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On the yield criterion of porous 
materials by the homogenization 
approach and Steigmann–Ogden 
surface model
Chenyi Zheng *, Hongzhen Wang , Yali Jiang  & Gaohui Li *

In this work, we investigate the yield criterion of nanoporous materials by using homogenization 
approach and Steigmann–Ogden surface model. The representative volume element is proposed as 
an infinite matrix containing a tiny nanovoid. The matrix is incompressible, rigid-perfectly plastic, von 
Mises materials and nanovoids are dilute and equal in size. First, the constitutive of microscopic stress 
and microscopic strain rate is established based on the flow criterion. Secondly, according to the Hill’s 
lemma, the relationship between the macroscopic equivalent modulus and the microscopic equivalent 
modulus is established by homogenization approach. Thirdly, the macroscopic equivalent modulus 
containing the Steigmann–Ogden surface model including surface parameters, porosity and nanovoid 
radius is derived from the trial microscopic velocity field. Finally, an implicit macroscopic yield criterion 
for nanoporous materials is developed. For surface modulus, nanovoids radius and porosity studies are 
developed through extensive numerical experiments. The research results in this paper have reference 
significance for the design and manufacture of nanoporous materials.

Nanoporous materials have outstanding material properties, including high  porosity1, large specific surface area, 
high thermal conductivity, high electrical conductivity, high energy adsorption and corrosion resistance. Due to 
the superior properties of nanoporous materials, related research articles have also been developed, including 
the study of effective  modulus2,3, elastic  response4–7 and strength analysis of nanoporous  materials8,9.

Among these studies, most of the literature is limited to the effect of surface and interface mechanical 
responses on elastic properties, while lack of focus on strength criteria for nanoporous materials, which has 
important implications for the design and fabrication of nanoporous materials. In terms of the yield criterion of 
porous materials,  Gurson1 proposed the famous Gurson yield criterion based on the trial microscopic velocity 
field from the perspective of energy. The effect of void ratio on the macroscopic yield criterion is fully consid-
ered in the Gurson yield criterion, so that the macroscopic yield criterion depends on both the macroscopic 
equivalent stress and the macroscopic average stress. Since the effects of void interactions and coalescence were 
ignored,  Tvergaard10 improved the Gurson yield criterion by calibrating using finite element unit cell calculations. 
Tvergaard and  Needleman11 further extended the macroscopic yield criterion according to a set of elastic-plastic 
constitutive relations, known as the famous GTN model.

For the research on the yield criterion of nanoporous materials, scholars mainly carry out two methods: 
numerical and  theoretical12,13. As an important numerical method, finite element theory is also used in the study 
of the yield criterion of nanoporous materials. Nasir et al.14 combined a Gurson-type yield function including 
void size effects with finite element theory to predict the forming limit of aluminum materials based on the 
interfacial stress of the membrane around spherical voids. The results show that a smaller void size leads to an 
increase in the ductility limit of the material. Espeseth et al.15 presented a numerical study of a finite element-
based unit cell consisting of a single spherical void embedded in a matrix material, with size effects represented 
by a porous plastic model with voids. Espeseth investigated the effect of the intrinsic length scale of the matrix 
material on void growth and coalescence under a range of stress states. Unlike classical finite element theory, 
Usman et al.16 investigated the effect of void shape on the micromechanisms of void growth by using discrete 
dislocation plasticity simulations and using the extended finite element method (XFEM) to model displacement 
discontinuities.
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In the theoretical study of nanoporous materials, a typical method is to couple the strain gradient theory on 
the Gurson model. By combining strain gradient theory and the classical Gurson model, Li et al.17 proposed a 
macroscopic yield criterion for spherical representative volume elements (RVEs) for axisymmetric tensile trac-
tion. Monchiet et al.18 extends Gurson’s yield criterion based on strain gradient theory and derives an approxi-
mate closed-form macroscopic yield function. On the basis of the strain gradient theory, the research on the 
yield criterion of nanoporous materials under complex working conditions is further developed. Niordson and 
 Tvergaard19 recently generalized the theory of strain gradient plasticity with dissipative gradient effects to finite 
strain in order to quantify the size-scale effect on void growth under different loading conditions.  Ban20 considers 
the influence of deformation damage on the basis of strain gradient plasticity theory and proposed a modified 
incremental constitutive model to characterize the coupling effect of size and damage in micro-metallic materials.

