. Overall accuracy reflects on the two groups in the model (e.g., 
overall accuracy for the SZ model is the combined accuracy of SZ and CON cases). The other columns of the 
figure reflect accuracy for individual groups. Note that accuracy for groups not included in the training model 
(e.g., SZ and BD for the SZ model), the ‘accuracy’ value reflects the rate of classifier guesses for being in the 
psychosis group (e.g., SZ).
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Associations between gray matter density‑based classifier performance for biotype 1 vs. con‑
trols and biomarker and clinical measures. We next explored whether classifier evidence indicating 
membership of the B1 group (derived from the B1 model which was the only model to show specificity) was 
associated with biomarker and clinical measures that were not used in the Biotype development, and if any of 
these relationships predicted performance regardless of group membership. Table 2 shows the results for all six 
measures. B1 classifier evidence demonstrated a significant negative association with a single measure, i.e., an 
estimate of a premorbid general intellectual ability (WRAT-4/Reading Subtest). Importantly, this relationship 
appeared to be group invariant: there was no evidence of a significant interaction between any group and B1 
classifier evidence for WRAT-4 scores. No other significant associations were found.

Discussion
Expanding on our prior work—the development of distinct B-SNIP psychosis Biotypes derived from cognitive 
and neurophysiologic  biomarkers3 and the characterization of brain structural and functional alterations across 
Biotypes using independent neuroimaging  measures5,6—here, we examined whether a supervised machine learn-
ing approach applied to voxel-wise GMD measures would successfully classify the Biotype and conventional 
diagnosis groups. Compared to symptom-based diagnoses, Biotypes appear to capture neurobiologically-distinc-
tive and more homogeneous psychosis  subgroups3. Therefore, we predicted that a GMD-based classifier would 
demonstrate more specificity for Biotypes than diagnoses. We also examined whether GMD-based classifier 
evidence was associated with several biomarker and clinical measures not used in Biotype definition.

Our results converge with and extend previous work using machine learning approaches to classify psychotic 
disorders using features derived from structural  MRI7–14,20–22. First, we replicate previous findings indicating 
that patterns of GMD discriminate SZ and BD from CON at above chance rates. We also extend prior work by 
demonstrating that GMD can discriminate SAD [which is typically either not included into such analyses (e.g. 
Refs.7,10,15) or is merged with SZ cases (e.g. Ref.11)] from CON.

A novel extension of our study is the application of machine learning approaches to the discrimination of 
Biotypes—experimental neurobiologically-based categories of  psychosis3. Notably, the classifier models were 
trained on whole-brain GMD features that were not used to derive Biotypes. All three Biotype models classified 
cases at above chance rates, indicating that patterns of GMD can discriminate between biologically-derived 
subgroups of psychosis (relative to CON). An interesting aspect of these findings is that classification accuracy 
demonstrated a gradient, such that it was numerically highest for the B1 model, intermediate for the B2 model, 
and lowest for the B3 model. This echoes both the overall pattern of GMD reductions relative to  CON5 and the 
differing levels of cognitive  impairment3 previously demonstrated across the three Biotypes.

One aim of the present study was to determine if machine learning models can capture features that are 
specific to categories of psychotic disorders. The inclusion of multiple psychosis subgroups allowed us to assess 
the specificity for both the Biotype- and conventional diagnosis-based classification schemes. We applied each 
of the models trained to classify one of the groups (e.g. B1 vs. CON) to the other two groups within the same 
classification scheme (e.g. B2 and B3), which allowed us to determine the rate at which the two groups not 
included in the model (e.g. B2 and B3) were classified as members of the psychosis group used to train the model 
(e.g. B1). The logic of this approach is that a model capturing GMD features specific to a particular psychosis 
subgroup would not lead to above chance “misclassification” of belonging to a different subgroup. Only the B1 
model showed evidence of model specificity. That is, the B1 model classified only members of the B1 group, 
and not the B2 or B3 groups, as belonging to the B1 group at rates above nominal chance. Neither the B2 nor 

Table 2.  Summary of regression model results. Measures reflect the average beta coefficient across the 
1000 iterations with the 95% confidence bounds in parentheses (Lower, Upper). B1 Biotype 1, B2 Biotype 
2, B3 Biotype 3, WRAT-4 wide range achievement Test-4 (Reading Subtest), GAF the global assessment of 
functioning, SFS the birchwood social functioning scale (total score), PCA principal component analysis, 
SPEM smooth pursuit eye movement. Asterisks (*) indicate regression parameters for which the 95% interval 
of the 1000 bootstrapped iterations did not include 0. The WRAT-4/Reading Subtest outcome variable is in 
bold font as it was the only variable to show a significant association with B1 classifier evidence (that was 
similar across all three groups).

