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Transfer‑learning is a key ingredient 
to fast deep learning‑based 4D liver 
MRI reconstruction
Gino Gulamhussene 1*, Marko Rak 1, Oleksii Bashkanov 1, Fabian Joeres 1, Jazan Omari 2, 
Maciej Pech 2 & Christian Hansen 1*

Time‑resolved volumetric magnetic resonance imaging (4D MRI) could be used to address organ 
motion in image‑guided interventions like tumor ablation. Current 4D reconstruction techniques are 
unsuitable for most interventional settings because they are limited to specific breathing phases, lack 
temporal/spatial resolution, and have long prior acquisitions or reconstruction times. Deep learning‑
based (DL) 4D MRI approaches promise to overcome these shortcomings but are sensitive to domain 
shift. This work shows that transfer learning (TL) combined with an ensembling strategy can help 
alleviate this key challenge. We evaluate four approaches: pre‑trained models from the source domain, 
models directly trained from scratch on target domain data, models fine‑tuned from a pre‑trained 
model and an ensemble of fine‑tuned models. For that the data base was split into 16 source and 
4 target domain subjects. Comparing ensemble of fine‑tuned models (N = 10) with directly learned 
models, we report significant improvements (P < 0.001) of the root mean squared error (RMSE) of 
up to 12% and the mean displacement (MDISP) of up to 17.5%. The smaller the target domain data 
amount, the larger the effect. This shows that TL + Ens significantly reduces beforehand acquisition 
time and improves reconstruction quality, rendering it a key component in making 4D MRI clinically 
feasible for the first time in the context of 4D organ motion models of the liver and beyond.

Insufficient compensation for irregular organ motion during image-guided interventions is a significant problem 
that can lead to inaccuracies in instrument navigation and compromised treatment outcomes. Real-time 4D 
MRI imaging in MRI-guided procedures holds the potential to address this issue. However, acquiring real-time 
4D MRIs of a large target region during an intervention is currently not feasible due to the need for a significant 
amount of reference data beforehand. Although a recent study demonstrated promising results using a deep 
learning (DL) approach with only 24 min of training  data1, this timeframe is still impractical for routine clinical 
settings where time is crucial. Additionally, there are limits to the specific absorption rate (SAR) allowed during 
MRI imaging, and these limits are likely to be exceeded during prolonged imaging. Consequently, the effective 
application of 4D MRI in the intervention room remains challenging. That could soon change with further 
advances in deep learning, as we will show in our work.

Related work 4D MRI methods can be classified as either respiratory phase-resolved or time-resolved (see 
Table 1). The former can reconstruct a fixed number of phases of a single breathing cycle (usually 10 or fewer 
phases) and can not account for arbitrary/irregular breathing. They are mainly based on sequence programming 
and unique k-space sampling designs, and the acquisition usually takes around 5 min. Cai et al.2 retrospectively 
sort axial slices into respiratory phases using the body area as an image-based internal respiratory surrogate. 
Hu et al.3 use single-shot acquisition with parallel imaging and partial k-space imaging to improve acquisition 
speed. They reconstruct four respiratory states of one breathing cycle. Tryggestad et al.4 acquire sagittal or coronal 
slices and retrospectively stack them in a two-pass approach into ten respiratory phase volumes. Paganelli et al.5 
removed the need for navigator frames by directly comparing neighboring slices using mutual information to 
reconstruct one breathing cycle. Deng et al.6 implemented a continuous spoiled gradient echo sequence with 3D 
radial trajectory and 1D self-gating for respiratory motion detection to retrospectively sort data into different 
respiratory phases. Han et al.7 repeatedly sample the k-space center line as a self-gated motion surrogate and 
retrospectively bin k-space data into different respiratory phases. Lind et al.8 acquire coronal slices and extract 
an image-based self-sorting signal performing rigid registration of the diaphragm to sort the image data into ten 
respiratory phases retrospectively. Meschini et al.9 cluster data slices without using navigator slices by comparing 
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different surrogate signals. Yang2020 et al.10 use the diaphragm in sagittal slices as an anatomic feature to sort 
axial slices into ten breathing phases. Eldeniz et al.11 train a deep learning network without ground truth to 
remove reconstruction artifacts from under-sampled phase-resolved 4D MRI.

4D MRI methods of the other class can reconstruct arbitrary/irregular breathing and are mainly based on 
clinically available MRI sequences. On the downside, most of these methods have long beforehand acquisition 
times of up to 60  min and are not real-time capable due to long reconstruction times of tens of  seconds12. In 
2007, Siebenthal et al.13 proposed a 4D MRI reconstruction framework for liver MRI with arbitrary breathing 
motion. They acquired a series of 2D MRIs alternating between spatially fixed navigators and spatially moving 
data slices. Using a search strategy, these multiple dynamic MRIs were then used to reconstruct corresponding 
3D MRIs for any reference navigator. That way, they reconstructed time-resolved 4D MRI from dynamic 2D 
navigator sequences, which could be used as a precursor for a motion model. The shortcoming of this method is 
the long acquisition time needed to establish the data set in which the search is performed and the time-expensive 
search during reconstruction itself. Several works adapted the idea of Siebenthal and tried to address the long 
acquisition time within the framework. They applied machine-learning methods to interpolate navigators or data 
slices, effectively reducing acquisition time. From these approaches, the one of Tanner et al.14 is most similar to 
ours because it is based on learning the relation between navigator and data slices. The main difference is that 
their method is not an end-to-end learnable formulation. It requires a time-expensive search for similar data 
slices within the prior acquisitions, making the method suited for retrospective reconstruction only. Karani 
et al.15 train a convolutional neural network to temporally interpolate navigators and use that to effectively half 
the number of navigator acquisitions. Zhang et al.16 expanded on that idea and proposed temporal interpolation 
using the prediction of a motion field as an intermediate step reducing the problem of blurry predictions and 
missing structures. Yuan et al.17 proposed a time-resolved large FOV 4D MRI reconstruction technique. It is 
based on sequence programming to shorten MRI acquisition times drastically. It attains high temporal ( 615ms ) 
at moderate spatial resolution ( 2.7× 2.7× 4.0mm3 ). However, it is not real-time capable because the volume 
reconstruction takes around 20 s . Also, the huge amount of captured data (91 MR images/s) risks filling up the 
scanner’s memory during longer imaging sessions. Gulamhussene et al.12 improved reconstruction speed and 
robustness against the out-of-plane motion in the navigator by applying template updates.