In addition to strain gradient theory, coupling surface theory at the interface of representative volume ele-
ment (RVE) is also a recent popular practice. Based on the traditional Gurson model, Dormieux and  Kondo21 
coupled the Gurtin-Murdoch surface model at the inner surface of the spherical void to deduce the macroscopic 
yield function of nanoporous materials and explored the effect of surface parameters on the macroscopic yield 
loci.  Monchiet22 used the same method to study the macroscopic yield function of nanoporous materials with 
viscoplastic matrix. Next, Monchiet and  Kondo23 further studied the yield criterion of nanoporous materials 
under ellipsoidal RVE. However, the Gurtin-Murdoch surface model only considers the surface tensile stress, 
while ignoring the existence of the surface compressive  stress24,25. In order to supplement this deficiency, Zheng 
and  Mi13 obtained the macroscopic yield criterion of nanoporous materials based on the Steigmann–Ogden 
surface model and explored the mechanism of surface bending moment.

Different from the Gurson model, the homogenization approach establishes the macroscopic yield function 
of nanoporous materials from the perspective of energy, which depends on the relationship between the macro-
scopic equivalent modulus and the matrix modulus. Due to the existence of critical points of elasticity and plastic-
ity, scholars can derive the macroscopic yield function of nanoporous materials from the perspectives of elastic 
limit and plastic flow. Zhang et al.26 derived the macroscopic yield function of nanoporous materials considering 
the Gurtin-Murdoch surface model from the perspective of elastic limit and studied the influence of surface 
elastic parameters on the macroscopic yield function.  Chen27 used the same method to study the macroscopic 
yield function of nanoporous materials with columnar RVE. Zheng and  Mi28 combined the homogenization 
theory and the Gurson model to derive the macroscopic yield function of multi-scale nanoporous materials.

Besides the analysis of elastic limit, Dormieux and  Kondo8 firstly derived the macroscopic yield function 
of nanoporous materials from the perspective of plastic flow, in which the imperfect interface is replaced by a 
thin film. In order to solve the problem of plastic modulus, Brach et al.29 based on the layered method solved 
the equivalent plastic modulus under different layers of matrix and deduced the macroscopic yield criterion of 
nanoporous materials, respectively. Subsequently,30 further studied the macroscopic yield function of nanoporous 
materials with general matrix under axisymmetric conditions. However, the above analysis ignores the influence 
of surface compressive stress on the imperfect interface.

The purpose of this paper is to continue the previous work, consider the influence of surface compressive 
stress on imperfect interface from the perspective of plastic flow and obtain the macroscopic yield criterion 
of nanoporous materials. Firstly, based on the plastic flow criterion, the plastic constitutive of the von Mises 
matrix is studied. Secondly, through the homogenization approach, the equivalent shear modulus of the matrix 
is obtained. Thirdly, according to the law of conservation of energy, the relationship between the macroscopic 
equivalent modulus and the microscopic equivalent modulus is derived. Finally, the macroscopic yield crite-
rion of the nanoporous material considering the Steigmann–Ogden surface model is obtained through the trial 
velocity field.

The remainder of this paper is structured as follows. Section 2 details the homogenization approach and the 
derivation of the macroscopic equivalent modulus containing Steigmann–Ogden surface model. According to 
the Hill’s lemma, the macroscopic yield criterion of nanoporous materials is obtained. In Section 3, extensive 
parametric studies are conducted in order to examine the effects of nanovoids surface bulk modulus, shear 
modulus, bending rigidity, nanovoids radius and porosity on the yield loci of nanoporous materials. In Section 4, 
concluding remarks are made.

Method of solution
Figure 1 shows the nanoporous materials containing multiple nanovoids inside. All multiple nanovoids are 
assumed to share the same radius and be far apart but to distribute randomly in space. To intercept a nanovoid 
as representative volume element (RVE), a standard Mori-Tanaka model will be considered, which is completely 
consistent with the image on the right side of Figure 1. a and b are denoted as the inner and outer radii of the RVE, 
respectively. Among them, the magnitude of the outer radius is much larger than the inner radius ( a ≫ b ) . The 
volumes occupied by the void, matrix and RVE are denoted by V1 , V2 and V3 , respectively. The outer boundary 
of the RVE is subjected to an arbitrary axisymmetric macroscopic strain rate ( D).

