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Identification of subject‑specific 
responses to footwear 
during running
Fabian Horst 1*, Fabian Hoitz 2,3, Djordje Slijepcevic 4, Nicolas Schons 1, Hendrik Beckmann 1, 
Benno M. Nigg 3 & Wolfgang I. Schöllhorn 1

Placing a stronger focus on subject-specific responses to footwear may lead to a better functional 
understanding of footwear’s effect on running and its influence on comfort perception, performance, 
and pathogenesis of injuries. We investigated subject-specific responses to different footwear 
conditions within ground reaction force (GRF) data during running using a machine learning-based 
approach. We conducted our investigation in three steps, guided by the following hypotheses: (I) For 
each subject x footwear combination, unique GRF patterns can be identified. (II) For each subject, 
unique GRF characteristics can be identified across footwear conditions. (III) For each footwear 
condition, unique GRF characteristics can be identified across subjects. Thirty male subjects ran ten 
times at their preferred (self-selected) speed on a level and approximately 15 m long runway in four 
footwear conditions (barefoot and three standardised running shoes). We recorded three-dimensional 
GRFs for one right-foot stance phase per running trial and classified the GRFs using support vector 
machines. The highest median prediction accuracy of 96.2% was found for the subject x footwear 
classification (hypothesis I). Across footwear conditions, subjects could be discriminated with a 
median prediction accuracy of 80.0%. Across subjects, footwear conditions could be discriminated 
with a median prediction accuracy of 87.8%. Our results suggest that, during running, responses to 
footwear are unique to each subject and footwear design. As a result, considering subject-specific 
responses can contribute to a more differentiated functional understanding of footwear effects. 
Incorporating holistic analyses of biomechanical data is auspicious for the evaluation of (subject-
specific) footwear effects, as unique interactions between subjects and footwear manifest in versatile 
ways. The applied machine learning methods have demonstrated their great potential to fathom 
subject-specific responses when evaluating and recommending footwear.

Debates in sports biomechanics have discussed the effects of footwear on sports performance, comfort percep-
tion, and injury risks1,2. From these debates, footwear designs emerged that were aimed to reduce speculated 
risk factors of running-related injuries (e.g., excessive pronation or high impact forces). The effects of such 
footwear designs, however, remain elusive as contradictory findings regarding their influence on injury risks 
and biomechanics are frequently reported3,4. Some studies, for instance, showed that a shoe’s midsole hardness 
affected ground reaction force (GRF) variables (e.g., loading rates, impact forces)5,6, while other authors reported 
no (or even opposing) effects7–9.

One possible explanation for these contradictory findings could be related to methodological limitations. 
Current research strategies commonly focus on average responses to footwear (e.g., using estimates of central 
tendencies like mean values from groups of individuals). This approach, however, neglects footwear-related effects 
on individual subjects2,10. This is a limitation as differences between anatomy11,12, history of previous injuries13, 
and milage13 were reported across individuals. Runners, therefore, have varying responses to different footwear 
designs14. A notion that is supported by the concept of movement signatures: the finding of unique movement 
patterns for each individual in (barefoot) walking15,16,17 and running with one’s personal shoe18,19. Consequently, 
group-based approaches may have led to an incomplete functional understanding of how footwear affects a 
subject’s (unique) movement14,20,21.
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Research strategies with a stronger focus on subject-specific responses to footwear designs have been 
discussed22. These research strategies are categorised into single-subject22 and functional group2,23,24 -based 
approaches. Either approach needs to consider holistic biomechanical data (i.e., several multi-dimensional and 
time-continuous variables) to map subject-specific responses to footwear because previous findings have shown 
that movement signatures25,26 and responses to footwear4 manifest in multiple interacting variables.