All methods from both groups mentioned above reconstruct 4D MRI retrospectively. They can not reconstruct 
prospectively or in real-time, not to be confused with prospective and retrospective gating. In 2022, we proposed 
a novel near-real-time, time-resolved 4D MRI  framework1. It is an end-to-end DL-formulation and based on 

Table 1.  Comparison with the related work regarding whether reconstruction is done pro-/retrospectively 
(P/R), matrix size, voxel resolution, whether its time-resolved (TR), how many phases of a breathing cycle can 
be resolved (breath. cycle sampling), volumes per second (vps) in pro- and retrospective reconstruction (P/R), 
beforehand acquisition time (befAcq), reconstruction time, and RMSE and MDISP. Values are taken from 
respective publications. Blank cells indicate information that was not reported in the respective work. Best 
values are bold. Our method with TL represents the best trade-off between befAcq time, prediction quality, 
FOV, and reconstruction time. *Based on a 6 s breathing cycle.

Year P/R Matrix size
Resolution in 
 mm3 TR

Breath. cycle 
smpl.* fps

befAcq in min
Recon. time in 
s/vol.

RMSE mean 
(95%)

MDISP mean 
(95%)P R P R

Cai 2011 R 256 × 166 1.5 × 1.5 × 5 No – 4 – – – – – –

Hu 2013 R 250 × 176 × 32 1.5 × 1.5 × 5 No – 4 – – 3 – – –

Tryggestrad 2013 R 175 × 190 × 9 2 × 2 × 5 No – 10 – – 13 – – –

Paganelli 2015 R 256 × 224 × 20 1.28 × 1.28 × 5 No – 8 – – 1.2 – – –

Deng 2016 R – – No – 10 – – 8 – – –

Han 2017 R 416 × 250 × 125 1.2 × 1.2 × 1.6 No – 8 – – 5 75 – –

Lindt 2018 R 138 × 208 × 30 2 × 2 × 5 No – 10 – – 5 30 – –

Meschini 2019 R 256 × 224 × 20 1.28 × 1.28 × 5 No – 8 – – 1.2 262 – –

Yang 2020 R – 1.67 × 1.67 × 5 No – 10 – – – – – –

Eldeniz 2021 R 318 × 318 × 96 1.13 × 1.13 × 3 No – 10 – – 5 2.7 – –

Siebenthal 2007 R 192 × 192 × 25 1.8 × 1.8 × 4 Yes – 36 – 5 60 73 – 0.68 (1.63)

Tanner 2014 R 224 × 224 × 53 1.3 × 1.3 × 5 Yes – 36 – 4.4 10 – – 0.8 (1.57)

Zhang 2018 R – 1.33 × 1.33 × 5 Yes – 36 – 2.4 30 36.5 10.23 (13.74) 0.36 (–)

Karani 2018 R – 1.33 × 1.33 × 5 Yes – 36 – 2.4 20 – 4.09 (6.81) 0.92 (2.62)

Yuan 2019 R 128 × 128 × 56 2.7 × 2.7 × 4 Yes – 9.78 – 1.63 0.33 20 – –

Gulamhussene 2020 R 140 × 176 × 47 1.82 × 1.82 × 4 Yes – 36 – 6 60 27 – –

Gulamhussene 2022 P/R 128 × 128 × 209 1.8 × 1.8 × 1.8 Yes 10.5 36 1.75 6 24 0.57 0.24 (0.37) 0.35 (0.81)

Our direct – P/R 128 × 128 × 209 1.8 × 1.8 × 1.8 Yes 10.5 36 1.75 6 2 0.57 0.34 (0.49) 1.83 (3.29)

Our TL – P/R 128 × 128 × 209 1.8 × 1.8 × 1.8 Yes 10.5 36 1.75 6 2 0.57 0.31 (0.48) 1.61 (3.11)

Our TL + Ens 
(N = 10) – P/R 128 × 128 × 209 1.8 × 1.8 × 1.8 yes 10.5 36 1.75 6 2 0.57 0.3 (0.46) 1.51 (2.98)
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the same acquisition scheme proposed by Siebenthal et al.13 but removes the active search for data slices by 
learning the relation between navigator and data slices and by that speeds the reconstruction up to sub-seconds 
( ≤ 600ms ). Unlike most related work, it performs extrapolation instead of interpolation and can thus be used 
in real-time during an intervention. It yields a large FOV, high temporal resolution, and a high isotropic spatial 
resolution of (1.8mm)3 . Still, our approach required half an hour of beforehand acquisitions for training. In 
essence, using previous works, one had to choose between long acquisition times and limited breathing phase 
support, i.e., no irregular breathing, none of which is clinically acceptable.

Contribution. In this work, we solve the shortcoming of our previously proposed methods’ long acquisi-
tion time for predicted time-resolved 4D  MRI1. First, we identify domain shift as a major issue for DL-based 
4D MRI prediction, which gets more severe the smaller the amount of available target domain data is, which fits 
into the observations of a recent 2021 survey of Guan et al.18. Second, we show that the beforehand acquisition 
time can be substantially reduced (from 24  to 2 min) by using transfer learning (TL) techniques without losing 
the support for irregular breathing. Third, by combining multiple models in an ensemble strategy, we are able to 
mitigate the negative impact of reduced training data and improve the accuracy and reliability of the predictions.

Materials and methods
Data acquisition. The liver MRI data of 20 healthy subjects were acquired on a MAGNETOM Skyra MRI 
scanner (Siemens Medical Solutions, Erlangen, Germany), following the protocol described in our earlier  work1. 
The data, study information, and MR sequence protocols are publicly  available19,20. For each subject, the data 
comprises three parts (see gray boxes in Fig. 1), described in the following:

Static volume. The static 3D liver volume is used as an anatomical reference during training and inference. It is 
acquired with a STAR VIBE MR Sequence (320 × 320 × 72–88 matrix size, 3 mm slice thickness, 1.19× 1.19mm2 
in-plane resolution, 0% phase oversampling, 44.4% slice oversampling, 380 mm FOV read, 100% FOV phase, 
2.83 ms TR, 1.48 ms TE, 9◦ flip angle, 7/8 slice partial Fourier).

