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A comparative investigation 
of machine learning algorithms 
for predicting safety signs 
comprehension based 
on socio‑demographic factors 
and cognitive sign features
Sajjad Rostamzadeh 1, Alireza Abouhossein 1, Mahnaz Saremi 1, Fereshteh Taheri 2, 
Mobin Ebrahimian 3 & Shahram Vosoughi 2*

This study examines whether the socio‑demographic factors and cognitive sign features can be used 
for envisaging safety signs comprehensibility using predictive machine learning (ML) techniques. This 
study will determine the role of different machine learning components such as feature selection and 
classification to determine suitable factors for safety construction signs comprehensibility. A total of 
2310 participants were requested to guess the meaning of 20 construction safety signs (four items 
for each of the mandatory, prohibition, emergency, warning, and firefighting signs) using the open‑
ended method. Moreover, the participants were asked to rate the cognitive design features of each 
sign in terms of familiarity, concreteness, simplicity, meaningfulness, and semantic closeness on a 
0–100 rating scale. Subsequently, all eight features (age, experience, education level, familiarity, 
concreteness, meaningfulness, semantic closeness, and simplicity) were used for classification. 
Furthermore, the 14 most popular supervised classifiers were implemented and evaluated for safety 
sign comprehensibility prediction using these eight features. Also, filter and wrapper methods were 
used as feature selection techniques. Results of feature selection techniques indicate that among the 
eight features considered in this study, familiarity, simplicity, and meaningfulness are found to be the 
most relevant and effective components in predicting the comprehensibility of selected safety signs. 
Further, when these three features are used for classification, the K‑NN classifier achieves the highest 
classification accuracy of 94.369% followed by medium Gaussian SVM which achieves a classification 
accuracy of 76.075% under hold‑out data division protocol. The machine learning (ML) technique was 
adopted as a promising approach to addressing the issue of comprehensibility, especially in terms 
of determining factors affecting the safety signs’ comprehension. The cognitive sign features of 
familiarity, simplicity, and meaningfulness can provide useful information in terms of designing user‑
friendly safety signs.

Safety signs are part of the safety management systems (SMS) to improve the safety of construction sites by 
increasing workers’ awareness of safety instructions, which helps to regulate, warn, and guide construction 
workers against occupational  risks1,2. Safety signs are common tools used to communicate effectively besides or 
instead of verbal information, as comprehension of the signs can overcome the language  barrier3. In an attempt 
to promote safety awareness and reduce human errors, pictorial safety signs can potentially convey large amounts 
of safety information in minimal space, they can be more effective visual communication than textual signs, 
and be remembered better than simple  text4,5. Safety signs can be confusing and misleading if they are similar in 
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shape and color and therefore can be interpreted by the individual with preconceived notions in  mind3. Recent 
studies have shown that comprehension varies widely among different safety signs and the effectiveness of some 
safety signs is low in terms of conveying safety  messages6,7. Sign comprehensibility is usually measured through 
a comprehension test, in which comprehension accuracy of over 67.00% is considered acceptable according to 
the International Organization for Standardization (ISO 3864, 2011)8. The American National Standards Insti-
tute (ANSI) set a higher acceptable comprehension level of 85.0% (ANSI Z535.3, 1997)9. Based on past studies, 
various socio-demographic factors such as age, gender, education level, cultural differences, working experience, 
duration of work, training, and type of safety signs affect the safety signs’ comprehensibility. With particular 
regard to cultural background, Caffaro et al. and Yao et al. highlighted that the same signs may have different 
meanings in different  cultures10,11. This consideration points out an important issue in terms of occupational 
safety and risk communication, especially in light of the increasing cultural diversity among construction work-
ers who often migrated to work in countries different from their  own6. Some studies have also found that the 
sign comprehension time increased with participant age and the number of information units and was shorter 
for male  counterparts12,13. Ben-Bassat et al. and Jiang et al. showed that older adults may have particular diffi-
culty in understanding high complexity and low comprehensibility signs due developing physical and cognitive 
 constraints14,15. Similarly, Gao et al. addressed work experience and education level as significant predictors of 
sign comprehension among  workforces16. They stated that the subjects with the relevant workplace or site visit 
experiences were usually more familiar with the context for safety signs and thus performed better in sign com-
prehension. In addition to the qualitative findings on the importance of socio-demographic factors for safety 
signs comprehension discussed above, Patel et al. performed a quantitative analysis to find out whether cogni-
tive sign features influenced the comprehensibility of the safety  signs17. These features, previously formulated 
by McDougall et al. included familiarity (i.e. the frequency of encountering a sign), concreteness (i.e. the sign 
depicts real objects, materials, or people), simplicity (i.e. the sign has a low number of elements, and detail), 
meaningfulness (i.e. subjects can attach a meaning to a sign), and semantic distance (i.e. the closeness of the 
relationship between the graphic and the desired function)18.

Previous studies have been conducted to gain a better understanding of the pattern of safety signs compre-
hensibility. The findings were chiefly limited to determining the signs comprehension scores and in some cases 
finding factors affecting comprehensibility by conventional descriptive  statistics7,19, analysis of  variance6,20, and 
multiple  regression2. Many input features, incorrect segmentation, and irrelevant features in these studies often 
make a predictive modelling task more challenging and it leads to less reliable predictive models. Unlike tradi-
tional statistical methods that are aimed at inferring relationships between variables, Machine Learning (ML) 
concentrates on making predictions as accurately as possible by using general-purpose learning  algorithms21. 
Many efforts have been made using ML approaches to identify different contributing factors in accidents, dis-
eases, and injuries occurrence. Gilani et al. used the ML methods such as artificial neural network (ANN) and 
logistic regression models to identify the influential factors on urban traffic accident occurrence. The results 
of this research indicated that the ANN model was more able, in terms of accuracy and efficacy, to predict the 
severity of  accidents22. Ganggayah et al. utilized six types of machine learning algorithms, which included deci-
sion tree (DT), random forest (RF), neural networks (NN), extreme boost, binary logistic regression (BLR), and 
support vector machine (SVM), to build models for detecting and visualizing significant prognostic indicators 
of breast cancer survival rate. The results showed that random forest (RF) and decision tree (DT) had the highest 
and lowest accuracy with 82.7% and 79.8%,  respectively23.

Despite the wide variety of applications of the ML approach in various research fields of bioinformatics and 
diagnostics, the ability of different ML algorithms in predicting different psychological and cognitive compo-
nents and how those components affect the decision-making outcome has received less attention. The majority 
of the studies about safety signs mainly examine the person’s psychological and neurophysiological aspects 
and the compliance behaviors that are directly in response to the safety  signs24–26. Their subjective impres-
sions and evaluations are often influenced by the demographic characteristics of the person, such as gender, 
work experience, education level, and age group. These influencing factors can manifest in partial systematic 
biases, and cause serious challenges in achieving a common view reducing comprehensibility results that are less 
repeatable and less accurate in predicting the dependent variable(s). To our knowledge, the current study can 
be considered a pioneer in the field of cognitive ergonomics and safety signs comprehensibility by quantifying 
and evaluating the effectiveness and capabilities of different supervised ML algorithms in predicting the safety 
signs comprehensibility and determining its most important predictors. The ML approach can provide an inte-
grated view of trends in construction workers’ comprehensibility and behavioral patterns, eliminate the biases 
in people’s understanding of a certain subject, and supports the development and design of new safety signs. 
Based on this, we used a numerical approach presented in the table instead of its graphical representation for a 
comparative investigation of ML algorithms to show its applicability and easier understanding for researchers 
and readers in other scientific fields. The objectives of the study were three-fold: (a) investigate the feasibility of 
socio-demographic factors and cognitive sign features in safety signs comprehensibility prediction, (b) quantify, 
implement, evaluate, and analyze the performance of the 14 different ML models for comprehensibility prediction 
in construction safety signs, and (c) which of the ML algorithms can predict the safety signs comprehensibility 
with the highest accuracy and consistency.