Machine learning models offer a holistic data analysis approach as they can process several multi-dimensional, 
time-continuous variables (e.g., three-dimensional lower-body joint angles)10. Consequently, no pre-selection 
of single time-discrete variables from time-continuous variables is required (Fig. 2). The potential of machine 
learning-based approaches has been demonstrated in previous studies investigating the uniqueness of movement 
patterns for each individual in (barefoot) walking15,16,17 and running with one’s personal shoe18,19,27. Machine 
learning models, therefore, are suited to analyse the multi-faceted interactions in the responses of subjects to 
footwear interventions28–31.

This work aimed to explore the uniqueness of individual responses to different footwear conditions using a 
machine learning-based classification via support vector machines (SVMs). We conducted our investigation in 
three steps, guided by the following hypotheses:

	 I.	 For each subject x footwear combination, unique GRF patterns can be identified (30 subjects × 4 footwear 
conditions = 120 unique patterns).

	 II.	 For each subject, unique GRF characteristics can be identified across various footwear conditions (30 
subjects = 30 unique patterns).

	 III.	 For each footwear condition, unique GRF characteristics can be identified across various subjects (4 
footwear conditions = 4 unique patterns).

Materials and methods
Subjects and ethics statement.  Thirty healthy, physically active male subjects (Age: 20–28 years; Height: 
1.80–1.90 m; Mass: 71.4–100.0 kg) that were free of lower extremity injuries participated in the study. Prior to 
any testing, subjects provided written informed consent. All experimental procedures were conducted in accord-
ance with the Declaration of Helsinki and were approved by the ethical committee of the medical association 
Rhineland-Palatinate in Mainz (Germany).

Experimental protocol.  Subjects performed running trials at their preferred (self-selected) speed along a 
level, 15 m long runway in four shod and one barefoot condition. The four running shoes were the New Balance 
Minimus, Adidas Adistar Boost, ON Cloudsurfer, and the subject’s personal running shoe. Footwear conditions 
were counterbalanced across subjects. For each footwear condition, subjects performed running trials until ten 
records with foot strikes on the force plate were available. Prior to data collection, subjects performed twenty 
familiarisation runs in each new footwear condition. Data acquisition took place on a single day in an indoor 
laboratory.

Data acquisition.  Per running trial, three-dimensional GRFs were recorded at a frequency of 1,000  Hz 
for one right-foot stance phase using a floor-embedded force plate (Kistler, Type 9287CA, Switzerland) located 
halfway along the runway. The recording was processed within the LabView 2010 (National Instruments, USA) 
framework. Subjects were instructed to focus on a gender-neutral face emoji (i.e., simple, open eyes and a flat, 
closed mouth) on the opposing wall of the laboratory to direct their visual attention away from targeting the 
force plate and ensure a natural run with an upright body position.

Data processing.  The recorded three-dimensional GRFs, mediolateral (GRFML), anteroposterior (GRFAP), 
and vertical (GRFV), were filtered using a second order Butterworth bidirectional low-pass filter at a cut-off 
frequency of 50 Hz. Stance phase was determined based on the filtered vertical GRF using a threshold value 
of 10 N. Each GRF signal was time-normalised to 101 data points, corresponding to 100% stance phase. GRF 
signals were normalised to the body weight, measured separately for each footwear condition. Data processing 
was performed exclusively within MATLAB 2021b (MathWorks, USA).

Data analysis.  For data analysis, the barefoot and the three standardized shoe conditions were utilized. The 
personal shoe condition was excluded from further analysis due to similarities observed with the standardized 
shoe conditions in certain subjects. A total of 1200 GRF recordings were classified using SVMs32. The L2-reg-
ularised L2-loss support vector classification of the Liblinear Toolbox 1.4.133 with a linear kernel function was 
applied. The regularisation parameter C was experimentally determined using a grid search within the range of 
C = 2−5, 2−4.75, …, 215 prior model training / testing. GRF signals were min–max normalised to the range of 0 to 
1 and concatenated before being passed to the SVM models. The grid search and determination of minima and 
maxima were conducted exclusively based on recordings that were included in the training data.