Homogenization approach. Let us consider that the matrix of the RVE satisfies the von Mises yield crite-
rion. The yield surface of the matrix is denoted by g(σ ):

where σd and σY stand for the microscopic deviatoric stress and microscopic yield stress for the whole RVE. By 
means of the plastic flow criterion, the microscopic strain rate can be easily obtained:

(1)g(σ ) =
3

2
σd : σd − σ 2

Y ≤ 0,
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where �̇ denotes plastic flow rate. For the convenience of subsequent derivation, the fourth-order mean projection 
tensor J and the deviatoric projection tensor K can be introduced here. Their tensor form can be represented 
by index notation:

where δij and Iijkl indicate identity second-order tensor and identity fourth-order tensor. Using the projection 
tensor, Equation (2) can be easily simplified to

Simultaneously multiplying the deviatoric projection tensor on both sides of the Equation (4):

It is not difficult to obtain the expression of the microscopic deviatoric stress by the fourth-order deviatoric 
projection tensor:

Substituting Eq. (6) into the yield function (1) of the matrix in limit state, the plastic flow rate ( ̇� ) can be 
derived

where d′ denotes the microscopic deviatoric strain rate. Knowing the form of microscopic stress and microscopic 
strain rate, the maximum plastic dissipation at any point in the RVE matrix can be expressed as

Here, we exploit the principle of plastic dissipation consistency to solve for the equivalent strain rate ( deq ) 
at the limit state

The plastic constitutive equation of the microscopic stress can be derived by the plastic flow criterion

where π(d) denotes the yield function of the matrix in terms of microscopic strain rate with the Equations 
(6, 7). Here we introduce the fourth-order plastic constitutive tensor ( C2 ) of the matrix to support the following 
derivation

(2)d = �̇
∂f (σ )

∂σ
= 3�̇σd ,

(3a-c)Jijkl =
1

3
δijδkl , Kijkl = Iijkl − Jijkl , Iijkl =

1

2

(

δikδjl + δilδjk
)

,

(4)d = 3�̇K : σ .

(5)K : d = 3�̇K : K : σ .

(6)σd = K : σ =
1

3�̇
K : d.

(7)�̇ =
1

σY

√

1

6
d′ : d′,

(8)π(d) = σ : d = σYdeq.

(9)deq =

√

2

3
d′ : d′.

(10)σ =
∂π(d)

∂d
=

2

3

σY

deq
d
′
,

a

b

Internal shape of nanoporous materials Representative volume element(RVE)

Rb� �v D e

o

Figure 1.  The nanoporous materials containing spherical nanovoids and the representative volume element 
(RVE).
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Since the matrix is incompressible, the plastic constitutive of the microscopic stress can be simplified by the 
fourth-order deviatorial strain projection tensor. The shear modulus of plasticity µ2

′
(

d
′
)

 is a function of the 
microscopic deviatoric strain rate. By Equations (10, 11), it is not difficult to obtain the functional expression 
of the plastic shear modulus

The non-constant nature of the plastic shear modulus can greatly increase the difficulty of solving the dis-
sipation. To solve this puzzle,8 proposed microscopic equivalent modulus shear modulus by homogenization 
approach

where µ2 is the average plastic shear modulus. We introduce a reference deviatoric strain rate, defined as

The expression of the average operator is

The Hill’s lemma is presented

where the average operator here acts on the macroscopic representative volume of nanoporous materials, as 
shown in the left figure of Figure 1.

The plastic dissipation of the RVE from the macro perspective is expressed as

For macroscopic RVE, the equivalent bulk and shear plastic moduli are assumed to be constants and denoted 
as κ3 and �3 . Since the outer boundary of RVE is subjected to a uniform strain rate, the macroscopic strain rate 
is constant.

Combined with equations (13,14), the plastic dissipation of the RVE from a micro perspective is expressed as

Combined with the Hill’s lemma and energy perturbation (17,18), the relationship between the macroscopic 
strain rate and the microscopic strain rate at the minimum potential energy is established

The macroscopic yield criterion can be further established

where

From equation (20), it can be observed that the macroscopic yield criterion depends only on the porosity 
(f), the microscopic equivalent shear modulus ( µ2 ) and the macroscopic equivalent bulk and shear moduli ( κ3 
and µ3).