Training sequences. During free breathing, several dynamic 2D sequences were acquired, in which navigator 
slices alternate with data slices. Navigators and data slices form pairs and are used as training samples. As the 
name suggests, training sequences are used only during training. While the navigator slice position is fixed in 
the right liver lobe, the data slice position is unique for all sequences, equidistantly sampling the liver from right 
to left. The navigator shows several vessel cross-sections and serves as a respiratory motion signal. Each train-
ing sequence consists of 175 navigators and 175 data slices. For each subject, the number of training sequences 
ranged between 38 and 57, depending on the size of the subjects’ livers. Overall the acquisition time ranged 
between 40 and 80 min per subject.

Reference sequence. Also, during free breathing, a dynamic 2D sequence of navigator slices was acquired as a 
reference sequence. It is dynamic in time but static in position, i.e., the navigator has the same fixed position as 

Figure 1.  For each subject, three kinds of data were acquired. (1) A static volume, (2) several alternating 
dynamic sequences (brackets indicate pairs of navigators and data slices), and (3) a dynamic reference sequence. 
Figure content is based on a previous conceptual sketch (Fig. 1 in Gulamhussene et al.1).
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in the training sequences. The reference sequence contains a natural succession of different breathing cycles/pat-
terns, like shallow/deep and thoracic/abdominal breathing. It is used for inference as a respiratory reference, i.e., 
a breathing signal. The reference sequence comprises 513 time points in our data, covering 85 seconds (typically 
about 20 breathing cycles).

Both, training as well as reference sequence were acquired using a TRUFI MR sequence (39.96 ms TR, 3.33 ms 
echo spacing, 1.49 ms TE, 30◦ flip angle, 676 Hz/voxel readout bandwidth, 176 kx base resolution, 80% phase 
resolution, 14×176 matrix size, 1.8× 1.8mm2 in-plane resolution, 4 mm out of plane resolution, 255× 320mm2 
FOV). For faster measurement, a partial Fourier was used, sampling 5/8 of the k-space asymmetrically in phase-
encoding direction, i.e., roughly 60% of the ky lines, resulting in 88 acquired lines. This resulted in an acquisition 
time of 166 ms/slice. No body array coil was used.

The ethics board of the Otto-von-Guericke-University Magdeburg/Germany approves our study ”Studies with 
healthy subjects in 3 Tesla for methodological development of MRI experiments” (approval number 172/12), 
concluding that there are no ethical concerns. All research was performed in accordance with relevant guidelines 
and regulations. Verbal and written informed consent was obtained from all subjects.

Deep learning prediction of 4D MRI. (All source code will be publicly available upon publication).

Deep learning formulation. A deep network with three 2D input channels is trained using training sequences 
together with slices of the static volume. Each training input corresponds to a specific subject. However, samples 
from different subjects can be used. A training input consists of three channels (see Fig. 2). Pairs of navigator and 
data slices are taken from the training sequences of a subject. The navigator is fed to the first channel. The data 
slice serves as ground truth (label). Two slices are sampled from the static volume (from the same subject): one 
slice at the navigator position is fed to the second channel, and one at the ground truth position (the slice to be 
predicted) is fed to the third and last channel.

In the following, we explain the rationale of the three channels. The navigator (first channel) is dynamic in 
time and static in its position. It determines (shows) the breathing state. The volume slice at the navigator posi-
tion (second channel) is static in both time and position and acts as a still reference to the dynamic navigator. It 
contains information on the relationship between the two different MR contrasts of the TRUFI and STAR VIBE 
MR images. The volume slice at the label position (third channel) is static in time but dynamic in position and acts 
as a still reference to the dynamic output we seek to predict and expresses the position that should be predicted.

Figure 2.  (A) U-Net architecture, with three-channel input. Blue boxes are convolutions; grey arrows are max 
pooling or upsampling, and pluses are feature map concatenations. (B) Ensembling of n models and generation 
of uncertainty map.
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During inference, the first channel determines the breathing state of the slice that is to be predicted, and the 
third channel determines its position. Thus we reconstruct any current breathing state (time domain) by pro-
viding a real-time navigator (acquired during the intervention) at any position (space domain) by choosing the 
proper position from the static volume (acquired before the intervention). By simply inferring all positions in 
one batch (in one forward pass), a total 3D volume for a time point is reconstructed. On a GeForce GTX 1080, 
this takes ≤ 600 ms, yielding real-time 4D MRI. Furthermore, if reconstruction is done retrospectively—and 
graphics card memory permits—a whole 2D+ T series at a fixed slice position or even a full 4D reconstruction 
can be performed in one batch.

Network architecture and training. In this work, we do not propose a new architecture. We use a U-Net21 to 
demonstrate our deep learning formulation. However, other architectures can be used as well. The only require-
ment is to have the three input channels described before. The three-channel input is processed in standard 
U-Net encoding and decoding paths. A leaky rectified linear unit (slope = 0.1) follows each convolutional layer. 
The convolutions are padded to keep the size of feature maps and input constant. The second convolutional layer 
in each block doubles the number of features, increasing the network’s capacity. A MaxPooling operation follows 
the first three blocks. In the first convolutional layer, 32 filters process the 128 × 128 × 3 input to the network. 
Following the architecture results in 512 feature maps in the latent feature space. The decoding reconstructs the 
image from the latent space. To this end, three blocks of two transposed convolutional layers are employed that 
up-sample the features. Between every two transposed convolutional layers, a dropout layer is used. With each 
up-sampling, the filter size is halved. A final 1× 1 convolutional layer outputs the reconstructed MR image.