Outcome variable Intercept B1 class. evidence B1 group
B1 class. by 
group interaction B2 group

B2 class. by 
group interaction B3 group

B3 class. 
by group 
interaction

WRAT-4/reading 
subtest 0.26* (0.15; 0.37)  − 0.42* 

(− 0.73; − 0.07)
 − 1.25* 
(− 1.49; − 0.99) 0.58 (− 0.16; 1.26)  − 0.08 (− 0.26; 

0.11) 0.28 (− 0.20; 0.75)  − 0.30 
(− 0.45; − 0.15) 0.27 (− 0.16; 0.71)

GAF 158.15* (156.07; 
160.18) 2.91 (− 3.22; 8.58)  − 40.09* 

(− 45.89; − 33.96)
 − 6.03 (− 20.72; 
9.66)

 − 33.43* 
(− 37.55; − 29.37)

 − 4.84 (− 16.72; 
7.57)

 − 26.04* 
(− 29.70; − 22.24)

 − 10.72 (− 21.04; 
0.52)

SFS 0.20* (0.09; 0.30)  − 0.32 (− 0.64; 
0.01)

 − 1.16* 
(− 1.38; − 0.95) 0.40 (− 0.18; 0.96) 0.01 (− 0.17; 0.19) 0.30 (− 0.24; 0.82)  − 0.31 

(− 0.47; − 0.15) 0.09 (− 0.39; 0.56)

Intrinsic EEG 
PCA component 1 0.01 (-0.13; 0.15) 0.04 (− 0.41; 0.40) 0.06 (− 0.24; 0.36)  − 0.20 (− 0.94; 

0.62)
 − 0.03 (− 0.28; 
0.24) 0.04 (− 0.61; 0.77) 0.01 (− 0.16; 0.20)  − 0.04 (− 0.55; 

0.51)

SPEM PCA com-
ponent 1 0.33* (0.24; 0.42)  − 0.04 (− 0.33; 

0.24)
 − 1.08* 
(− 1.39; − 0.78)

 − 0.08 (− 0.86; 
0.75)

 − 0.67* 
(− 0.86; − 0.47)

 − 0.00 (− 0.52; 
0.54)

 − 0.24* 
(− 0.37; − 0.11)

 − 0.06 (− 0.49; 
0.36)

SPEM PCA com-
ponent 2 0.10 (− 0.03; 0.23) 0.28 (− 0.13; 0.70)  − 0.10 (− 0.46; 

0.32)
 − 0.38 (− 1.48; 
0.61)

 − 0.26* 
(− 0.45; − 0.05)

 − 0.00 (− 0.64; 
0.56)

 − 0.09 (− 0.28; 
0.09)

 − 0.22 (− 0.75; 
0.34)
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B3, nor any of the conventional diagnosis (see also Ref.42), models showed similar evidence of specificity. The 
lack of model specificity might explain the consistently modest classification rates observed when attempting 
differentiate SZ and BD in prior  research23.

We also explored if classifier performance predicted individual differences in biomarker and clinical meas-
ures that were not used in Biotype creation. This analysis was restricted to classifier evidence from B1 vs. CON 
because it was the only model that demonstrated evidence of specificity. We aimed to explore whether meaningful 
relationships exist between the brain structure-based classifier evidence and a series of clinical and biomarker 
measures that could elucidate neurobiology/behavior interactions specific to individuals expressing B1-like 
patterns of GMD. Importantly, we chose analytic strategies that would allow capture of dimensional aspects of 
such relationships, independent of group membership or, indeed, of the distinction between psychosis cases and 
CON. We found that, among the six tested measures spanning cognition, EEG, ocular-motor, and general and 
social functioning, a single measure—an estimate of a premorbid general intellectual ability (WRAT-4/Reading 
Subtest)—demonstrated a negative association with GMD-based B1 classifier evidence. That is, a higher prob-
ability of being classified as B1, based on GMD characteristics, was associated with lower estimate of general 
intellectual ability. Importantly, we did not detect a significant interaction between any psychosis group and B1 
classifier evidence for this measure, indicating that the relationship was group-invariant.