Macroscopic equivalent bulk modulus ( κ
3
). For any macroscopic strain rate, the strain rate field in 

the main direction can be obtained by coordinate transformation. As a basic form, only the axisymmetric case 
is considered in this paper. The macroscopic strain rate of the Cartesian coordinate system established in the 
principal direction is expressed as:

(11)σ = C2 : d = 2µ2
′
(

d
′
)

K : d.

(12)2µ2
′
(

d
′
)

=
2

3

σY

deq(d′)
.

(13)2µ2 =
2

3

σY

d̃eq
.

(14)d̃eq =

√

2

3
d′ : d′.

(15)·̄ =
1

V

∫

V
·dV .

(16)� : D =
(

1− f
)

σ : d,

(17)�(D) = � : D = D : (3κ3J+ 2µ3K) : D = � :

(

1

3κ3
J+

1

2µ3

K

)

: �.

(18)π(d) = σ : d = 2µ2d :K: d = 2µ2d
′ : d′ =

1

3

σ 2
Y

µ2

.

(19)� :

(

1

3δκ3
J+

1

2δµ3

K

)
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(

1− f
) σ 2

Y

3δµ2

.

(20)3
µ2
2

κ23

δκ3

δµ2

(

�m

σY

)2

+
µ2
2

µ2
3

δµ3

δµ2

(

�eq

σY

)2

− 1+ f = 0,

(21a-c)�m =
tr(�)

3
, �eq =

√

3

2
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5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10951  | https://doi.org/10.1038/s41598-023-38050-8

www.nature.com/scientificreports/

where the macroscopic mean strain rate and the macroscopic deviatoric strain rate are denoted by Dm and De , 
respectively. Among them, the macroscopic equivalent bulk and shear moduli are generated only by the macro-
scopic mean strain rate and the macroscopic deviatoric strain rate, respectively.

Now, we will establish that the microscopic velocity field is generated only by the macroscopic mean strain 
rate:

where the superscripts 1 and 2 denote the inclusions and matrix of the microscopic RVE, respectively. The 
microscopic strain rate can be obtained by geometric equations

Establish the constitutive equation of microscopic stress

where �1,2 =
(

3κ1,2 − 2µ1,2

)

/3.
There are four unknown coefficients on the microscopic velocity field that need to be determined by boundary 

conditions. The kinematic equations should be satisfied on the outer boundary.

Considering that the velocity field at the center of the sphere cannot be singular, the form of the unknown 
coefficient G1 should be

At the interface, the continuity condition of the velocity field should be guaranteed

Steigmann-Ogden governing  equations5 for the force balance condition across a solid interface is described as

where ∇S , τ , M and n denote the surface projection gradient in spherical coordinates, surface stress, surface 
bending moment and unit outer normal vector of the sphere, respectively. For the convenience of solving, the 
second-order surface projection tensor Tij and normal projection tensor Nij are introduced

It is easy to find that the surface projection tensor and the normal projection tensor are orthogonal and 
normal.

Split gradient operator into normal direction and surface direction

where surface gradient operator ∇S is written as Tij
∂
∂xi

 in index notation. The surface bending moment is 
expressed as

The surface stress is expressed as

Through the above efforts, the interface stress condition (29) with surface effect can be rewritten as

(22)D =

[

Dm + De 0 0

0 Dm + De 0

0 0 Dm − 2De

]

,

(23a,b)v1R = F1R + G1

a3

R2
, v1ϕ = v1θ = 0,

(23c,d)v2R = F2R + G2

a3

R2
, v2ϕ = v2θ = 0,

(24a,b)d1ij =
1

2

(

v1i,j + v1j,i

)

, d2ij =
1

2

(

v2i,j + v2j,i .
)

(25a,b)σ 1
ij = �1d

1
kkδij + 2µ1d

1
ij , σ 2

ij = �2ε
2
kkδij + 2µ2d

2
ij ,

(26)v2R|R=b = Dmb

(27)G1 = 0.

(28)v1R|R=a =v2R|R=a.

(29)[σ ] · n = ∇S · τ +∇S · ((∇S ·M)n)− (∇S · n)n · (∇S ·M)n,

(30a,b)Tij = δij − ninj , Nij = ninj .