The network was implemented with  Keras22. The total of 6.8 million parameters are trained by an Adam 
 optimizer23 (learning rate = 0.0004). We trained for 200 epochs using mean squared error (MSE) as loss and a 
batch size of 64. Checkpoints were employed and the model with the best validation loss was used. We applied 
z-score normalization, also known as whitening, to the image intensities of each subject. This normalization 
process ensured that the intensities had a zero mean and unit variance. It is important to note that this normali-
zation was reversed after the prediction stage and specifically before the uncertainty map generation processes 
in the case of ensembling. The training data was augmented in a physiologically plausible range as described in 
our earlier  work1 to facilitate robustness. Random augmentation was seeded for reproducibility. To simplify the 
processing, all images were re-sampled to 1.8mm3 voxels.

Transfer learning. As we will show in the next section, domain shift is a problem in MRI liver data and results 
in a discrepancy in model performance. We address this issue by fine-tuning a pre-trained model to a new target 
subject, because fine-tuning is a simple to use and effective technique. Its practicality and effectiveness make it 
particularly advantageous in a clinical context. Let S be the source domain and s ∈ S be the subjects of the source 
domain. Likewise let T be the target domain and t ∈ T be the subjects of the target domain. We use transfer 
learning in the form of fine-tuning to reduce the discrepancy in model performance in S and T. Specifically, 
let Mj

pre be a pre-trained model that was trained on data from all N source domain subjects [s1, sN ] ∈ S , where 
j denotes the minutes of training data per subject s. Mj

pre is then fine-tuned with i minutes of training samples 
from a new subject t ∈ T using the same training parameters as were used for the training of the pre-trained 
model (200 epochs, MSE loss, 64 batch size, data augmentation), resulting in the fine-tuned model Mi

pre+TL.

Ensembling and uncertainty map. We propose to combine an ensembling strategy together mit a transfer learn-
ing strategy with our 4D MRI framework. This is illustrated in Fig.2B). While fine-tuning does enhance predic-
tion quality, when limited training samples are available, it may not completely mitigate the decrease in predic-
tion quality caused by the smaller training data set. Ensembling plays an important role in addressing this issue. 
By combining multiple models, ensembling significantly improves the overall prediction quality and helps to 
mitigate the negative impact of the reduced training data set. To employ the ensembling strategy, N models were 
pre-trained, each starting from a random parameter initialisation. These N models were fine-tuned to a new 
subject following the training as described before. To form the final 4D MRI the predictions of the individual 
models in the ensemble are averaged. An uncertainty map is generated by computing the Coefficient of varia-
tion between the predictions. For that, after the normalization was reversed, the voxel wise standard deviation is 
dividing by the voxel wise mean.

Experiments and results
We divided the 20 subjects into a source domain S, containing 16 subjects, and a target domain T, containing 4 
Subjects. In both S and T, we used the first half of each training sequence as training data and the second half 
as validation data.

Model performance. To quantitatively assess model performance and for statistical analysis, we use the 
following three image-based error measures that express the similarity of predicted MR slice and ground truth.

RMSE. We compute the RMSE of two images, i.e., predicted slice and ground truth, as expressed in Eq. (1) by 
computing the voxel-wise intensity difference di , then taking the root of the mean of the squared differences.

(1)RMSE =

√

√

√

√

1

W ·H

W ·H
∑

i=0

d2i ,
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where W and H are the width and height of the images. It is common practice to report the RMSE in the evalu-
ation of 4D MRI methods. However, the comparability of the measure across works is limited because different 
image normalization might be used. Moreover, this similarity measure does not differentiate between the appear-
ance or presence of structures and the displacements of structures.

MDISP. We compute the MDISP by first performing a B-spline deformable registration using  simpleITK24 to 
obtain a dense deformation field between prediction and label. The resulting dense deformation field was then 
sampled with a 16× 16 grid ( 8× 8 voxel spacing) within the liver to obtain displacement vectors. We then com-
pute the average Euclidean norm of the displacement vectors in mm. We manually segmented all livers in the 
static volumes and used the segmentation as a mask to sample only within the liver. The parameterization of the 
deformable registration algorithm was empirically determined as follows.

ANTSNeighborghoodCorrelation (radius = 2) was used as the similarity measure. It visually yielded better 
registrations than MeanSquarse, MattesMutualInformation, and correlation. A pyramid scheme with two levels 
was utilized. In the first level, the images were smoothed with a sigma of 0.25 before halving their resolution 
using linear interpolation. In the second level, the original image was used with no smoothing. The grid size of 
the deformation mesh was 4× 4 in the first level. It was doubled to 8× 8 in the second level. A gradient descent 
optimizer (learning rate = 0.25, number of iterations = 20, convergence minimum value = 1e−7 , convergence 
window size = 10, estimate learning rate = True, maximum step size in physical units = 0.25) was used.

The MDISP is a better measure for comparison across works than the RMSE because the displacement of 
structures is independent of image normalization. However, the displacement field between a generated image 
and the ground truth is not always well defined. For example, when the prediction contains structures not present 
in the label or vice versa when structures are missing. An extreme example is an empty prediction, which would 
lead to an MDISP of zero, which of course, would not reflect the actual similarity.

DN_RMSE. To alleviate some of the shortcomings of RMSE and MDISP, we propose a new measure: the 
deformation-normalized root mean squared error (DN_RMSE). It computes the RMSE after the prediction is 
deformably registered to the label. Thus DN_RMSE measures the similarity purely based on appearance and 
not deformation or displacement and can be used to interpret small MDISP values better. Like MDISP, taken by 
itself, DN_RMSE is not conclusive. However, combined with MDISP, it aids in a better comparison of generated 
images within one work.