Single-word reading as assessed by the WRAT-4/Reading  Subtest43 provides a widely used estimate of pre-
morbid intellectual ability (in disease samples)44. It is considered to capture crystalized intellectual ability rather 
than the fluid/dynamic intellectual functions. While fluid cognitive function [as captured by the Brief Assessment 
of Cognition in Schizophrenia (BACS)] was used to discriminate the  Biotypes3, and there is a relation between 
measures of fluid and crystalized intellectual ability, the correlations between BACS total scores and WRAT-4/
Reading Subtest scores in our sample were moderate with only 10–15% shared variance (B1, r = 0.33,  R2 = 0.11; 
B2, r = 0.31,  R2 = 0.10; B3, r = 0.39,  R2 = 0.15; all p < 0.05). Thus, measures of these two aspects of cognition each 
provide important and largely non-overlapping information in psychosis samples. The difference between aspects 
of cognition captured by WRAT and BACS has been previously used to assess psychosis-related cognitive decline 
in the B-SNIP  sample45. Other reports from our group examined relationships between premorbid intellectual 
ability/WRAT-4 Reading measure and an array of biomarkers, including structural brain  metrics46 and Polyge-
netic Risk for  Schizophrenia47.

The association observed here between premorbid intellectual function and GMD-based probability of being 
classified as psychosis B1—regardless of group membership (psychosis or CON)—highlights the importance 
of the relationship between premorbid cognitive development and brain structure. Notably, WRAT-4 was the 
only measure that showed a significant association with the GMD-based Biotype classification. One important 
avenue for future research is to examine cognition/brain structure relationships over the course of development 
with the aim of identifying ‘high risk’ subgroups who may merit clinical monitoring. Another possibility is to 
explore cognition/brain structure interactions in prodromal and early psychosis samples, to test whether these 
features predict psychosis progression and broader functional outcomes. Further detailed investigation of rela-
tionships between cognition, brain structure and other biomarkers within and across psychosis Biotypes, and 
the replication of these relationships in independent samples, are essential to validate and extend our findings.

There are some limitations of the study that warrant mention. First, our classifiers were trained only with 
features derived from a single imaging modality. Anecdotally, previous research using features derived from 
multiple modalities to classify conventional diagnostic categories led to higher classification accuracy relative 
to studies using only a single imaging  modality16–19. Using features from a single imaging modality might have 
underestimated classification accuracy and positively (or negatively) affected the results related to model specific-
ity. Second, we did not directly compare the GMD-based classification outcomes between the Biotype vs. diagno-
sis categorizations. This requires further work and development in optimizing machine learning approaches to 
directly compare different classification schemes. Third, our findings require validation in independent samples 
suitable for “biotyping” based on a broad set of biomarker measures.

Together, our findings indicate that brain-based biomarker classification schemes, such as Biotypes, may 
hold promise in capturing disease features that are more specific to underlying psychosis neurobiology than are 
phenomenologically-defined diagnostic categories of psychosis. It is important to note that our results do not 
support the notion that the Biotype GMD-based classification scheme is superior (i.e., leads to higher accuracy) 
to the classifier performance possible for conventional diagnoses. Our primary conclusion is that Biotypes 
appear to be associated with more specificity in brain structure-based classification. This conclusion is based on 
the B1 model correctly classifying B1, but not B2 and B3 cases, at above chance rates. In contrast, none of the 
diagnosis classifier models demonstrated features of specificity, based on brain structure features. Future research 
is needed to further investigate the accuracy and model specificity associated with classification of psychosis 
based on neurobiological features.

Data availability
The B-SNIP dataset analyzed during the current study is available in the NIH Data Archive repository (https:// 
nda. nig. gov). The data derivatives specific to the analyses reported here are available on the Open Science Frame-
work (https:// osf. io/ 9ra6j/? view_ only= 02b0b d7639 c64bd dbb6e cc490 3c1e5 d7).
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