(31a-c)TijTjk = Tik , TijNjk = 0, NijNjk = Nik .

(32)
∂

∂xj
= Nij

∂

∂xi
+ Tij

∂

∂xi
,

(33a-c)Mij = ζsκkkTij + 2χsκij , κij = −
1

2

(

ϑk,u + ϑu,k
)

TiuTkj , ϑi = Tijnkvk,j .

(34a-b)τij = �0d
s
kkδij + 2µ0d

s
ij , dsij = TikdklTlj .

(35)[σ ]ijni = τij,i + Tlu

(

Mkl,knj
)

,u
− Tikni,knlMml,mnj
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By calculation, it can be obtained

The surface stress condition of the Steigmann-Ogden model can be further rewritten as

Using the trial velocity field, the slope change vector ϑi is written as

From this, it can be judged that the surface bending moment does not participate under the action of the 
macroscopic mean strain rate due to Mij = 0 . Therefore, the surface stress condition of Steigmann-Ogden surface 
model will degenerate into the surface stress condition of Gurtin-Murdoch surface model.

Through the above four boundary conditions (26, 27, 28, 39), the four unknown coefficients ( F1, F2,G1,G2 ) 
contained in the microscopic velocity field can be uniquely determined.

Define the average microscopic strain rate  as2:

The average strain rate of the matrix and the average strain rate of the inclusions are expressed as 

 where

Then the microscopic equivalent strain rate and stress of the micro RVE are written as 

 where

Combining equations ( 43,44), the macroscopic equivalent bulk modulus can be obtained

Considering that the inclusion is a nanovoid, its bulk modulus ( κ1 ) and shear modulus ( µ1 ) are both 0. Since 
the microscopic matrix is von Mises matrix, the microscopic bulk modulus is infinite. The macroscopic equivalent 
bulk modulus can be further simplified

Macroscopic equivalent shear modulus ( µ
3
). The macroscopic shear modulus is only affected by the 

macroscopic deviatoric strain rate:

To this end, the microscopic velocity field subjected only to the macroscopic deviatoric strain rate field is 
expressed as 

(36)Tikni,k =
2

a
.

(37)[σ ]ijni = τij,i + Tlu

(

Mkl,knj
)

,u
−

2

a
Mml,mnjnl .

(38)ϑi = Tijnkvk,j = 0.

(39)[σ ]ijni = τij,i

(40)d̄ij =
1

2V

∫

S

(

nivj + njvi
)

dS.

(41a)d̄2ij =
1

2V2

∫

S

(

niv
2
j + njv

2
i

)

dS = Dmδij ,

(41b)d̄1ij =
1

2V1

∫

S

(

niv
1
j + njv

1
i

)

dS =
Dm(3κ2 + 4µ2)

3κ1 + 2(2+ κs)µ2

δij ,

(42a-e)κs=
κ0

aµ2

, µs=
µ0

aµ2

, ηs =
η0

a3µ2

, κ0 = 2(µ0 + �0), η0 = 3ζs + 5χs .

(43a)d̄3ij =
(

1− f
)

d̄2ij + f d̄1ij ,

(43b)σ̄ 3
ij =f

(

σ̄ 1
ij + τ̄ij

)

+ (1− f )σ̄ 2
ij = 3κ3d̄

3
ij ,

(44)τ̄ij =
1

V1

∫

s
[σ ]kinkxjdA.

(45)κ3 =
−3κ1

(

3κ2 + 4fµ2

)

− 2µ2

(

κ2
(

6− 6f + 3κs
)

+ 4f κsµ2

)

9
(

−1+ f
)

κ1 − 6(2+ κs)µ2 + f (−9κ2 + 6κsµ2)
.

(46)κ3 =
2
(

2− 2f + κs
)

µ2

3f
.

(47)D = Deexex + Deeyey − 2Deezez .
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where P2(cosϕ) is the Legendre polynomial of order two.
Taking into account the geometric and constitutive equations (24a,b, 25a,b), substitute the microscopic stress 

into the stress balance equation:

Based on equation (49a-b), eight unknown coefficients in the microscopic velocity field can be determined as

There are still 8 unknown coefficients in the microscopic velocity field that need to be determined by bound-
ary conditions. First, the kinematic equations need to be satisfied on the boundary of the microscopic RVE.