Domain shift. In this study the term domain shift is used in a general way, where it refers to the situation 
that the data distribution in the training set is different from the test set. And that this leads to a decrease in 
model performance. We argue that in clinical settings, the quantity of available training data is limited, and that 
there is a high likelihood that a new subject may not be adequately represented by the training set distribution. 
The inadequate representation of the new subject by the training set can be considered as domain shift. In our 
case, a small training distribution does not faithfully represent the following variations: liver shape and size, 
body height, abdominal girth and, consequently, SNR ( signal-to-noise ratio), body fat, sex, and age. This list 
might not be exhaustive. A tabular comparison of these aspects between the source domain and target domain 
can be found as Supplementary Table S1. To ensure anonymity only min, max, and mean values are reported. 
The liver shape is approximated as the extend along the three orthogonal directions SI (superior, inferior), AP 
(anterior, posterior), and LR (left, right). One can see that most values have a wide range between minimum and 
maximum. For example, the body height ranges from 160  to 220 cm , the body weight from 54  to 112 kg , and 
the liver volume from 1182 to 2435 cm3 . Also the liver extent has wide ranges in all three orientations (SI, AP, 
LR). A comparison of the different liver shapes and apparent SNR between source and target domain is given 

Figure 3.  Navigators show considerable variance in anatomy and SNR , as illustrated by four source domain 
subjects (S0 to S3 ) and four target domain subjects (T0 to T3 ). The violin plot (right) shows the prediction 
error of a pre-trained model in the source domain (S) and the target domain (T).
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in Fig. 3. It is likely that the 16 source subjects do not represent the distribution of all factors over these wide 
ranges faithfully .

Remember, M24
pre is a model pre-trained on all 16 Subjects from the source domain S, using 24min worth of 

training samples per subject. Of course, it would be best if it could be applied to a new subject t ∈ T directly and 
without any adaptation. However, this requires that there is no domain shift present between S and T. To test this, 
we compare the domains in two ways. First, the performance of M24

pre is compared between validation data (from 
S) and test data (T) using the MDISP and DN_RMSE. To that end, we randomly chose 50% of test samples from 
the first 10 seconds of the second half of each training sequence, i.e., for each subject (in S and T) and slice posi-
tion. We then computed both similarity measures for all predictions of the test samples. Second, the anatomical 
variance was assessed visually using the navigator frames. We visualize the MDISP and DN_RMSE distribu-
tions in a violin plot (see Fig. 3). The violin plots show non-normal distributions with different mean. Because a 
Shapiro-Wilk Test (n = 4000) and Kolmogorov-Smirnov test also showed that the distributions are not normally 
distributed (p < 0.001), we used a Wilcoxon rank sum test (m = 3040, n = 12,352) to test for significance of the 
distribution shift. The null hypothesis of no shift in error distribution was rejected at a significance level of p < 
0.001. The mean of MDISP and DN_RMSE are 0.30 and 1.29 in S and 0.49 and 2.06 in T. We quantify the effect 
size with Cohen’s d (n = 3040, m = 12,352) and find the effect size is large with d = 2.01 and 1.834. The visual 
comparison of the navigators shows variability in liver anatomy across subjects concerning the superior–inferior 
extent of the liver and the number and arrangement of vessels. This leads us to believe that domain shift is the 
reason for the significant shift in performance outcome of M24

pre in S and T.

Pre‑trained vs. TL and influence of source domain data availability. Because domain shift is a 
challenge in deep learning-based 4D MRI prediction, we propose to employ TL. We evaluate the effect of TL 
on our models by comparing Mj

pre ( j ∈ [2, 5, 12, 24] ) with M2
pre+TL regarding their performance in T. Where 

M
2
pre+TL is the result of fine-tuning Mj

pre with 2 minutes of samples from T (720 samples = 2min acquisition 
time). By that, we also analyze how the source data amount j influences the effect of TL. For comparison, we 
use RMSE, MDISP, and DN_RMSE. The top row of box plots in Fig. 4 shows the results of this experiment. Two 
observations can be made. First, transfer learning improves the model performance in the target domain for all 

Figure 4.  Top: comparison of no adaptation and TL at different levels of source domain data. Middle: 
comparison of direct learning and TL at different levels of target domain data. Bottom: comparison of ensemble 
sizes.
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tested measures. All tested measures show a high significance level of p<.001. Significance levels were computed 
using the Wilcoxon rank sum test (m = 3040, n = 12,352) after confirming none normal distributions using the 
Shapiro–Wilk test (n = 3040) and Kolmogorov–Smirnov test. We observe high effect sizes with |d| > 1.6 for 
RMSE and DN_RMSE and medium effect sizes with |d| > 0.7 for MDISP. Second, the amount of source domain 
data (beyond ∼ 1min/subject ) has little to no influence on the effect size. It also does not affect the performance 
of either Mj

pre or M2
pre+TL in T. In table 2 we report means and 95th percentiles.

TL vs. direct learning and the influence of target domain data availability. We evaluate whether 
TL is beneficial compared to directly learning a model from scratch in the target domain. Moreover, we evaluate 
how the target sample availability influences that effect regarding the effect size. To that end, we directly train 
models from scratch on samples from T and compare them with fine-tuned models. Let Mi

direct be a directly 
learned model and let Mi

pre+TL be a model fine-tuned from M2
pre , where i ∈ [1, 2, 5, 12, 24, 47] . M2

pre was chosen 
as the base model because j showed virtually no influence on model performance in T. Furthermore, acquiring 
only a few samples to train a base model in a real-world scenario would be more economical. The model perfor-
mance was tested dependent on the availability of target domain samples from 1 to 47 min (see the bottom row 
in Fig. 4). For each target data availability level i and target subject t, one model was trained directly and one with 
TL (in total, 48 models). For target data availability between 1 and 12 min, we observe significant improvements 
(p < 0.001) when using TL concerning RMSE, MDISP, and DN_RMSE, and visual assessment reveals detail gain 
(see Fig. 6). Beyond the level of 12min , improvements are not significant. We find that effect sizes are largest 
(small to medium) between 1 and 12 minutes when few target samples are available and become negligible when 
large amounts of target samples are available. We used the Wilcoxon rank sum test (m = 3040, n = 3040) to test 
for significance after we checked that the distributions are not normally distributed using the Shapiro–Wilk test 
(n = 3040) and Kolmogorov–Smirnov test. Effect sizes are reported as Cohen’s d. In Table 3 we report means 
and 95th percentiles. Figure 5 illustrates the image quality and displacement fields of predictions for increasing 
MDISP and RMSE values. We present 4D visualizations in this video: https:// youtu. be/ bh8A9 SoAXvM. (The 
video’s visibility will be set to public once the manuscript is accepted. During review the video is provided as 
Supplementary Material).