Three classification tasks were tested: (1) subject x footwear, where each subject-footwear combination repre-
sented one of 120 (30 subjects × 4 footwear conditions) possible classification outcomes (hypothesis I); (2) subject, 
where each subject represented one of 30 possible classification outcomes (hypothesis II); and (3) footwear, where 
each footwear represented one of 4 possible classification outcomes (hypothesis III).

Performance evaluation.  For all classification tasks, a stratified four-fold cross-validation was used to evaluate 
the classification performance (Fig. 1). Each individual recording was part of the test data once. For the subject 
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x footwear classification, recordings from each combination of subject and footwear condition were distrib-
uted equally among the cross-validation folds. For the subject classification and the footwear classification, we 
ensured for each fold that the recordings of each footwear condition (in the subject classification) and each 
subject (in the footwear classification) were either part of the training or the test data.

The individual classification performances were compared to the zero-rule baseline, which refers to the theo-
retical accuracy obtained by assigning class labels according to the prior probabilities of the classes. Specifically, 
the target labels were set to the class with the largest cardinality in the training data, corresponding to 0.8%, 
3.3%, and 25.0% for subject x footwear, subject, and footwear, respectively.

Relevance score evaluation.  Layer-wise relevance propagation (LRP)34 was used to decompose the predictions 
of the trained SVM models into relevance scores for each value i of the corresponding input vector. The relevance 
scores Ri were calculated based on the product of each value xi of the input vector x and the weight wi of the 
weight vector w of the trained SVM models:

Relevance scores indicate which information was used by the SVM model for its prediction. Positive scores 
represent variables supporting the classification, while negative scores represent variables speaking against a given 
classification. For this work, the ground truth class labels were decomposed, and only positive input relevance 
scores were analysed34. To ensure better comparability between individual explanations, positive relevance scores 
were normalised to their respective maximum.

All data analysis was performed within the MATLAB 2021b (MathWorks, USA) framework.

Statistical evaluation.  For the statistical evaluation of differences between the time-continuous GRFs of the 
four footwear conditions, which also served as input for the SVMs, we conducted an one-way analysis of vari-
ance (ANOVA) with statistical parametric mapping (SPM). The evaluation was performed using the SPM1D 

Ri = xi ∗ wi

Figure 1.   Illustration of the nested k-fold cross-validation scheme used in the experiments. The outer loop, 
which consists of four folds, evaluates the performance of the model by iteratively evaluating one fold as test 
data. Within each iteration of the outer loop, an inner two-fold cross-validation is performed on the training 
data from the other loop to estimate the optimal hyperparameters.

Figure 2.   The mediolateral, anteroposterior, and vertical ground reaction force, along with the corresponding 
time-discrete variables (highlighted in red) used to assess statistical differences between footwear conditions. 
For the peaks we compared the force and the temporal occurrence during stance. The ground reaction force 
components were normalized to body weight (%BW) and stance phase (%stance).
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package for MATLAB provided by Pataky (2012)35. We used α = 0.05 as decision-making significance threshold 
and depicted significant signal regions as grey-shaded areas in Figs. 5 and 6.

As a supplementary part to the statistical evaluation, we followed a prevailing approach employed in biome-
chanical footwear research: Specifically, we derived a set of time-discrete variables from the time-continuous GRF 
variables (Fig. 2). The Kruskal–Wallis-test, serving as non-parametric alternative to an ANOVA, was conducted 
to examine differences between the four footwear conditions. In cases of statistically significant differences, we 
run the post-hoc analysis with the Dwass-Steel-Critchlow-Flinger-test for pairwise comparisons. The supple-
mentary evaluation of the time-discrete GRF variables was performed in the JAMOVI framework36. The results 
of the supplementary evaluation can be found in Supplementary Table 1.