Materials and methods
Study area. The study was carried out between April and October 2021 among construction sites in Tehran 
City, Iran. Tehran is the capital city of Iran with over 15 million people dwellings in the larger metropolitan area 
of Tehran  province27,28. As a large metropolitan city that has a pivotal attribute to the political and financial part 
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of Iran, it attracts many skilled and low-skilled workers from inside and neighboring counties to work in the 
ongoing construction projects of the city.

Subjects and sampling. The study population comprised 2310 male construction workers between the 
age of 18 and 63 years from different districts of the major metropolitan city of Tehran, Iran. The three-stage 
sampling method was utilized. At first, a stratified sampling method was used to identify five clusters based on 
population distribution in Tehran. In the second stage, after providing the list of all the construction projects 
located in selected clusters, a systematic random sampling method was applied to choose five construction pro-
jects per cluster. The required minimum sample size of 400 subjects in each cluster (80 for each construction 
project) was determined using the formula,

where  Z1−α/2 = 1.96 (the value of normal deviate at 0.05 level of confidence),  Z1−β = 0.85 (the value of normal 
deviate at the study power of 0.8), d = 2.4 (expected absolute allowable error in the mean), and s = expected 
standard deviation of 17.1 according to the study conducted by Chan et al.29. Considering the “Design effect” 
for clustered sampling method (Deff = 2.2)30, the desired sample size was obtained to be 2310 subjects with about 
a 10% non-response rate.

All participants were Persian-speaking with self-declared normal or corrected-to-normal vision and good 
mental and physical health status at the survey time. Those who disagreed to participate had blurred or poor 
vision and diabetes and were not enrolled in the study. Participants were given information on what the study was 
about. Informed consent was obtained from all subjects and/or their legal guardian(s). Participants were assured 
of the complete confidentiality of the study and data and results were kept secured based on local instructions 
of the University for Data Protection Act. The study protocol was approved by the Research and Ethics Com-
mittee of the Iran University of Medical Sciences (Reg. IR.IUMS.REC.1397.177). All methods were performed 
following relevant guidelines and regulations.

Safety sign selection. Safety signs for a varied range of hazard types were included to foster greater gen-
eralizability of the test results. 15 health and safety experts participated in the safety signs selection process. The 
experts were identified and selected according to the snowball technique (also known as chain-referral sam-
pling), which is a non-probability (non-random) sampling method used when characteristics to be possessed 
by samples are rare and difficult to  find31. To select the safety signs, all 220 safety signs of the ISO 3864-2:2016 
 standard32 (42 mandatory signs, 42 prohibition signs, 50 emergency signs, 55 warning signs, and 31 firefighting 
signs) were printed color in squares of 2 × 2 cm on separate white papers. Then, these signs were sent to safety 
experts, and they were asked to select in such a way that are infrequently used and have a certain type and pur-
pose in all five categories including mandatory, prohibition, emergency, warning, and firefighting. Finally, 20 
safety signs including 4 mandatory signs (with code M1–M4), 4 prohibition signs (with code P1–P4), 4 emer-
gency signs (with code E1–E4), 4 warning signs (with code W1–W4), and 4 firefighting signs (with code F1–F4) 
were selected. Figure 1 shows the final set of safety signs with their code and their respective intended meanings.

Experimental design and procedure. The data were collected using a questionnaire with three sections 
in the native language of the participants (Persian). In the process of designing the questionnaire, contributions 
of industrial and organizational psychologists, health and safety specialists, civil engineers, and enforcement 
agencies resulted in a construction characteristics portion and a construction safety signs evaluation portion.

Socio‑demographic characteristics. The first part comprised questions including age, education level, years of 
experience, occupational status, and previous sign-related knowledge. Since subjects’ prior knowledge and expe-
rience could affect the results of the study, these people were excluded.

Safety signs comprehensibility. For the evaluation portion of the construction safety sign (second part), 20 signs 
were printed as color photographs (approximately 7 × 7 cm in size) on a separate sheet of A4 white paper (cor-
rect meanings were not included). The papers were evenly assigned to 10 test booklets, within 20 non-duplicated 
safety signs. Each participant responded to only one test booklet randomly attributed to him. The basic method 
of assessment was open-comprehension testing as described in ANSI (American National Standards Institute) 
Z535.3 (2007b)33 and ISO (International Organization for Standardization) 9186 (2001)34. The examiner verbally 
asked the participant the following questions: (1) Have you ever seen this sign? (2) What is the meaning of this 
safety sign? (3) What should be done when this safety sign is seen? In addition to the verbal questioning, the 
questions were also printed on sheets that each participant could read at the same time. This procedure was sug-
gested by ISO 9186 (2001) and was thus used in determining the comprehension correctness level in the present 
 study34. Participants were tested individually and gave oral answers for the entire experimental procedure.

Comprehension data were obtained separately for the pictorial signs and the signs’ background color and 
shape code. Authors with other two graphic/communication design experts’ judges individually scored all par-
ticipant responses. While doing the scoring, the judges had each symbol’s intended meaning and the partici-
pant’s written responses. Their task was to decide, independently, whether the participants’ interpretations were 
matching to the intended meanings of signs by assigning a score of “1” to correct responses and a score of “0” to 
incorrect ones. If the three judges were unable to agree on the judgment for a response, consensus-based decision 
makings were used. To ensure the reliability of this process, inter-rater reliability was calculated by averaging the 

n =
(

Z1−α/2 + Z1−β

)2
s2/d2,
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amount of accordance between judges, which reached 94.7%. Correctness of comprehension of the meaning of 
the safety sign was determined based on the following seven standard categories suggested by ISO 9186 (2001):

1. A correct comprehension of the sign meaning is certain (estimated probability of correct understanding over 
80%).

2. A correct comprehension of the sign meaning is very probable (estimated probability of correct understand-
ing between 66 and 80%).

3. A correct comprehension of the sign meaning is probable (estimated probability of correct understanding 
between 50 and 65%).

4. The meaning, which is understood, is opposite to that intended.
5. Any other response.
6. The response given is “don’t know”.
7. No response is given.

Then, the percentage of participants’ responses obtained in the first three categories was multiplied by a factor 
of correction, described in ISO 9186 (2001), as follows:

1. The percentage is multiplied by 1, if the correct understanding is certain.
2. The percentage is multiplied by 0.75, if correct understanding is very probable.
3. The percentage is multiplied by 0.5, if a correct understanding is probable.

Categories 
Sign 

Meaning (Code) 

Mandatory signs

Wear Safety Helmet 

(M1)

Wear Protective Footwear 

(M2)
Wear Safety Harness  

(M3)
Wear Eye Protection 

(M4)

Prohibition signs

No Smoking  

(P5)
No Naked Flames  

(P6)

Do Not Use This Lift  

(P7)
No Entry  

(P8)

Emergency signs 
 

First Aid  

(E9) 

 
Drinking Water  

(E10) 

 
Emergency Telephone  

(E11) 

 
Emergency Stop  

(E12) 

Warning signs 
 

High Voltage  

(W13) 

 
Falling Objects  

(W14) 

 
Slippery Floor  

(W15) 

 
Overhead Crane  

(W16) 

Firefighting signs 

 
Fire Extinguisher  

(F17) 

 
Fire Hose Reel  

(F18) 

 
Fire Emergency Telephone  

(F19) 

 
Firefighting Equipment 

(F20) 

Figure 1.  Safety signs used in the study and their intended meanings (from ISO 3864-2:2016).
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The sum of these three values was labeled as “Score”. The percentage of responses classified as the opposite 
(category 4) was subtracted from the “Score” resulting in the “Overall Score”. The presence of negative scores is 
explained by the existence of high percentages of opposite meanings that were generated (i.e., critical confusion).