Figure 5.  Top row: displacement fields with a composite of (red) labels and (green) predictions as reference. 
Bottom row: intensity differences images.

Table 2.  Comparison of our method with no adaptation (no A) and with TL and different availability of 
source domain data.

Mean

15 s 30 s 1 min 2 min 5 min 12 min 24 min

No A TL No A TL No A TL No A TL No A TL No A TL No A TL

   RMSE 0.57 0.33 0.52 0.32 0.51 0.32 0.51 0.31 0.5 0.31 0.5 0.31 0.5 0.3

   MDISP 2.65 1.64 2.21 1.57 2.19 1.59 2.22 1.61 2.12 1.51 2.15 1.5 2.1 1.51

   DN_RMSE 0.56 0.31 0.51 0.31 0.5 0.3 0.5 0.3 0.49 0.3 0.49 0.3 0.49 0.3

95th percentile

   RMSE 0.83 0.89 0.77 0.48 0.76 0.48 0.76 0.48 0.75 0.48 0.75 0.47 0.74 0.46

   MDISP 4.42 2.98 3.87 2.93 3.77 3 3.82 3.11 3.65 2.81 3.65 2.8 3.63 2.79

   DN_RMSE 0.82 0.46 0.76 0.45 0.76 0.45 0.76 0.46 0.75 0.45 0.75 0.45 0.74 0.45

https://youtu.be/bh8A9SoAXvM
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TL+Ens vs. TL. We evaluate whether the combination of transfer learning with the ensembling strategy 
(TL+Ens) enhances the model performance. For that, we compare ensembles of fine-tuned models of different 
ensemble sizes with regard to RMSE, MDISP, and DN_RMSE. Where the ensemble size N = 1 represents only 
TL, i.e. no ensembling. A one-factorial analysis of variance (ANOVA) was performed to test for a primary effect 
of the ensemble size, which reveled a significant effect. A post-hoc pair-wise Tukey’s test was performed for 
the RMSE, MDISP, and DN_RMSE independently using p-adjustment. The pair-wise effect size was computed, 
using Cohen’s d. One can see that ensembles (TL + Ens) of size N = 5 and 10 perform significantly better than N 
= 1 (TL) in all tested metrics. Although ensembling provides some benefits, the effect size is relatively small, sug-
gesting that our TL strategy has reached a saturation point in terms of quantitative result quality. However, based 
on a subjective perspective, our senior radiologists with extensive experience consistently preferred the results of 
the TL+Ens approach over the TL-only results in all tested cases. The boxplots and all pairwise significances and 
Cohen’s d are presented in Fig. 4. The mean and 95th percentile are reported in Table 4.

Table 3.  Comparison of our method with direct learning and with TL. Availability of target domain data given 
in minutes.

Mean

1 min 2 min 5 min 12 min 24 min 47 min

Direct TL Direct TL Direct TL Direct TL Direct TL Direct TL

   RMSE 0.41 0.36 0.34 0.31 0.3 0.28 0.27 0.26 0.24 0.24 0.21 0.2

   MDISP 2.08 1.85 1.83 1.61 1.46 1.33 1.2 1.15 1.01 1.01 0.86 0.81

   DN_RMSE 0.4 0.34 0.34 0.3 0.3 0.28 0.26 0.25 0.24 0.24 0.21 0.21

95th percentile

   RMSE 0.59 055 0.49 0.48 0.44 0.44 0.4 0.4 0.38 0.37 0.29 0.28

   MDISP 3.67 3.57 3.29 3.11 2.67 2.65 2.23 2.27 1.97 1.98 1.64 1.54

   DN_RMSE 0.57 0.51 0.48 046 0.42 0.43 0.39 0.39 0.36 0.36 0.29 0.28

Table 4.  Comparison of ensemble sizes N.

Mean (95th percentile)

N = 1 2 5 10

RMSE 0.31 (0.49) 0.31 (0.47) 0.3 (0.47) 0.3 (0.46)

MDISP 1.58 (2.98) 1.56 (3.04) 1.53 (3.04) 1.51 (2.98)

DN_RMSE 0.3 (0.46) 0.3 (0.45) 0.29 (0.44) 0.29 (0.44)

Figure 6.  From top left to bottom right predictions of: M2
pre , M2

direct , M
2
pre+TL , ensemble of 10×M

2
pre+TL . 

Arrows indicate places of detail gain.
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Discussion and conclusion
The main advantage of utilizing TL and ensembling in our DL-based 4D MRI method is that it dramatically 
reduces the effect of domain shift. Moreover, the amount of target domain samples can be halved without ham-
pering the model’s performance compared to direct learning. From a clinical perspective, TL makes our method 
more economical because less beforehand acquisition and, therefore, less patient time in the MRI machine is 
needed. This is where our method stands out the most from the related work (see Table 1). It enables short pre-
imaging times while achieving high prediction quality concerning RMSE, MDISP, and DN_RMSE comparable 
with the related work. We evaluated our method with different amounts of training data for fine-tuning and 
believe 2 min yield a good balance between short acquisition time and high prediction quality. With 2 min, our 
method achieves a mean MDISP below voxel size with the 95th percentile below two voxels. Unlike the related 
work, our method is an extrapolation technique fast enough to predict real-time 4D MRI during an intervention, 
which is another unique strength. It should be noted that comparing the related work with our method regard-
ing MDISP is a bit unfair because interpolation, where the used temporal context can extend into the future, 
is easier than extrapolation. Nonetheless, our method can also be used retrospectively and still be competitive.

It should be noted that although most tests showed high significance for our experiments, this is not the 
main point, especially where the effect size is small. In these cases, the high significance levels are caused by the 
large statistical sample size. Overall the effect size is of greater relevance. We have shown that the effect of TL is 
greatest when few training samples are available but becomes negligible for training sample sizes of 24 min and 
beyond. However, this matches with the clinical need for short acquisition times.

The data set used in this study contains only healthy subjects. New studies are needed to conclude how well 
the 4D MRI models generalize to patient data from image guided liver interventions and other clinical settings.