By calculation, the form of the two coefficients can be determined

Second, the microscopic velocity field at the center of the microscopic RVE should avoid singularity, which 
requires that

Third, the microscopic velocity field at the interface should satisfy the continuity condition:

By solving equation (54a,b), two unknown coefficients can be obtained 

Finally, the stress condition containing the Steigmann–Ogden surface model needs to be satisfied at the 
interface.

According to solving equation (56), the specific expressions of F11 and F23 can be finally obtained.

(48a)v1R =

(

F11
R2

a2
+ F12 + F13

a3

R3
+ F14

a5

R5

)

RP2(cosϕ),

(48b)v1ϕ =

(

G11

R2

a2
+ G12 + G13

a3

R3
+ G14

a5

R5

)

R∂ϕP2(cosϕ),

(48c)v2R =

(

F21
R2

a2
+ F22 + F23

a3

R3
+ F24

a5

R5

)

RP2(cosϕ),

(48d)v2ϕ =

(

G21

R2

a2
+ G22 + G23

a3

R3
+ G24

a5

R5

)

R∂ϕP2(cosϕ),

(48e,f)v1θ = 0, v2θ = 0,

(49a-b)σ 1
ij,i = 0, σ 2

ij,i = 0.

(50a,b)G11 =
5F11�1 + 7F11µ1

6�1
, G12 =

F12

2
,

(50c,d)G13 =
F13µ1

3�1 + 5µ1

, G14 = −
F14

3
,

(50e,f)G21 =
5F21�2 + 7F21µ2

6�2
, G22 =

F22

2
,

(50g,h)G23 =
F23µ2

3�2 + 5µ2

, G24 = −
F24

3
.

(51)v2R|R=b = 2Deb

(52a,b)F21 = 0, F22 = 2De .

(53a,b)F14 = 0, F13 = 0.

(54a,b)v1R|R=a =v2R|R=a , v1ϕ |R=a =v2ϕ |R=a.

(55a)F12 =−
7(�1 + µ1)

5�1
F11 +

2

5

(

1+
3µ2

3�2 + 5µ2

)

F23 + 2De ,

(55b)F24 =−
(2�1 + 7µ1)

5�1
F11 −

9(�2 + µ2)

5(3�2 + 5µ2)
F23.

(56)[σ ]ijni = τij,i + Tlu

(

Mkl,knj
)

,u
−

2

a
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Given the definition of the microscopic strain rate equation (40), the microscopic average strain rate of the 
matrix and inclusions can be written as 

Based on the average microscopic strain rate, the average stress can be expressed as 

In terms of equations (57, 58, 42a-e), the macroscopic equivalent shear modulus can be easily derived

where

Finally, by substituting equations (59, 45) into equation (20), the macroscopic yield criterion of porous metals 
with Steigmann–Ogden surface model can be finally derived.

Results and discussion
In the previous section, we derived the yield criterion of porous materials by using homogenization approach and 
Steigmann–Ogden surface model. The yield criterion is analytical and implicit with respect to the macroscopic 
mean and equivalent stresses. The purpose of this section is to explore the effect of the parameters of the Steig-
mann–Ogden surface model, the radius of the nanovoid and the porosity on the macroscopic yield criterion. For 
the microscopic RVE, the matrix material is treated as aluminum with the shear modulus µ2 = 23.6 GPa and the 
yield strength σY = 250 MPa. Following Tian’s  research31, two sets of surface bulk modulus and shear modulus 
are considered for nanovoids surface: Case 1 ( κ0 = 12.95 nN/nm, µ0 = −0.376 nN/nm) and Case 2 ( κ0 = −3.86 
nN/nm, µ0 = −5.43 nN/nm). For the surface bending moduli of nanovoids, which are additionally considered 
in the Steigmann–Ogden surface model, three surface parameters are taken into account ( η0 = 0,−30,−60

nN nm). For comparison, the classical solutions without considering the surface effects are also listed in the 
figure as much as possible.