A criterion used for sign comprehension testing was adapted to fit the role of measuring participants’ inter-
pretation of the shape-color background meaning (separate from the sign). The shape–color code was assessed 
relative to the following:

• Mandatory: round shape, a white symbol on blue background.
• Prohibition: round shape, a black symbol on white background, red edging, and diagonal line.
• Emergency: square or rectangular shape, a white symbol on a green background.
• Firefighting: square or rectangular shape, a white symbol on a red background.
• Warning: equilateral triangle shape, a black band with a black symbol on yellow background.

This evaluation was performed from the answers given to the question “What do you think the sign means?” 
Completely correct responses should include the meaning of the symbol and the shape–color code. Critical con-
fusion were assessed by responses attributing the opposite meaning to the shape and color components. To this 
purpose, participants’ answers to the question “What action would you take in response to this safety sign?” were 
evaluated. The criterion for safety sign acceptance is at least 85% of test subjects correctly interpret the icon/ pic-
togram and no more than 5% of subjects are critically confused, based on the ANSI Z535.3  recommendations33. 
Also, ISO 3864 was used as a similar comprehension criterion for safety signs with a minimum correct recogni-
tion rate of 66.7%32.

Cognitive sign features. In the third section, the cognitive sign features test was provided to record subjects’ 
viewpoints about each construction safety sign, proposed by Mcdougall et al.18. The authors reported strong 
validity and reliabilities for the original version, leading several researchers to use it  thereafter35,36. The Persian 
version of this questionnaire, validated by Taheri et al. (2018), was applied in the present  study37. The cognitive 
sign features sheets considered five features namely familiarity, concreteness, simplicity, meaningfulness, and 
semantic closeness. Familiarity refers to the rate at which a sign has ever been encountered. Signs are considered 
concrete if they are drawn similarly to real objects. The criterion of simplicity indicates the degree to which the 
signs are detailed. Meaningfulness indicates how meaningful users perceive a sign. Semantic closeness refers to 
the closeness of the association between what is depicted on a sign and what it is intended to represent. Complete 
explanations about the meaning of the five cognitive sign features and the rating instructions were given to each 
participant. Participants were requested to subjectively rate the design features for each safety sign on a 0–100 
point scale for familiarity (0 = very unfamiliar, 100 = very familiar), concreteness (0 = clearly abstract, 100 = clearly 
concrete), simplicity (0 = very complex, 100 = very simple), meaningfulness (0 = completely meaningless, 100 = com‑
pletely meaningful), and accuracy of semantic closeness (0 = very weakly related, 100 = very strongly related). The 
ratings were marked on 5-item questionnaires embedded under the given sign on each page of the test booklet 
(described above). The total time to complete a test booklet took about 30–45 min for each participant. The pro-
cess was repeated until all safety signs were completely rated. The entire interview process was guided by a sole 
investigator (the second author). The local research ethics committee approved the study protocol.

Descriptive analysis. Statistical analysis was performed by SPSS 23 (IBM Corporation, New York, NY, 
United States). The normality test was carried out using the Kolmogorov–Smirnov test for all data sets. Statistical 
outliers were checked using the Grubb′s test which is based on the difference between the mean of the sample 
and the most extreme data considering the standard  deviation38. Relative and absolute reliability was assessed 
for the comprehension performance test using the Intra-class Correlation Coefficient (ICC) and standard error 
of the measurement (SEM), respectively. Basic descriptive statistics such as means, frequencies, and percent-
ages were calculated for both demographic characteristics as well as cognitive sign features and comprehension 
performance scores. An analysis of covariance (ANCOVA) with Bonferroni-adjusted post-hoc tests was then 
performed to test the effects of socio-demographic factors and cognitive sign features included in the study on 
the comprehension rate.

Statistical learning approach. The proposed archetype for the prediction of safety signs comprehensibil-
ity using socio-demographic and cognitive signs features in the ML approach is presented in Fig. 2. The left side 
and right side of Fig. 2 show the offline system (training phase) and online mode (testing phase), respectively. 
The implementation steps of these phases are explained in the following sections along with details of the dataset 
used in this study.

Feature selection. The selection of reliable factors plays a crucial role in safety signs comprehensibility represen-
tation and classification using machine learning (ML) techniques. Feature selection is a procedure of choosing 
the most pertinent features and building a sensible model with better prediction power for signs comprehensibil-
ity. Broadly, feature selection techniques are classified into two types namely, filter and wrapper methods. Filter 
methods measure the relevance of features by their correlation with the corresponding variable while wrapper 
methods attempt to find the “optimal” feature subset by iteratively selecting features based on the classifier per-
formance. In this study, we used filter methods to determine the rank of features and select the relevant features 
by some principal criteria such as Information Gain (IG)39, Pearson’s correlation coefficient (P)40,  1R41, Gain 
Ratio (GR)42, Relief-F (RF)43, and Symmetrical Uncertainty (SU)44 in decreasing order. Also, a correlation-based 
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wrapper feature selection (CFS) approach was used to select the most reliable subset of  components45. This 
method generates different possible subsets from the given number of features and then evaluates them using a 
specific objective function. We kept the subset of features with the highest performance and discarded all other 
subsets. Further, a robust rank aggregation (RRA) technique, as a hybrid approach, was also implemented and 
 evaluated46.

Classification. The final phase of any ML approach is the classifier which maps input feature vectors x ∈ X to 
output class labels y ∈ {1,…, n}, where X is the feature space and n is the total number of classes. Classification 
techniques are broadly classified into two types namely, supervised, and unsupervised. In a supervised classifier, 
the training samples are supplied along with their class labels. The class label of unknown cases i.e. the test sam-
ples is then determined based on the parameters of the trained classifier model. In this study, some of the most 
popular supervised classifiers such as Binary Logistic Regression (BLR), Linear Discriminant Analysis (LDA), 
Quadratic Discriminant Analysis (QDA), Classification and Regression Tree (CART), Support Vector Machine 
(SVM), Random Forest (RF), Bootstrap Aggregating (also known as Bagging) algorithm, K-Nearest Neighbor 
(K-NN), and Adaptive Boosting were used to predict which of the socio-demographic factors and cognitive 

Demographic and anthropometric 

attributes of training group 

Normality test by using 

Kolmogorov-Smirnov 

Statistical significance 

analysis 

Identification of 

reliable factors 

Offline classification 

(Training) 

Independent 

sample t-test

Paired

samples t-test

One-way 

ANOVA test

Tukey post-

hoc test

Relief-F

One-R

Gain Ratio

Information Gain

Pearson’s correlation 

coefficient

Symmetrical 

Uncertainty 

Correlation 

subsetRobust rank 

aggregation

Support Vector 

Machine (Linear, 

quadratic, Cubic, 

Gaussian)

Binary Logistic 

Regression

Discriminant 

Analysis (Linear, 

Quadratic)

Classification and 

Regression Tree 

Random Forest 

Bootstrap 

Aggregating 

K-Nearest 

Neighbor

Adaptive Boosting

Machine learning 

factors  

Demographic and anthropometric 

attributes of test group 

Extract relevant factors 

of test group 

Online 

Classification  
Ground truth

Predictive Non-predictive 

Online System  

Offline System

Figure 2.  Proposed strategy for prediction of safety signs comprehensibility.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10843  | https://doi.org/10.1038/s41598-023-38065-1

www.nature.com/scientificreports/

sign features (i.e. independent variables) are importance on the safety signs comprehensibility (i.e. dependent 
variable). We chose these classifiers because, according to the literature, these classifiers have been efficaciously 
used in previous Computer-Aided Diagnosis (CAD)  studies47–51. The overall machine learning analysis was pro-
grammed using Scikit-Learn 0.20.3, a popular Python ML  library52.