We chose fine-tuning as a simple yet effective way of transfer learning to exemplify the novel combination 
of transfer learning with the deep learning based 4D MRI method. Of course, more advanced techniques could 
help to gain additional quality, which should be investigated in the future.

At 2 min worth of training samples, our method requires a fraction of beforehand acquisitions compared 
to the related work but has a larger MDISP. It would be interesting to quantify the benefit of improving sub-
millimeter precision in the context of medical imaging, where voxel sizes typically range from 1 mm to 2 mm 
and whether a mean displacement of < 1 voxel might be sufficient. We see a few avenues to improve our method 
for future work. First, in the case of retrospective use, it would be interesting to increase the amount of training 
data by incorporating navigator  interpolation15,16, and data  interpolation14 to double the temporal resolution to 
83 ms to increasing prediction quality. Second, it would be interesting to investigate the use of coordConv  layers25 
in place of normal convolutions to improve prediction quality. This seems very promising because the spatial 
component of the learning task is dominant. Lastly, a 3D architecture instead of a 2D one might make it easier 
to learn the 3D spatial relations of the liver motion. In that case, the training task could also be reformulated to 
directly predict the 3D motion field, which would be beneficial for use in radiation therapy.

We received positive feedback from two senior radiologists with extensive experience in image-guided liver 
interventions, who confirmed that the presented results would offer significant benefits if implemented in clinical 
practice. They preferred the TL+ensemble. Specifically, the translation of our work to the clinic could yield signifi-
cant advantages in interventional planning and simulation. This would only be possible because of the very short 
pre-acquisition time. The significant reduction in pre-acquisition time is crucial for two reasons. Firstly, time is a 
critical clinical resource. Reducing the time required for pre-acquisition allows for more efficient and streamlined 
imaging procedures. Secondly, there are strict limits on the specific absorption rate (SAR), which measures the 
amount of energy absorbed by the patient during the MRI scan. Prolonged acquisition times could potentially 
exceed these limits and pose safety risks. Therefore, the ability to shorten the pre-acquisition time is not only 
advantageous for time management but also for ensuring compliance with SAR regulations. For future research, 
it would be intriguing to adapt our method to simulate the breathing motion of planning data from patients.

Conclusion. In this work, we proposed to utilize TL and an ensembling strategy to substantially reduce 
beforehand acquisition time and improve the prediction quality of a DL-based 4D MRI prediction model. The 
approach uses only a few training samples for each new subject. Although demonstrated for the liver, it can be 
used for any organ affected by breathing motion. The method can be used in real-time for 4D imaging during 
image-guided interventions or retrospectively to create a 4D MRI as a precursor for a respiratory motion model 
for radiotherapy. We believe DL-based real-time 4D MRI with high spatial and temporal resolution has the 
potential to impact image-guided interventions and radiation therapy because it can help to solve the problem 
of organ motion without interfering with the clinical workflow.

Data availability
The MRI data, study information, and MR sequence protocols used in this study are available in the Open Science 
Repository for Research Data and Publications of OVGU (Creative Common License 4.0) in part one: https:// 
doi. org/ 10. 24352/ UB. OVGU- 2019- 093 and part two: https:// doi. org/ 10. 24352/ UB. OVGU- 2021- 071. All source 
code will be publicly available via GitHub upon publication.

Received: 25 October 2022; Accepted: 2 July 2023

References
 1. Gulamhussene, G. et al. Predicting 4D liver MRI for MR-guided interventions. Comput. Med. Imaging Graph. 102122. https:// doi. 

org/ 10. 1016/j. compm edimag. 2022. 102122 (2022).

https://doi.org/10.24352/UB.OVGU-2019-093
https://doi.org/10.24352/UB.OVGU-2019-093
https://doi.org/10.24352/UB.OVGU-2021-071
https://doi.org/10.1016/j.compmedimag.2022.102122
https://doi.org/10.1016/j.compmedimag.2022.102122


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11227  | https://doi.org/10.1038/s41598-023-38073-1

www.nature.com/scientificreports/

 2. Cai, J., Chang, Z., Wang, Z., Paul Segars, W. & Yin, F.-F. Four-dimensional magnetic resonance imaging (4D-MRI) using image-
based respiratory surrogate: A feasibility study. Med. Phys. 38, 6384–6394. https:// doi. org/ 10. 1118/1. 36587 37 (2011).

 3. Hu, Y., Caruthers, S. D., Low, D. A., Parikh, P. J. & Mutic, S. Respiratory amplitude guided 4-dimensional magnetic resonance 
imaging. Int. J. Radiat. Oncol. Biol. Phys. 86, 198–204. https:// doi. org/ 10. 1016/j. ijrobp. 2012. 12. 014 (2013).

 4. Tryggestad, E. et al. Respiration-based sorting of dynamic MRI to derive representative 4D-MRI for radiotherapy planning. Med. 
Phys. 40, 051909. https:// doi. org/ 10. 1118/1. 48008 08 (2013).

 5. Paganelli, C., Summers, P., Bellomi, M., Baroni, G. & Riboldi, M. Liver 4DMRI: A retrospective image-based sorting method. Med. 
Phys. 42, 4814–4821. https:// doi. org/ 10. 1118/1. 49272 52 (2015).

 6. Deng, Z. et al. 4D MRI using 3D radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory 
motion in the abdomen. Magnet. Resonan. Med. 75, 1574. https:// doi. org/ 10. 1002/ 2Fmrm. 25753 (2016).

 7. Han, F. et al. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med. Phys. 44, 1359–1368. 
https:// doi. org/ 10. 1002/ mp. 12139 (2017).

 8. van de Lindt, T. et al. A self-sorting coronal 4D-MRI method for daily image guidance of liver lesions on an MR-LINAC. Int. J. 
Radiat. Oncol. Biol. Phys. 102, 875–884. https:// doi. org/ 10. 1016/j. ijrobp. 2018. 05. 029 (2018).

 9. Meschini, G. et al. A clustering approach to 4D MRI retrospective sorting for the investigation of different surrogates. Phys. Med. 
58, 107–113. https:// doi. org/ 10. 1016/j. ejmp. 2019. 02. 003 (2019).