Results
Performance evaluation.  For all classification tasks, the median prediction accuracy across the four-fold 
cross-validation was superior to the task-specific zero-rule baseline. The highest prediction accuracy was found 
for the subject x footwear classification task (hypothesis I), with a median value of 96.2% (120 times higher than 
the respective zero-rule baseline of 0.8%). For the subject classification task (hypothesis II), the median accuracy 
was 80.0% (24 times higher than the zero-rule baseline of 3.3%). For the footwear classification task (hypothesis 
III), the median accuracy was 87.8% (3.5 time higher than the zero-rule baseline of 25.0%). In addition to the 
fold-wise performance evaluation (Supplementary Fig. 1), the prediction accuracy of the SVM models was also 
evaluated in a post-hoc manner according to individual subjects (Fig. 3A) and footwear conditions (Fig. 3B).

Most individuals were correctly identified across different footwear conditions, with a few individuals (e.g., 
subject 5, 12, 13, 25) that were consistently identified across all footwear conditions. For a few individuals (e.g., 
subject 10, 11) the SVM was unable to effectively model individual characteristics across all footwear conditions, 
resulting in a lower classification performance at a range of 40–50%. For the subject classification task, matching 
movement patterns to individuals (across footwear conditions) was most accurate when individuals ran in the 
New Balance Minimus (accuracy of 90.3%) and ON Cloudsurfer (accuracy of 89.3%). The worst classification 
results were obtained with the Adidas Adistar Boost (accuracy of 63.0%).

For the footwear classification task, running barefoot was identified most accurately with 90.7%. The New 
Balance Minimus was recognised with the lowest accuracy (81.0%). Interestingly, the accuracy at which footwear 
conditions were correctly identified varied greatly across individuals (50–100%).

Relevance score evaluation.  Across all classification tasks, aggregated relevance scores of GRFV were 
lowest (Fig. 4). Aggregated relevance scores of GRFML and GRFAP were comparable in all but one classification 
tasks: within the footwear classification task, aggregated relevance scores of GRFAP were substantially higher 
than aggregated scores of GRFML (Fig. 4C).

The predictions of the SVM models in the subject x footwear classification task were predominantly based 
on the first 5–20% of the stance phase (Fig. 4A). For the subject classification task (Fig. 4B), regions with high 
summed relevance scores were more distributed across the stance phase. Regions of high relevance were observed 
at 0–40% (GRFAP) and at 25–60% (GRFV) of stance. In the footwear classification task, input values with high 
relevance scores were distributed across the entire stance phase with peak scores in the range of 0–10% and 
80–100% (Fig. 4C).

For the footwear classification task, we provide aggregated relevance scores for the four footwear conditions 
(class explanations) in Fig. 5 and examples of five subjects for the running shoe Adistar Boost (subject explana-
tions) in Fig. 6. Subject examples for the remaining three footwear conditions can be found in the Supplementary 
Figs. 2, 3, and 4.

The Fig. 5 allows insights into GRF characteristics used by the SVM models for classifying different footwear 
conditions. The SVM models utilized class-specific characteristics in GRFML, GRFAP, and GRFV to distinguish 
the different footwear conditions. Notably, class-specific characteristics were prominent during the loading and 
impact phase (0–20%) of GRFV.

The Fig. 6 displays examples of GRF patterns with color-coded relevance scores of five subjects for the running 
shoe Adistar Boost in the footwear classification task. The figure highlights notable differences in the three GRF 
components between the five subjects, whereas the relevance scores focus on similar regions.

Discussion
Movement patterns of thirty subjects that ran overground in three shod and one barefoot condition were ana-
lysed by a machine learning-based approach. Specifically, three-dimensional GRFs were classified using SVMs 
across three tasks: subject x footwear, subject, and footwear. The results for the different classification tasks will 
be discussed separately as they provide unique and novel insights into the field of running biomechanics.