Performance evaluation metrics and methods. The various performance metrics used to evaluate the classifiers 
are classification sensitivity or recall, specificity, accuracy, precision, F1 score, and area under the curve (AUC)53. 
Sensitivity or recall is the performance of a classifier to correctly categorize a person with correct comprehensi-
bility as a positive class; specificity is the performance of a classifier to correctly categorize a subject with incor-
rect comprehensibility as a negative class; accuracy is the fraction of the individual who was correctly classified 
as a positive or negative class by an ML model; precision, also known as a positive predictive value, is the fraction 
of the true positive class among the workers who were predicted as a positive class; F1 score is the harmonic 
mean of precision and  recall54. Along with these performance measures, the area under the receiver operating 
characteristics (AUC) is also used to compare classifier models. The mathematical formulas to calculate the 
above performance metrics are shown in Eqs. (1)–(5)53,55.

where, TP: true positive, FP: false positive, FN: false negative, and TN: true negative.

Data division protocol. K-fold cross-validation was used in this study to compare the model performance with 
that of existing predictors which is the most popular and extensively acknowledged by the research community. 
In this approach, the whole dataset was divided into ’k’ groups, consisting of an approximately equal number 
of samples. Out of the ’k’ groups, ’k − 1’ groups are used for training the classifier model while the remaining 
group is used for testing  purposes56. The process is repeated ’k’ times and average performance over ’k’ rounds 
is calculated. In this study, experiments were conducted with the desired value of k = 10, and the average results 
were used to evaluate the  model57,58.

Results
Demographic characteristics. The experiment included 2310 construction male workers ranging in age 
from 18 to 63 years (mean = 45.31, SD = 11.27). All of the participants had at least 5 years and more (between 6 
and 45 years) of construction work experience (mean = 16.45, SD = 2.13) and more than half of the total subjects 
were in the 18–35 age range. The main demographic characteristics of the sample are reported in Table 1.

Comprehension score of signs. Table 2 shows the overall scores (mean ± SD) for comprehension of picto-
rial symbol meaning and shape-color code. “Do not use this lift” (P7) and “No Smoking” (P5) signs had mini-
mum and maximum comprehension of sign meaning (16.6% for P7 and 89.4% for P5) and shape-color code 
(− 4.1% for P7 and 92.2% for P5), respectively. The American National Standard Institute (ANSI) and Organiza-
tion for International Standardization (ISO) have recommended that symbols must reach a criterion of at least 
85% or 67% correct, respectively, in a comprehension test to be considered  acceptable59. As shown in Table 2, 
there was only one safety sign reaching both the ISO and ANSI criteria, “No smoking” (P5; 89.4%). Another 
seven safety signs achieved the lower criteria of ISO only, namely the “Wear eye protection” (M4; 71.4%), “No 
naked flames” (P6; 78.8%), “No entry” (P8; 71.8%), “First aid” (E9; 77.7%), “High voltage” (W13; 73.6%), “Fire 
extinguisher” (F17; 81.2%), “Firefighting equipment” (F20; 67.6%). The overall mean sign comprehension scores 
across all safety signs for each of the five sign groups were:

• Mandatory signs: 56.13% (SD = 11.24), ranging from − 17.21 (min.) to 88.52 (max.).
• Prohibition signs: 64.15% (SD = 10.21), ranging from − 6.89 (min.) to 91.39 (max.).
• Emergency signs: 57.05% (SD = 8.31), ranging from − 23.50 (min.) to 86.77 (max.).
• Warning signs: 54.22% (SD = 9.51), ranging from − 19.23 (min.) to 89.22 (max.).
• Firefighting signs: 62.00% (SD = 10.44), ranging from − 5.77 (min.) to 94.35 (max.).

(1)Sensitivity or recall =
TP

TP+ FN

(2)Specificity =
TN

TN+ FP

(3)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(4)Precision =
TP

TP+ FP

(5)F1 =
2TP

2TP+ FP+ FN
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The data show that the prohibition signs attained a somewhat higher level of sign-meaning comprehen-
sion than the warning, emergency, and mandatory signs, followed closely by the firefighting signs. The overall 
mean comprehension for the signs across participants was 59.13% (SD = 16.45), ranging from − 23.50 to 94.35. 
Friedman’s two-way analysis of variance by ranks test revealed that there was a significant effect of sign group in 
the scores of comprehensions of sign meaning (χ2(4) = 17.35, p < 0.001). Dunn–Bonferroni pairwise multiple 
comparisons indicated that both prohibition signs (Median = 46.3, Interquartile Range (IQR) = 48.6; p = 0.001) 
and firefighting signs (Median = 52.3, IQR = 55.0; p = 0.001) scored significantly higher than the mandatory signs 
(Median = 17.8, IQR = 29.8), emergency signs (Median = 18.8, IQR = 38.1), and warning signs (Median = 14.2, 
IQR = 31.0) groups; whereas there were no significant differences among the mandatory, emergency, and warn-
ing sign groups.

Comprehension score of shape–color code. Comprehension of the safety signs’ shape-color coding 
was also checked out (see Table 2). The 67% level (similar to the ISO sign comprehension criterion) and the 85% 
level (similar to the ANSI sign comprehension criterion) were used as standard acceptability criteria to compare 
to the levels found in the present study. There were seven safety signs reaching both the ISO and ANSI criteria, 
namely the “Wear eye protection” (M4; 86.7%), “No smoking” (P5; 92.2%), “No entry” (P8; 87.5%), “First aid” 
(E9; 89.1%), “Fire extinguisher” (F17; 88.5%), and “Firefighting equipment” (F20; 86.4%). Only 14 out of 20 
safety signs attained 67% comprehension criterion for shape–color in the present study (signs M1—Wear safety 
helmet; M2—Wear protective footwear; M4—Wear eye protection; P5—No smoking; P6—No naked flames; 
P8—No entry; E9—First Aid; E10—Drinking water; E11—Emergency telephone; W13—High voltage; W15—
Slippery floor; F17—Firefighting extinguisher; F19—Fire emergency telephone; F20—Firefighting equipment). 
Table 2 have shown that several instances of the signs’ shape–color coding were poorly comprehended (signs 
M3—Wear safety harness; P7—Do not use this lift; E12—Emergency stop; W14—Falling objects; W16—Over-
head crane; F18—Fire hose reel). The mean shape–color code comprehension scores across all safety signs for 
each of the five sign groups were:

• Mandatory signs: 70.20% (SD = 10.26), ranging from 6.35 (min.) to 96.33 (max.).
• Prohibition signs: 62.65% (SD = 8.67), ranging from − 18.25 (min.) to 88.09 (max.).
• Emergency signs: 70.93% (SD = 10.54), ranging from − 12.44 (min.) to 92.25 (max.).
• Warning signs: 58.58% (SD = 8.37), ranging from − 16.45 (min.) to 85.71 (max.).
• Firefighting signs: 74.70% (SD = 11.89), ranging from − 8.10 (min.) to 98.21 (max.).

The data show that the firefighting signs attained a somewhat higher level of sign shape–color code compre-
hension than the warning, emergency, prohibition, and mandatory signs. The overall mean sign shape–color 
code comprehension across participants was 67.41% (SD = 18.27), ranging from − 18.25 to 98.21. Friedman’s 
two-way analysis of variance by ranks test revealed that there was a significant effect of sign group on the sign 
shape–color comprehension (χ2(4) = 16.10, p < 0.001). Dunn–Bonferroni pairwise multiple comparisons indi-
cated that firefighting signs (Median = 57.4, IQR = 54.6; p = 0.001) scored significantly higher than the mandatory 
signs (Median = 38.6, IQR = 57.1; p < 0.001), emergency signs (Median = 33.8, IQR = 49.0; p < 0.001), prohibition 
signs (Median = 27.4, IQR = 45.0; p < 0.001), and warning signs (Median = 29.4, IQR = 32.0; p < 0.001) groups. 
Also, there was a significant difference between each of the mandatory and emergency signs with prohibition 
and warning signs; but there were no significant differences between the mandatory and emergency signs.

Table 1.  Distribution of participants based on their characteristics.