 10. Yang, Z., Ren, L., Yin, F.-F., Liang, X. & Cai, J. Motion robust 4D-MRI sorting based on anatomic feature matching: A digital 
phantom simulation study. Radiat. Med. Protect. 1, 41–47 (2020).

 11. Eldeniz, C. et al. Phase2phase: Respiratory motion-resolved reconstruction of free-breathing magnetic resonance imaging using 
deep learning without a ground truth for improved liver imaging. Invest. Radiol. 56, 809–819 (2021).

 12. Gulamhussene, G., Joeres, F., Rak, M., Pech, M. & Hansen, C. 4D MRI: Robust sorting of free breathing MRI slices for use in 
interventional settings. PloS one 15, e0235175. https:// doi. org/ 10. 1371/ journ al. pone. 02351 75 (2020).

 13. von Siebenthal, M. et al. 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52, 1547 (2007).
 14. Tanner, C., Samei, G. & Székely, G. Improved reconstruction of 4D-MR images by motion predictions. in International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention. 146–153. https:// doi. org/ 10. 1007/ 978-3- 319- 10404-1_ 19 
(Springer, 2014).

 15. Karani, N., Tanner, C., Kozerke, S. & Konukoglu, E. Reducing navigators in free-breathing abdominal MRI via temporal interpola-
tion using convolutional neural networks. IEEE Trans. Med. Imaging 37, 2333–2343. https:// doi. org/ 10. 1109/ TMI. 2018. 28314 42 
(2018).

 16. Zhang, L., Karani, N., Tanner, C. & Konukoglu, E. Temporal Interpolation Via Motion Field Prediction. arXiv preprint: arXiv: 1804. 
04440. https:// doi. org/ 10. 48550/ arXiv. 1804. 04440 (2018).

 17. Yuan, J., Wong, O. L., Zhou, Y., Chueng, K. Y. & Yu, S. K. A fast volumetric 4D-MRI with sub-second frame rate for abdominal 
motion monitoring and characterization in MRI-guided radiotherapy. Quant. Imaging Med. Surg. 9, 1303. https:// doi. org/ 10. 
21037/ Fqims. 2019. 06. 23 (2019)

 18. Guan, H. & Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng.https:// doi. org/ 10. 1109/ 
TBME. 2021. 31174 07 (2021).

 19. Gulamhussene, G. et al. 2D MRI liver slices with navigator frames. A test data set for image based 4D MRI reconstruction. OVGU. 
https:// doi. org/ 10. 24352/ UB. OVGU- 2019- 093 (2019).

 20. Gulamhussene, G. et al. 2D MRI liver slices with navigator frames. A test data set for image based 4D MRI reconstruction. Part 
II. OVGU. https:// doi. org/ 10. 24352/ UB. OVGU- 2021- 071 (2021).

 21. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention. 234–241. https:// doi. org/ 10. 1007/ 978-3- 319- 24574-4_ 28 
(2015).

 22. Chollet, F. et al. Keras. https:// github. com/ fchol let/ keras (2015).
 23. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint: arXiv: 1412. 6980. https:// doi. org/ 10. 48550/ 

arXiv. 1412. 6980 (2014).
 24. Lowekamp, B. C., Chen, D. T., Ibáñez, L. & Blezek, D. The design of simpleitk. Front. Neuroinform. 7, 45. https:// doi. org/ 10. 3389/ 

fninf. 2013. 00045 (2013).
 25. Liu, R. et al. An intriguing failing of convolutional neural networks and the CoordConv solution. Adv. Neural Inf. Process. Syst. 

31, 1–12 (2018).

Acknowledgements
The authors acknowledge the financial support from the Federal Ministry for Economics and Energy of Germany 
(project number 16KN093921).

Author contributions
Conceptualization: G.G., M.R., J.O., M.P.; Methodology: G.G., O.B.; Software: G.G., O.B.; Validation, Formal 
analysis, Investigation, Data Curation, and Visualization: G.G.; Writing—Original Draft: G.G., M.R., O.B., 
J.O.; Writing—Review & Editing: all authors; Project administration: G.G.; Supervision: M.R., J.O., M.P., C.H.; 
Resources and Funding acquisition: C.H.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 38073-1.

Correspondence and requests for materials should be addressed to G.G. or C.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1118/1.3658737
https://doi.org/10.1016/j.ijrobp.2012.12.014
https://doi.org/10.1118/1.4800808
https://doi.org/10.1118/1.4927252
https://doi.org/10.1002/2Fmrm.25753
https://doi.org/10.1002/mp.12139
https://doi.org/10.1016/j.ijrobp.2018.05.029
https://doi.org/10.1016/j.ejmp.2019.02.003
https://doi.org/10.1371/journal.pone.0235175
https://doi.org/10.1007/978-3-319-10404-1_19
https://doi.org/10.1109/TMI.2018.2831442
http://arxiv.org/abs/1804.04440
http://arxiv.org/abs/1804.04440
https://doi.org/10.48550/arXiv.1804.04440
https://doi.org/10.21037/Fqims.2019.06.23
https://doi.org/10.21037/Fqims.2019.06.23
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.24352/UB.OVGU-2019-093
https://doi.org/10.24352/UB.OVGU-2021-071
https://doi.org/10.1007/978-3-319-24574-4_28
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.1038/s41598-023-38073-1
https://doi.org/10.1038/s41598-023-38073-1
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11227  | https://doi.org/10.1038/s41598-023-38073-1

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Transfer-learning is a key ingredient to fast deep learning-based 4D liver MRI reconstruction
	Contribution. 
	Materials and methods
	Data acquisition. 
	Static volume. 
	Training sequences. 
	Reference sequence. 

	Deep learning prediction of 4D MRI. 
	Deep learning formulation. 
	Network architecture and training. 
	Transfer learning. 
	Ensembling and uncertainty map. 


	Experiments and results
	Model performance. 
	RMSE. 
	MDISP. 
	DN_RMSE. 

	Domain shift. 
	Pre-trained vs. TL and influence of source domain data availability. 
	TL vs. direct learning and the influence of target domain data availability. 
	TL+Ens vs. TL. 

	Discussion and conclusion
	Conclusion. 

	References
	Acknowledgements