Subject x footwear classification.  When movement patterns were classified according to the combina-
tion of subject and footwear condition, the accuracy of the SVM models was high (median accuracy: 96.2%). 
Hypothesis I, therefore, was supported by the findings of this work. This outcome suggests that each combina-
tion of runner and footwear results in a unique movement response that is identified by machine learning-based 
analysis. In other words, for each possible combination of runner and footwear, there is a high probability that 
a unique and identifiable movement pattern exists. This finding is supported by previous studies that reported 
inter-subject variability in responses to footwear7,14. Compared to previous studies, our results indicate that 
responses to footwear not only vary between subjects (e.g., some subjects show reduced GRFV impact peaks in a 
shod compared to a barefoot condition, while other subjects show the opposite or no noticeable difference), but 
subjects also show distinct movement patterns. Future research needs to explore the (long-term) persistence of 
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unique movement patterns for each combination of runner and footwear across various conditions, including 
multiple training sessions, extended running durations, different levels of fatigue, and varying running speeds.

The results presented in this study further reinforce the importance of considering subject-specific responses 
when examining the effects of footwear on biomechanical variables. This aligns with the earlier proposition made 
by Bates et al. (1983)14, which emphasized the significance of considering subject-specific responses in investi-
gating the effects of footwear. These collective findings strongly advocate for a more comprehensive approach 
that acknowledges and incorporates individual variations in the study of footwear’s impact on biomechanics.

Subject classification (across footwear conditions).  When movement patterns were classified 
according to their respective subject, the SVM models achieved a median accuracy of 80%, supporting the 
second hypothesis of this work. This outcome implies that subjects expressed distinct movement characteristics, 
regardless of the tested footwear condition. An interpretation that is corroborated by previous findings that 

Figure 3.   Post-hoc evaluation of the support vector machine model performance as a function of individual 
(A) subjects and (B) footwear conditions. Performance evaluation of the models trained for the three employed 
classification tasks: subject x footwear (in blue on the left), subject (in yellow in the middle), and footwear (in 
orange on the right). The task-specific zero-rule baseline values are 0.8% (subject x footwear classification), 
3.3% (subject classification), and 25.0% (footwear classification). The prediction accuracy is shown as violin 
plots with median (solid line), mean (white dot), interquartile range from Q1 to Q3 (grey bar), and individual 
values (coloured dots) of the prediction accuracy for individual (A) subjects and (B) footwear conditions. 
The numbers in the violin plots highlight subject IDs that are discussed in sections "Performance evaluation", 
"Subject classification (across footwear conditions)", and "Footwear classification (across subjects)". The figure 
was created using the MATLAB code provided by Bechtold et al. (2022)37.
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highlighted the presence of unique movement patterns for each tested individual in barefoot15–17,25 or personal 
(non-standardised) shod condition18,19. These distinct differences in movement patterns are likely related to 
individual anatomical characteristics11,12, muscle activation strategies26,38, and prevalence of previous injuries13.

Since subjects were recognised regardless of the footwear condition, one may speculate that subject-specific 
movement characteristics changed only minimally across the different running conditions. However, the degree 
to which a movement pattern can be maintained is runner specific (Fig. 3A). Some subjects demonstrated 
consistent movement pattern across different footwear conditions, while others showed high variations in the 
movement patterns across different footwear conditions. This is evident from the high classification accuracies 
of these runners (e.g., subjects 5, 12, 13, 25) compared to runners with low classification accuracies (e.g., subjects 
10, 11). This is a finding that suggests different levels of sensitivity to footwear among subjects. Whether this 
sensitivity is restricted to footwear conditions, to distal body areas, or a general characteristic related to each 
individual needs further research. A runner’s ability to maintain a movement signature under different running 
conditions may have implications for the association between footwear and performance (i.e., reduced energy 
consumption) as well as footwear and injury risk. For example, the impact of footwear on performance and 
injury risk may be greater in runners with different running patterns than in runners who maintain their run-
ning signature across different footwear conditions.

A reliable characterization of an individual’s movement signature (i.e., encompassing the unique movement 
characteristics) requires accounting for a wide range of running conditions (e.g., different footwear types). 
This might not only account for the variations in movement patterns induced by distinctly different running 
conditions but also enables machine learning models to achieve better performance in subject classification, 
by effectively distinguishing and classifying individuals based on their specific movement characteristics and 
responses to different running conditions.