Variable Category Frequency Percent

Gender
Male 2310 100.0

Female – –

Marital status
Single 1408 61.0

Married 902 39.0

Age group

 ≤ 25 years 679 29.4

26–35 years 580 25.1

36–45 years 460 19.9

46–55 years 330 14.3

≥ 56 years 261 11.3

Work experience

5–15 years 1107 47.9

16–30 years 740 32.1

31–45 years 463 20.0

Education level

MS/Ph.D 33 1.4

Bachelor’s degree 456 19.7

High school 1011 43.8

Less than high school 810 35.1
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Code

Sign meaning Sign shape-color

% (Mean ± SD)

Satisfy

% (Mean ± SD)

Satisfy

ISO ANSI ISO ANSI

 

61.8 ± 7.21 71.3 ± 8.03 ✓

 

61.4 ± 9.07 83.4 ± 5.37 ✓

 

29.9 ± 7.89 38.2 ± 8.11

 

71.4 ± 9.24 ✓ 86.7 ± 8.00 ✓ ✓

 

89.4 ± 11.10 ✓ ✓ 92.2 ± 7.00 ✓ ✓

 

78.8 ± 11.45 ✓ 75.0 ± 10.30 ✓

 

16.6 ± 7.56 − 4.1 ± 3.12

 

71.8 ± 7.22 ✓ 87.5 ± 10.10 ✓ ✓

 

77.7 ± 12.14 ✓ 89.1 ± 11.32 ✓ ✓

 

65.3 ± 10.91 70.1 ± 8.14 ✓

Continued
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Code

Sign meaning Sign shape-color

% (Mean ± SD)

Satisfy

% (Mean ± SD)

Satisfy

ISO ANSI ISO ANSI

 

35.8 ± 5.77 77.2 ± 8.31 ✓

 

49.4 ± 7.11 47.32 ± 7.21

 

73.6 ± 8.08 ✓ 71.5 ± 9.10 ✓

 

52.3 ± 8.13 46.4 ± 7.24

66.4 ± 8.73 67.7 ± 9.11 ✓

 

24.6 ± 5.11 48.7 ± 6.65

 

81.2 ± 8.77 ✓ 88.5 ± 10.73 ✓ ✓

 

47.9 ± 8.21 52.7 ± 8.40

 

51.3 ± 9.12 71.2 ± 10.27 ✓

 

67.6 ± 6.27 ✓ 86.4 ± 7.10 ✓ ✓

Table 2.  Overall scores (mean ± SD) for comprehension of significant meaning and shape-color for the 20 
safety signs. M mandatory signs, P prohibition signs, E emergency signs, W warning signs, F firefighting signs, 
SD standard deviation. Significant values are in bold.
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Table 3 shows that 7 of the 20 signs generated at least some critical confusion (opposite answers). Scores with 
bold markings in Table 3 show the particular signs that exceeded the ANSI Z535.3 acceptability level of attaining 
more than 5% critical confusion for comprehension of pictorial symbols and shape–color code. According to 
ANSI Z535.3, signs that exceed the 5% critical confusion level should be rejected. Based on this, three safety signs 
would be rejected based on comprehension scores of sign meaning and shape-color. These signs were: M3—“Wear 
safety harness”, P7—“Do not use this lift”, W14—“falling objects”. Generally, the workers had the largest number 
of critical confusions for shape-color comprehension of signs than comprehension of sign meaning.

Cognitive sign features. The safety signs’ features were evaluated on five categories using a 0–100 rat-
ing scale. All of the mean ratings exceeded 60 percent, which was the highest rating related to meaningfulness 
(71.47). Table 4 shows the signs with the lowest and highest ratings on cognitive sign features. Although all the 
subjects were experienced workers, sign E12 (emergency stop) was rated as very unfamiliar (37.25). The most 
familiar one signed P5 (no smoking). The sign P6 (no naked flames) was perceived to be very simple and definite 
while the signs M3 (wear safety harness) and W16 (overhead Crane) were identified as the most complex and 
somewhat vague, implying that the perceived simplicity of a sign is not only related to the number of elements 
in the sign but may be affected by other factors such as sign concreteness or meaningfulness. The sign M3 (wear 
safety harness) had the lowest concreteness rating (39.28) and lowest meaningfulness rating (47.08). The E17 
(fire extinguisher) sign had the highest meaningfulness rating (89.21) and semantic closeness rating (82.07), 

Table 3.  Percentage of critical confusion errors (opposite answers) by participants for the signs for which they 
occurred. M mandatory signs, P prohibition signs, E emergency signs, W warning signs, F firefighting signs. 
Significant values are in bold.

Sign Comprehension of sign meaning Comprehension of shape-color

 

– 3.66

 

7.56 8.22

 

3.66 –

 

– 5.65

 

4.40 –

– 3.66

 

4.40 –
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while the sign P7 (do not use this lift) had the least semantic closeness from the participants’ point of view 
(47.54).

The effect of age, work experience, and education level on safety sign comprehensibility. The 
impact of socio-demographic factors (age, work experience, and education level) on safety signs comprehensi-
bility was investigated. Participants’ age, work experiences, and education levels were divided into five (≤ 25, 
26–35, 36–45, 46–55, and ≥ 56  years), three (5–15, 16–30, and 31–45  years), and four (MS/Ph.D., bachelor’s 
degree, high school, less than high school) categories. Two-way analysis of variance (ANOVA) was used to ana-
lyze the difference among group means and presented in Table 5.

Table 5 shows that the level of workers’ comprehensibility of prohibition, emergency, warning, and firefight-
ing safety signs varies significantly with the age group (p-values < 0.001). On the other hand, the level of work-
ers’ comprehensibility of mandatory signs isn’t affected by worker age (p-values = 0.230). To find out which age 
group has the highest effect on prohibition, emergency, warning, and firefighting safety signs comprehensibility, 
post-hoc tests by Bonferroni were used. For prohibition, warning, and firefighting safety signs, the age group 
of 36–45 years had higher comprehensibility (71.3%) than the age groups less than 25 years (53.6%) and older 
than 56 years (56.2%). For emergency safety signs, the age groups of 36–45 years and 46–55 years had higher 
comprehensibility (65.2%, and 69.4%) than the age group of fewer than 25 years (59%).

Table 4.  The lowest and the highest scored safety signs with respect to cognitive features. M mandatory signs, 
P prohibition signs, E emergency signs, W warning signs, F firefighting signs, SD standard deviation.

Sign features Mean ± SD Lowest-rated signs Highest-rated signs

Familiarity 64.15 ± 16.21

  

Concreteness 60.17 ± 15.32

 

Simplicity 61.22 ± 13.41

 

Meaningfulness 71.47 ± 12.22

 

Semantic closeness 64.35 ± 17.55
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In examining the effect of education level on workers’ comprehensibility, the workers’ educational level had 
a significant effect only on the comprehensibility of firefighting signs (p-values = 0.042). Based on the Post-hoc 
test results by Bonferroni, participants with MS/Ph.D. and bachelor degrees had higher comprehensibility (70% 
and 68.4%) than the participants with an education level of less than high school (55.4%).

To find out if there are any statistically significant differences in participants’ comprehensibility with working 
experience; a Two-way ANOVA test was used. Table 5 shows that working experience related to construction 
has a significant effect on the participants’ comprehensibility of all safety signs (p-values < 0.001). To find out 
which working experience has the highest effect on safety signs’ comprehensibility, post-hoc tests by Bonferroni 
were used. It can be concluded that participants with a working experience of 16–45 years had a higher degree of 

Table 5.  SPSS ANOVA test of age, work experience, and education level effect on the comprehensibility of 
safety signs. Significant values are in bold.