Figure 2 shows the macroscopic yield loci of nanoporous aluminum at different surface bending moduli. 
The porosity and the nanovoid radius are taken as f = 0.1 and a = 1 nm. It can be clearly observed that Case 
1 effectively increases the mean and equivalent stresses of the macroscopic yield loci, while Case 2 reduces the 
macroscopic mean and equivalent stresses. When the surface bending modulus ( η0 ) is taken as 0, the Steig-
mann–Ogden surface model degenerates to the Gurtin-Murdoch surface model. It can therefore be concluded 
from Fig. 2 that the surface bending modulus only affects the equivalent stress of the macroscopic yield loci, not 
the mean stress. The equivalent stress of the macroscopic yield loci is amplified regardless of the change in the 
surface bending modulus.

Figure 3 depicts the macroscopic yield loci of nanoporous aluminum at different nanovoid radii. The poros-
ity and the surface bending moduli are taken as f = 0.1 and η0 = −30nN nm, respectively. A phenomenon 
worth noting is that regardless of the value of the nanovoid radius, Case 1 enlarges the macroscopic yield loci 
of nanoporous aluminum, while case2 narrows the macroscopic yield loci. Regardless of Case 1 or Case 2, with 
the increase of the nanovoid radius, the surface effect will decay rapidly and approach the classical solution. 
Compared with Case 1, Case 2 can effectively change the mean stress of the macroscopic yield loci while the 
effect on the equivalent stress is very limited.

Figure 4 shows the macroscopic yield loci of nanoporous aluminum subjected to different porosity. The nano-
voids radius and the surface bending modulus are taken as a = 1 nm and η0 = −30nN nm, respectively. It can 
be observed that when the porosity increases, the macroscopic yield loci shrink significantly. When the porosity 
is taken to be 0, the surface effect does not exist. And the macroscopic yield loci of nanoporous aluminum will 
degenerate into the von Mises yield loci. Another obvious phenomenon is that Case 1 significantly increases 
the equivalent stress of the macroscopic yield loci, while Case 2 has a very weak effect on the equivalent stress. 
As the porosity increases, the amplifying effect of Case 1 on the equivalent stress of the macroscopic yield loci 
is continuously enhanced.

(57a)d̄2ij =− Deexex − Deeyey + 2Deezez ,

(57b)d̄1ij =− Dbexex − Dbeyey + 2Dbezez ,

(57c)Db =
5F12�1 + 7F11(�1 + µ1)

10�1
.

(58a)d̄3ij =
(

1− f
)

d̄2ij + f d̄1ij ,

(58b)σ̄ 3
ij =f

(

σ̄ 1
ij + τ̄ij

)

+ (1− f )σ̄ 2
ij = 2µ3d̄

3
ij ,

(59)µ3 =
2(l3 + 2l4)− 3f (l1 + 2l2)

2(l3 + 2l4)+ 2f (l1 + 2l2)
µ2,

(60a,b)l1 = (2+ κs)(1− µs), l2 = ηs(1− κs − 3µs),

(60c,d)l3 = 3+ 2κs + 3µs + κsµs , l4 = ηs(3+ κs + 3µs).
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Figure 2.  Effect of surface bending modulus ( η0 ) on the macroscopic yield loci of nanoporous aluminum. 
The porosity and the nanovoid radius are taken as f = 0.1 and a = 1 nm. Two sets of surface bulk and shear 
moduli are considered: Case 1 ( κ0 = 12.95 nN/nm, µ0 = −0.376 nN/nm) and Case 2 ( κ0 = −3.86 nN/nm, 
µ0 = −5.43 nN/nm).
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Figure 3.  Effect of nanovoids radius (a) on the macroscopic yield loci of nanoporous aluminum. The porosity 
and the surface bending modulus are taken as f = 0.1 and η0 = −30 nN · nm. Two sets of surface bulk and 
shear moduli are considered: Case 1 ( κ0 = 12.95 nN/nm, µ0 = −0.376 nN/nm) and Case 2 ( κ0 = −3.86 nN/
nm, µ0 = −5.43 nN/nm).
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Figure 4.  Effect of porosity (f) on the macroscopic yield loci of nanoporous aluminum. The nanovoids radius 
and the surface bending modulus are taken as a = 1 nm and η0 = −30nN nm. Two sets of surface bulk and 
shear moduli are considered: Case 1 ( κ0 = 12.95 nN/nm, µ0 = −0.376 nN/nm) and Case 2 ( κ0 = −3.86 nN/
nm, µ0 = −5.43 nN/nm).
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Concluding remarks
In this paper, we developed a macroscopic yield criterion for nanoporous materials based on the homogenization 
approach and Steigmannn–Ogden surface model. The RVE is described as the classic Mori-Tanaka model, that 
is, an infinite matrix containing a tiny nanaovoid. The surface effects of nanovoids are applied at the interface 
between the nanovoid and the matrix. Firstly, based on the homogenization approach, the macroscopic yield 
criterion of nanoporous materials is obtained, which includes the dependence of the macroscopic equivalent 
modulus and the microscopic uniform modulus. Secondly, based on the establishment of the trial velocity field, 
the macroscopic equivalent modulus including the influence of the Steigmannn–Ogden model can be obtained. 
Finally, an implicit macroscopic yield criterion for nanoporous materials is derived. Based on the surface modu-
lus, porosity and nanopore radius, related studies were developed and analyzed in detail. On the basis of extensive 
parametric studies, a few major conclusions can be drawn as follows.