Footwear classification (across subjects).  When movement patterns were classified according to their 
respective footwear condition, the SVM achieved a median accuracy of 87.8%. This outcome suggests that cer-
tain footwear-induced changes in movement patterns are similar across subjects. The highest prediction accu-
racy in the footwear classification task was found for the barefoot condition (Fig. 3B), suggesting that barefoot 
running is fundamentally different from shod running for most individuals; a finding supported by previous 
studies20. In addition, the confusion matrix in Supplementary Fig. 5 revealed that certain footwear conditions are 
more likely to be misclassified by the SVM, indicating stronger similarities between these footwear conditions. 

Figure 4.   Input relevance evaluation of the machine learning models (model explanations) trained for the. 
employed classification tasks: (A) subject x footwear, (B) subject, (C) footwear. The input relevance scores 
were obtained by Layer-wise Relevance Propagation (LRP). For each subfigure (A–C): The top part on the left 
shows the summed contribution of the relevance scores for each of the 101 time points of the stance phase. In 
the bottom part on the left, lighter colours indicate variables of high relevance, while darker colours indicate 
variables of low relevance. The bottom right part highlights the summed contribution of relevance scores of 
each of the ground reaction forces (GRFs), namely mediolateral (GRFML), anteroposterior (GRFAP), and vertical 
(GRFV). The figure was created using the MATLAB code provided by Hoitz et al. (2021)18.
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In the confusion matrix, we see that there is frequent confusion between barefoot running and running with the 
New Balance Minimus shoe (40 + 17 = 57 misclassifications), while Adidas Adistar Boost and ON Cloudsurfer 
are frequently confused (31 + 26 = 57 misclassifications).

The models’ accuracy in the footwear classification task varied greatly across subjects (Fig. 3A). When indi-
viduals that were part of the test data have similar movement patterns in a footwear condition compared to 
individuals that were part of the training data, the SVM model could predict the correct footwear condition with a 
high level of accuracy. In comparison, when the movement patterns of individuals during testing were not similar 
to the movement patterns used during training, the classification performance dropped drastically. Hypothesis 
III, therefore, was partly supported by the findings of this work. Consequently, for some subjects, responses to 
a given footwear condition are comparable. These subjects may have similar functional needs towards footwear 
designs2,23,24. Given the finding of unique subject x footwear responses (subject x footwear classification in section 
"Subject x footwear classification"), future research needs to investigate to which extent subjects exhibit similar 
responses across different footwear conditions.

Implications for footwear research.  In this section, we compare the outcomes of the machine learning-
based footwear classification with the results obtained from the group-based inference statistical evaluation, 
which is the commonly employed approach in biomechanical footwear research to assess differences between 
different footwear conditions. We discuss the implications, advantages, and challenges of using machine learn-
ing models for footwear classification and their potential contributions to advancing the field of biomechanical 
footwear research. In particular, we focus on the ability of machine learning models to consider individual dif-
ferences in footwear research.

The SVM models utilized characteristics in GRFML, GRFAP, and GRFV to distinguish the different footwear 
conditions in the footwear classification task (Fig. 4C). GRF variables for which the statistical evaluation revealed 
a significant effect in the comparison of the four footwear conditions (Fig. 5 and Supplementary Table 1) were 
also utilized by the SVM models for the footwear classification task, as indicated by high LRP relevance scores 
(Fig. 5). In particular, the GRFV during the loading and impact phase (0–20%) provided class-specific GRF 
characteristics that are relevant for the classification of the footwear conditions (Fig. 5). However, there is one 
exception regarding the temporal occurrence of the anterior peak of GRFAP, which did not exhibit increased 