Safety sign Variable Source of variation Sum of squares df Mean square F Sig

Mandatory signs

Age (years)

Between groups 0.344 4 0.098

1.325 0.230Within groups 17.312 2305 0.061

Total 17.656 2309

Experience (years)

Between groups 0.621 2 0.161

3.495 0.028Within groups 14.217 2307 0.031

Total 14.838 2309

Education level

Between groups 0.305 3 0.096

1.745 0.141Within groups 19.245 2306 0.521

Total 19.550 2309

Prohibition signs

Age (years)

Between groups 0.421 4 0.094

2.765 0.036Within groups 17.320 2305 0.036

Total 17.741 2309

Experience (years)

Between groups 0.564 2 0.134

3.282 0.020Within groups 18.678 2307 0.041

Total 19.242 2309

Education level

Between groups 0.056 3 0.019

0.638 0.710Within groups 13.745 2306 0.042

Total 13.801 2309

Emergency signs

Age (years)

Between groups 0.689 4 0.215

4.487 0.000Within groups 16.203 2305 0.021

Total 16.892 2309

Experience (years)

Between groups 0.766 2 0.250

7.654 0.000Within groups 14.994 2307 0.026

Total 15.760 2309

Education level

Between groups 0.287 3 0.115

2.340 0.073Within groups 18.559 2306 0.051

Total 18.864 2309

Warning signs

Age (years)

Between groups 0.876 4 0.223

5.567 0.000Within groups 16.587 2305 0.034

Total 17.463 2309

Experience (years)

Between groups 0.588 2 0.185

4.452 0.003Within groups 16.449 2307 0.406

Total 17.037 2309

Education level

Between groups 0.273 3 0.073

2.201 0.089Within groups 15.774 2306 0.039

Total 16.047 2309

Firefighting signs

Age (years)

Between groups 0.733 4 0.301

5.669 0.000Within groups 17.951 2305 0.028

Total 18.684 2309

Experience (years)

Between groups 0.880 2 0.365

6.102 0.000Within groups 18.245 2307 0.019

Total 19.125 2309

Education level

Between groups 0.442 3 0.120

2.275 0.042Within groups 19.345 2306 0.038

Total 19.787 2309
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comprehensibility than those with 5–15 years of working experience (p-values < 0.001), whereas, no significant 
difference in the comprehensibility of safety signs were observed between workers with a working experience of 
16–30 and 31–45 years (p-values < 0.001).

Relationships between socio‑demographic factors and cognitive sign features with safety sign 
comprehensibility. In this study, the scores of the cognitive sign features were normally distributed (Kol-
mogorov–Smirnov, P > 0.05). Pearson’s correlation test was carried out, in each signs categories, to evaluate if 
there were significant correlations between the measured sign meaning and shape-color code comprehension 
with users’ factors and cognitive sign features (see Table 6).

Results of feature selection. Table 7 shows the results of various feature selection techniques. As a result 
of Pearson’s correlation test in Table 6, it was found that only one feature namely “education level” was not cor-
related with safety sign comprehension (P > 0.05). However, the results of feature selection techniques in Table 7 
revealed that “education level” can also be a significant feature for sign comprehensibility classification. Thus, 
experiments were conducted initially for all possible combinations including top 5, top 4, top 3, top 2, etc. In 
filter-based methods, features are arranged in decreasing order of their rank while in wrapper-based methods, 
the best subset of features is selected. It is found that the rank assigned to various features by different feature 
selection techniques is slightly different. For example, if Pearson’s correlation coefficient (P) is used as the princi-
pal criterion, “Familiarity” is considered the most reliable factor. On the other hand, if RF is used as the principal 
criterion, “Simplicity” is considered the most reliable factor. Similarly, “Experience” is assigned the second rank 
if P is used as the principal criteria while it is assigned the sixth rank if GR or IG is used as the principal criteria. 
It is thus concluded that relying on one principal criterion may not always result in an optimal subset of factors. 
An optimal subset of factors elected using one assessment measure may not be similar to that using another. The 
performance of various feature selection techniques is evaluated using kernel-based SVM. The corresponding 
results are presented and discussed in the forthcoming section.

Results of classification using kernel‑based SVM. This section presents the results of different SVM 
classifiers with and without using the feature selection step. Six performance measures (accuracy, sensitivity, 
specificity, precision, F1-score, and AUC) were used for evaluation under tenfold cross-validation. Table 8 shows 

Table 6.  Pearson’s correlation coefficient between signs comprehension with users’ factors and cognitive sign 
features, by signs categories. Ms mandatory signs, Ps prohibition signs, Es emergency signs, Ws warning signs, 
Fs firefighting signs. *Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 
0.001 level (2-tailed).

Variable

Comprehension of sign meaning Comprehension of shape-color

Ms Ps Es Ws Fs Ms Ps Es Ws Fs

Age 0.23* 0.76** 0.81** 0.83** 0.91** 0.37** 0.71** 0.78** 0.92** 0.84**

Experience 0.81** 0.86** 0.90** 0.78** 0.85** 0.45** 0.73** 0.76** 0.80** 0.71**

Education level – – – – – – – – – –

Familiarity 0.67** 0.83** 0.65** 0.81** 0.71** 0.26* 0.45** 0.39** 0.55** 0.62**

Concreteness 0.51** 0.69** 0.52** 0.64** 0.32* 0.53** 0.41** 0.40** 0.36** 0.78**

Simplicity 0.61** 0.77** 0.59* 0.57** 0.74** 0.72** 0.50** 0.61** 0.32* 0.51**

Meaningfulness 0.48** 0.67** 0.55** 0.70** 0.81** 0.62** 0.58** 0.62** 0.41** 0.43**

Semantic closeness 0.40** 0.29* 0.58** 0.60** 0.80** 0.68** 0.70** 0.51** 0.77** 0.68**

Table 7.  Results of various feature selection techniques. P Pearson’s correlation coefficient, GR gain ratio, IG 
information gain, RF relief-F, SU symmetrical uncertainty, CFS correlation feature selection, RRA  robust rank 
aggregation.

Feature selection technique Category of feature selection technique
Selected features in decreasing order of their rank (filter method)/ Selected subset (wrapper 
method)

P Filter Familiarity, experience, concreteness, meaningfulness, semantic closeness, simplicity, age, education level

GR Filter Familiarity, simplicity, concreteness, semantic closeness, meaningfulness, experience, age, education level

IG Filter Familiarity, simplicity, concreteness, semantic closeness, meaningfulness, experience, education level, age

1R Filter Familiarity, simplicity, meaningfulness, experience, concreteness, semantic closeness, age, education level

RF Filter Simplicity, familiarity, meaningfulness, semantic closeness, concreteness, experience, age, education level

SU Filter Familiarity, simplicity, concreteness, semantic closeness, experience, meaningfulness, education level, age

CFS Wrapper Simplicity, familiarity, experience

RRA – Familiarity, simplicity, experience, concreteness, meaningfulness, semantic closeness, age, education level
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the performance of different SVM classifiers without using the feature selection technique (i.e. all the eight 
socio-demographic factors and cognitive sign features are supplied to the input of the classifier). It is found that 
medium Gaussian SVM outperforms other classifiers achieving the highest classification accuracy of 75.660% 
without using feature selection, under tenfold cross-validation. On the contrary, the course Gaussian SVM per-
forms worst achieving the lowest classification accuracy of 54.681% under the tenfold data division protocol.

Table 9 shows the performance of different SVM classifiers when the top 3 features namely, familiarity, experi-
ence, and concreteness selected by Pearson’s correlation coefficient (P) are supplied as input to the classifier. It is 
found that the medium Gaussian SVM classifier under tenfold cross-validation outperforms others achieving a 
classification accuracy of 73.760%. However, fine Gaussian SVM and Linear SVM achieve a higher classification 
accuracy of 71.008% and 70.102%, respectively. The worst performance is demonstrated by the Cubic SVM clas-
sifier displaying the lowest classification accuracy under all data division schemes with an accuracy of 52.208%.

Table 10 shows the performance of different SVM classifiers when the top 3 features namely, familiarity, 
simplicity, and concreteness selected by information gain (IG), gain ratio (GR), and symmetrical uncertainty 
(SU) were supplied as input to the classifier. It is found that the medium Gaussian SVM classifier outperforms 
others under all data division schemes with an accuracy of 75.615%. On the other hand, categories of test samples 
predicted by cubic SVM match least with ground truth categories resulting in its lowest classification accuracy 
under tenfold cross-validation.

Table 11 shows the performance of different classifiers when the top 3 features namely, familiarity, simplicity, 
and meaningfulness selected by 1R and Relief-F (RF) are supplied as input to the classifier. It is found that the 
medium Gaussian SVM classifier outperforms others under all data division schemes. It achieves the highest 
classification accuracy of 83.210% under tenfold cross-validation. On the contrary, coarse Gaussian SVM results 
in the lowest classification accuracy of 68.540%. It is interesting to note here that compared to all other feature 
combinations, the combination of familiarity, simplicity, and meaningfulness achieves the highest classification 
accuracy of 83.210%.

Table 8.  Performance of various SVM-based classifiers without using feature selection under tenfold cross-
validation. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

Linear SVM 73.446 68.447 77.685 88.559 0.855 0.734

Quadratic SVM 68.248 69.410 66.352 92.005 0.920 0.682

Cubic SVM 71.000 71.771 66.720 91.228 0.746 0.710

Fine Gaussian SVM 66.542 93.721 21.456 86.742 0.866 0.666

Medium Gaussian SVM 75.660 75.682 71.456 95.610 0.948 0.757

Course Gaussian SVM 54.681 88.235 11.230 90.118 0.785 0.547

Table 9.  Performance of various SVM-based classifiers using top 3 features selected by Pearson’s correlation 
coefficient (P) feature selection evaluated by tenfold cross-validation. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

Linear SVM 70.102 70.142 55.341 88.559 0.841 0.701

Quadratic SVM 64.442 58.447 66.752 92.005 0.892 0.644

Cubic SVM 52.208 64.223 42.230 91.228 0.770 0.522

Fine Gaussian SVM 71.008 76.445 52.075 86.742 0.880 0.710

Medium Gaussian SVM 73.760 74.002 70.125 95.610 0.922 0.737

Course Gaussian SVM 63.506 70.142 52.36 90.118 0.807 0.635

Table 10.  Performance of various SVM-based classifiers using top 3 features selected by the gain ratio 
(GR), information gain (IG), and symmetrical uncertainty (SU) feature selection evaluated by tenfold cross-
validation. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

Linear SVM 70.235 72.891 68.334 82.112 0.840 0.717

Quadratic SVM 68.243 78.694 57.233 90.771 0.847 0.680

Cubic SVM 62.551 67.334 58.005 78.990 0.764 0.687

Fine Gaussian SVM 68.110 80.885 56.234 81.362 0.890 0.701

Medium Gaussian SVM 75.615 85.726 66.235 93.054 0.910 0.882

Course Gaussian SVM 66.773 81.335 44.337 69.770 0.791 0.699
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Table 12 shows the performance of different classifiers when the best subset of features selected by correla-
tion-based wrapper feature selection (CFS) and the top 3 features selected by robust rank aggregation (RRA) is 
supplied as input to the classifier. The feature combination evaluated in this case is simplicity, familiarity, and 
experience. As in all of the previous cases, it is found that the medium Gaussian SVM classifier outperforms 
others under all data division schemes. It achieves the highest classification accuracy of 76.075% under tenfold 
cross-validation.

From the results of Tables 8, 9, 10, 11 and 12, it is concluded that the feature combination of familiarity, sim-
plicity, and meaningfulness achieves the highest classification accuracy. To study and confirm the impact of these 
factors on safety signs comprehensibility, some other popular classifiers such as binary logistic regression (BLR), 
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), classification and regression tree 
(CART), random forest (RF), bootstrap aggregating algorithm, k-nearest neighbor (K-NN), and Adaptive Boost-
ing were also evaluated as discussed in section "Classification" (see Table 13). It is observed that when familiar-
ity, simplicity, and meaningfulness were used as features, the K-NN classifier achieves the highest classification 
accuracy of 94.369% under tenfold cross-validation. This shows that familiarity, simplicity, and meaningfulness 
together can have a significant impact on the prediction of safety signs comprehensibility using machine learning 
techniques. Other classifiers such as adaptive boosting (AdaBoost) and random forest (RF) also performed satis-
factorily achieving classification accuracy of 85.260% and 83.102% under tenfold cross-validation, respectively. 
These results are very much comparable to those by SVM. To establish the statistical significance of improvement 
in classifier performance from 83.210% using medium Gaussian SVM-tenfold (see Table 11) to 94.369% using 
K-NN-tenfold (see Table 13), z-statistic was calculated at 95% confidence interval using approach explained in 

Table 11.  Performance of various SVM-based classifiers using top 3 features selected by1R and Relief-F (RF) 
feature selection evaluated by tenfold cross-validation. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

Linear SVM 71.235 69.677 73.264 77.425 0.768 0.725

Quadratic SVM 79.546 85.231 72.640 88.325 0.842 0.801

Cubic SVM 79.325 85.234 71.338 86.442 0.740 0.793

Fine Gaussian SVM 77.320 89.336 63.348 79.268 0.791 0.770

Medium Gaussian SVM 83.210 91.239 72.446 92.100 0.910 0.833

Course Gaussian SVM 68.540 74.210 56.662 71.330 0.826 0.690

Table 12.  Performance of various SVM-based classifiers using best subset selected by correlation-based 
wrapper feature selection (CFS) and top 3 features selected by robust rank aggregation (RRA) under tenfold 
cross-validation. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

Linear SVM 72.110 74.200 69.107 80.117 0.698 0.770

Quadratic SVM 68.665 76.410 63.470 84.110 0.758 0.730

Cubic SVM 62.425 66.770 55.472 73.556 0.726 0.632

Fine Gaussian SVM 70.881 80.694 60.425 74.663 0.770 0.700

Medium Gaussian SVM 76.075 82.450 64.233 89.005 0.880 0.802

Course Gaussian SVM 66.340 83.670 50.428 68.475 0.798 0.704

Table 13.  Impact of familiarity, simplicity, and meaningfulness on safety signs comprehensibility prediction 
using other classifiers under tenfold cross-validation. BLR binary logistic regression, LDA linear discriminant 
analysis, QDA quadratic discriminant analysis, CART  classification and regression tree, RF random forest, 
K‑NN k-nearest neighbor, AdaBoost adaptive boosting. Significant values are in bold.

Classification technique Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score AUC 

BLR 73.689 78.345 86.227 88.345 0.740 0.750

LDA 75.230 77.557 74.236 89.245 0.755 0.810

QDA 69.325 70.893 68.335 75.400 0.692 0.731

CART 66.880 72.368 65.448 71.664 0.670 0.684

RF 83.102 84.570 86.771 87.287 0.833 0.852

Bootstrap aggregating 79.265 80.330 79.000 83.273 0.792 0.881

K-NN 94.369 95.511 94.276 95.432 0.950 0.991

AdaBoost 85.260 88.330 84.337 86.220 0.855 0.800



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10843  | https://doi.org/10.1038/s41598-023-38065-1

www.nature.com/scientificreports/

Isaac (2015) study for test concerning two  proportions60. The z-statistic is found to be -2.204 with a p-value of 
less than 0.05 at a 95% confidence interval. This confirms that the improvement in classification accuracy of the 
K-NN classifier over the medium Gaussian SVM classifier is statistically significant.

Analyzing the results of Tables 8, 9, 10, 11, 12 and 13, it was found that the best combination of sensitivity, 
specificity, precision, F1-score, and AUC is achieved by the K-NN classifier under tenfold cross-validation when 
familiarity, simplicity, and meaningfulness were supplied as input to the classifier model. The values of the rest 
of the performance metrics such as sensitivity, specificity, precision, F1 score, and AUC were 95.511%, 94.276%, 
95.432%, 0.950, and 0.991, respectively. It is also observed that, for most of the feature combinations, sensitivity 
is high while specificity is low.