Figure 5.   Input relevance evaluation of the machine learning models (class explanations) trained for the 
footwear classification task. (A) Mean ground reaction force (GRF) patterns including mediolateral (GRFML), 
anteroposterior (GRFAP), and vertical (GRFV) of the four footwear conditions. (B–E) Mean GRFs of all test trials 
as a line plot for the class, color-coded via input relevance scores for the class obtained by Layer-wise Relevance 
Propagation (LRP). The grey-shaded areas highlight regions where statistical parametric mapping (SPM) 
indicated statistically significant differences between the four footwear conditions.
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relevance scores for the SVM models. This discrepancy suggests that the anterior peak of GRFAP was statistically 
significant in differentiating the footwear conditions (Supplementary Table 1) but did not play a prominent role 
in the footwear classification performed by the SVM models. This may be due to the access of the SVM models 
to additional data before and after the peaks in the time-continuous variables or the fact that other GRF charac-
teristics were identified to provide sufficient information for an accurate classification.

The SVM models based their predictions on GRF characteristics that exhibited statistically significant dif-
ferences between footwear conditions, but also GRF characteristics that did not exhibit statistically significant 
differences (e.g., GRFAP around 60% and 80–100% and GRFML around 45%, 60%, and 80–100% of the stance 
phase). This indicates that machine learning models learned additional GRF characteristics relevant for the 
footwear classification task. Possible implications of this observation will be further discussed in the following 
two subsections.

Machine learning models for footwear classification across subjects.  The subject explanations in Fig. 6 illustrate 
that SVM models could predict the correct footwear condition (i.e., Adidas Adistar Boost) for a variety of dif-
ferent movement patterns (from different subjects), which differed from the mean curve of the footwear condi-
tion. Machine learning models have the capability to consider various responses to footwear from the training 
data when making predictions. This indicates that machine learning models can learn different representations 
(movement patterns) for a specific footwear condition allowing for a more versatile and nuanced mapping of 
the footwear effect on running patterns. Thus, machine learning models may have the potential to consider vari-
ances in movement patterns related to relevant subgroups in the dataset (e.g., forefoot, midfoot, and rearfoot 

Figure 6.   Input relevance evaluation of the machine learning models (subject explanations) trained for 
footwear classification task. (A) Mean ground reaction force (GRF) pattern including mediolateral (GRFML), 
anteroposterior (GRFAP), and vertical (GRFV) of the footwear condition Adidas Adistar Boost, color-coded 
via input relevance scores obtained by Layer-wise Relevance Propagation (LRP). (B–E) Mean GRFs of all test 
trials as a line plot for one subject, color-coded via input relevance scores for the class obtained by Layer-wise 
Relevance Propagation (LRP). The grey-shaded areas highlight regions where statistical parametric mapping 
(SPM) indicated statistically significant differences between the four footwear conditions.
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runners, male and female runners, or novice, recreational, and high-calibre runners) without requiring explicit 
prior knowledge about them. Influencing factors that were previously less considered, such as functional groups, 
may also be implicitly modelled by the SVM models39.

However, this is only possible when one subject that was part of the training data has similar movement 
patterns in this footwear condition. The performance of machine learning models (highly) depends on the data 
used to train them. In the context of footwear classification this means that the machine learning models can 
predict the correct footwear condition if the data of a tested subject is similar to (and from the same distribu-
tion as) a subject that was part of the training data. However, if this is not the case, the SVM model is not able 
to accurately predict the correct footwear condition. Our experiments showcase that the data from a crucial 
minimum number of subjects seems to be required to train machine learning models that can represent a wide 
range of individuals (Supplementary Fig. 6). When the number of subjects is relatively small, as often is the case 
in biomechanical studies to date, there is a higher risk that the running patterns of individual subjects cannot be 
modelled well (e.g., subject 13 in our study). A representative database containing a large and diverse number 
of subjects could, however, not only allow to consider the above-mentioned subgroups, but even allows the 
analysis on an individual level using the most similar subject in the database in the sense of a “digital twin”. This 
could have a great potential especially for the prediction of long-term effects of footwear for individual subjects.