Discussions
In the past few decades, a large body of safety signs research has examined how to sign characteristics (such as 
symbol, shape, color, and incongruent information), socio-demographic factors (such as gender, age, culture, 
education level, work experience), and cognitive sign features impact safety signs  comprehensibility8,16,32. These 
studies provide basic principles and guidelines for the design of more effective safety signs; however, the present 
study takes a step further using general-purpose learning algorithms to find patterns in often rich and unwieldy 
data that affect sign comprehension. This study assesses the safety signs comprehensibility that is used to reduce 
or eliminate hazards in the working environment utilizing the hierarchy of risk controls and to be part of 
engineering/administrative  control61,62. This is the first study, to our knowledge, to examine the effects of socio-
demographic factors and cognitive sign features on the comprehensibility performance of safety signs among 
construction workers using eight different feature selection techniques and various popular classifiers of machine 
learning (ML) approaches. In addition, supervised machine learning models presented in this study can reduce 
the bias existing in the workforce when making a vigilant decision on the safety signs’  comprehensibility63,64. In 
this study, a database of socio-demographic factors and cognitive sign feature measurements were captured and 
utilized for safety sign comprehension prediction.

User factors and cognitive sign features effects. As expected, sign comprehensibility depended on 
age, education level, and work experience. The present study depicted that adulthood and middle-aged construc-
tion workers have a much better perceptual performance than their older colleagues. The lower comprehensi-
bility score in older adults (> 55  years) could be attributed to reduced attention and information-processing 
 abilities65. Our results supported the previous work of Akple et al. indicating that people with a university or 
above education level possess better sign comprehension than the participants with an education level of less 
than high  school66. Work experience, as another attribute, bore a relationship to the safety signs comprehensibil-
ity. There are investigations into construction safety signs and road warning signs that are consistent with our 
findings; suggesting that work experience can improve comprehension performance by increasing the frequency 
of encountering and familiarity with safety  signs6,67.

In this study, the average scores of the five cognitive features were relatively close to each other but varied 
greatly from sign to sign. In line with the finding, Saremi et al. and Ahmadi et al. studies on pharmaceutical 
pictogram comprehensibility showed that the cognitive sign features differ widely from sign to  sign36,68. For the 
“familiarity” feature, sign P5 (no smoking) was the most familiar sign and sign E12 (emergency stop) was rated 
as the least familiar sign, probably because the P5 sign is commonly seen in workplaces and public areas. For the 
“concreteness” rating, sign M3 (wear safety harness) and sign P6 (no naked flames) were assessed as the least- 
and most concrete, respectively. These results were consistent with the previous studies that concrete signs have 
obvious connections with the real world, while abstract signs consist mainly of shapes, arrows, and lines, and do 
not have such obvious  connections69,70. Regarding sign “simplicity”, P6 (no naked flames) was perceived as the 
simplest one while sign W16 (overhead crane) was perceived as the most complex, implying that the perceived 
simplicity of a sign was related to the number of elements in the  sign71. For the sign “meaningful”, sign E17 (fire 
extinguisher) and sign M3 (wear safety harness) were the most meaningful sign and the least meaningful ones, 
respectively.

Determining relevant components for prediction of safety signs comprehension using 
machine learning paradigm. Initially, all eight features were used for classification. It was found that the 
top three features i.e. familiarity, simplicity, and meaningfulness selected by 1R and Relief-F (RF) achieved the 
highest classification accuracy among all the possible combinations. Thus, for a fair comparison between differ-
ent feature selection techniques, the top three features selected by them were used for classification. It was also 
observed that when only the top 2 features were considered, there is a drop in classification accuracy. Hence, the 
top 3 features were selected for each feature selection algorithm. Results indicate that when these three features 
were used for classification, the accuracy of the classifier reaches 94.369% under hold out data division protocol 
which is even higher than that using all eight features. This further indicates that insignificant and irrelevant 
features may misguide the classifier model thereby deteriorating its overall performance. Among different classi-
fiers, the K-NN classifier outperforms others under different data division protocols followed by medium Gauss-
ian SVM. In line with the present study, Cahigas et al. stated that symbol familiarity was positively related to 
safety sign  comprehension72. Saunders et al. suggest that safety management systems should use familiar signs as 
much as  possible3. Also, the safety management unit should take responsibility for the appropriate placement of 
safety signs in different sections of construction sites and provide sign training to workers with emphasis on the 
adverse consequences of not giving attention to the hazards that are represented by safety signs. Regarding sign 
simplicity, simple signs led to a higher comprehensibility score than complex signs. This finding suggests that the 
extraneous decorative parts of a safety sign may confound user  comprehension67. Lu et al. stated that good icon 



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10843  | https://doi.org/10.1038/s41598-023-38065-1

www.nature.com/scientificreports/

design should be simple and clear, especially when perceived at a  distance73. Concerning sign meaningfulness, 
the comprehensibility scores were high for meaningful signs and low for meaningless signs, probably because 
meaningful stimuli are related to associated imagery and easily elicit meaning in one’s  mind74.

Using the ML approach, we have shown for the first time that the comprehension of construction safety signs 
can be classified and assessed regardless of the prejudice that usually exists in workforces based on exposure and 
previous experiences. The authors wish to extend the current study and use deep learning semantic approaches 
in AI to quantify subjective feedback to the comprehensibility of the construction safety signs. There is hope to 
make the signs as general and understandable to the wide audiences without mere bias. This study has several 
strengths. First, it used the standard protocols for safety signs comprehensibility and cognitive signs features 
assessment as well as conventional ML algorithms to maximize the performance improvements in terms of results 
and predictions. To the best of the authors’ knowledge, no assessment is previously carried out to quantify the 
safety signs comprehensibility along with the evaluation of the accuracy of different ML algorithms in predicting 
safety signs comprehensibility and determining its most important predictors. However, the current investiga-
tion has a few limitations to note. The most significant one is the lack of transparency of ML algorithms that 
inherently characterize black-box ML  models75. This means that the internal logic and inner workings of these 
algorithms are hidden from the user and will make a human (expert or non-expert) unable to verify, interpret 
and understand the reasoning of the  system76. The current study used a series of the general ML algorithms with 
easy-to-understand structures and a limited number of parameters that are intrinsically transparent and can be 
interpreted without requiring additional explanation. As Occam’s  Razor77 idea state the simpler model is, it may 
work and provide a more reliable outcome.

Conclusions
In this study, we managed to use users’ factors and cognitive signs features for safety signs comprehensibility pre-
diction in the construction industry using 14 machine learning models. In theory, we developed ML algorithms 
from three different supervised machine learning categories; namely, ensemble, neural network, and classical 
models. Various components of the ML paradigm like feature selection, cross-validation, classification, and 
performance evaluation were also implemented and examined. This study showed the role played by familiar-
ity, simplicity, and meaningfulness in, respectively, enhancing and increasing safety sign comprehensibility. In 
practical terms, preventive training interventions could focus on the redesign of the actual working strategies 
and the adoption of engaging training methods as behavioral modeling in the use of machinery to optimize the 
learning of safety practices and safe behaviors. However, more study is required to confirm these findings on a 
larger and multi-centric database of cognitive design features among more safety signs. Large open-source data-
bases of cognitive abilities, industrial conditions, and designing components are needed in the future to evaluate 
the performance of machine learning techniques in guiding the comprehensibility of the other safety signs. In 
the future, with a larger database, the performance of techniques used in this study can be compared with the 
performance of advanced classification techniques like a deep neural network. Generally, the use of a machine 
learning approach can be encouraged to determine which socio-demographic factors and cognitive sign features 
are important to predict safety signs comprehension in the construction industry. This would allow designers 
and practitioners to design construction safety signs based on the mental models approach to effectively convey 
their meaning clearly to prevent construction incidents occurrence.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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