Subject‑specific machine learning models for footwear classification.  Two findings of our study, (I) the identi-
fication of unique movement patterns for each combination of runner and footwear that provided evidence 
for subject-specific responses to footwear (subject x footwear classification in section "Subject x footwear clas-
sification") and (II) subject-specific movement characteristics that changed only minimally across the different 
running conditions in most subjects (subject classification in section "Subject classification (across footwear 
conditions)") , support research strategies that assess the effects of footwear at the individual level, i.e., single-
subject approaches22.

Machine learning models for footwear classification can also be trained on data from one individual subject 
(subject-specific model). Subject-specific machine learning models could be used to predict which footwear 
design exhibits movement patterns that are most similar to a desired reference movement pattern (e.g., barefoot 
running, running with the personal shoe, preferred movement path3,20,40, and habitual movement path41,42) 
for an individual subject. In this context, machine learning models have the advantage that they can provide 
subject-specific predictions based on various multi-dimensional and time-continuous (biomechanical) variables 
without requiring explicit threshold definitions. For example, subject-specific machine learning models can be 
used in randomised controlled trials or running stores to predict the footwear that best matches the runner’s 
movement patterns.

Future research.  The present study employed GRF data during running to demonstrate how machine 
learning models (i.e., SVMs) combined with explainable artificial intelligence methods (i.e., LRP) can enrich the 
evaluation of footwear effects.

Future research needs to corroborate the presented findings by incorporating more diverse and larger datasets 
and experimental settings by considering e.g., on following four aspects. Firstly, a larger and more diverse popu-
lation should be included, encompassing anthropometric and demographic factors like sex, age, and running 
skill level. Secondly, further investigations including preferred, fixed, and systematically altered running speeds 
conditions are necessary to examine dependencies between the obtained classification results and running speed 
in more detail. Thirdly, it is crucial to incorporate data collected during “real-world” scenarios, such as long-
distance runs in common training or competition settings with variable influences (e.g., according to circadian 
rhythms, menstrual cycle, fatigue, mood, and running surface). Assessing the effect of footwear in these authentic 
contexts provides insights beyond controlled laboratory conditions, offering a more realistic evaluation. Lastly, 
future research should also incorporate specifically selected footwear conditions, including variations like dif-
ferent shoe types, cushioning levels, and support features.

With a larger dataset, the utilization of more complex machine learning models, such as deep learning archi-
tectures, holds the potential to yield deeper insights and improve the classification performance. Additionally, 
to ensure robustness and generalizability of the machine learning models, it is advisable to utilize a hold-out 
approach where a completely unseen test dataset is used for evaluation. Due to the limited size of the employed 
dataset, the use of k-fold cross-validation proved to be appropriate to obtain robust results. However, a larger 
dataset would allow for a more reliable assessment of the model’s performance on unseen test data.

While GRFs seem to be particularly suitable for generating such larger-scale datasets described above (i.e., as 
they are considered to be reliable, also across different laboratories) and have performed very well in the present 
experiments, it is important to acknowledge that GRFs are integral variables that aggregate the accelerations 
of the centre of mass of all body segments. Given that predictions of machine learning models for footwear 
classification are characterised by a plethora of versatile features (Fig. 4C), our findings imply that considering 
multi-dimensional and time-continuous biomechanical data such as full-body kinematics and kinetics appear 
to be promising for evaluations of (subject-specific) footwear effects. Future research involving a combination of 
bilateral kinematic, kinetic, and electromyographic data is needed to relate the presented results to a functional 
perspective.

Conclusion
The present findings suggest that unique movement signatures (across footwear) and unique responses to each 
footwear design can be modelled for each subject. Our results support the hypothesis that considering subject-
specific responses is advantageous for a better understanding of the functional effects of footwear during running. 
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The incorporation of different multi-dimensional and time-continuous biomechanical data (e.g., whole body 
kinematics and kinetics) seems to be similarly auspicious for a more differentiated (subject-specific) evaluation 
of the effects of footwear. Machine learning methods seem to be a promising and valuable extension to previous 
(subject-specific) approaches for footwear evaluation and recommendation.

Data availability
The dataset generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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