• Different surface moduli will have different regulation effects on the macroscopic yield criterion of nano-
porous materials. Positive surface moduli significantly increase the macroscopic yield loci, while negative 
surface moduli decrease the macroscopic yield loci slightly.

• The surface bending modulus only affects the equivalent stress of the macroscopic yield loci and has no effect 
on the mean stress.

• The influence of surface effects on the macroscopic yield criterion of nanoporous materials strongly depends 
on the size of the nanovoid radius. The smaller the radius of the nanopore, the more obvious the surface 
effect.

• The macroscopic yield criterion of nanoporous materials strongly depends on the size of the porosity. The 
larger the macroscopic porosity, the more obvious the shrinkage of the macroscopic yield loci.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Received: 18 February 2023; Accepted: 2 July 2023

References
 1. Gurson, A. L. Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous 

ductile media. J. Eng. Mater. Technol. 99(1), 2–15. https:// doi. org/ 10. 1115/1. 34434 01 (1977).
 2. Duan, H., Wang, J., Huang, Z. & Karihaloo, B. Size-dependent effective elastic constants of solids containing nano-inhomogeneities 

with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596. https:// doi. org/ 10. 1016/j. jmps. 2005. 02. 009 (2005).
 3. Duan, H., Yi, X., Huang, Z. & Wang, J. A unified scheme for prediction of effective moduli of multiphase composites with interface 

effects part i: Theoretical framework. Mech Mater. 39(1), 81–93. https:// doi. org/ 10. 1016/j. mechm at. 2006. 02. 009 (2007).
 4. Ban, Y. & Mi, C. Analytical solutions of a spherical nanoinhomogeneity under far-field unidirectional loading based on Steigmann-

Ogden surface model. Math. Mech. Solids 25(10), 1904–1923. https:// doi. org/ 10. 1177/ 10812 86520 915259 (2020).
 5. Ban, Y. & Mi, C. On spherical nanoinhomogeneity embedded in a half-space analyzed with Steigmann-Ogden surface and interface 

models. Int. J. Solids Struct. 216, 123–135. https:// doi. org/ 10. 1016/j. ijsol str. 2020. 11. 034 (2021).
 6. Mi, C. & Kouris, D. Stress concentration around a nanovoid near the surface of an elastic half-space. Int. J. Solids Struct. 50(18), 

2737–2748. https:// doi. org/ 10. 1016/j. ijsol str. 2013. 04. 029 (2013).
 7. Zemlyanova, A. Y. & Mogilevskaya, S. G. Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and 

Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98. https:// doi. org/ 10. 1016/j. ijsol str. 2017. 11. 012 (2018).
 8. Dormieux, L. & Kondo, D. Non linear homogenization approach of strength of nanoporous materials with interface effects. Int. J. 

Eng. Sci. 71, 102–110. https:// doi. org/ 10. 1016/j. ijeng sci. 2013. 04. 006 (2013).
 9. Monchiet, V., Charkaluk, E. & Kondo, D. Macroscopic yield criteria for ductile materials containing spheroidal voids: An Eshelby-

like velocity fields approach. Mech. Mater. 72, 1–18. https:// doi. org/ 10. 1016/j. mechm at. 2013. 05. 006 (2014).
 10. Tvergaard, V. Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17(4), 389–407. https:// doi. 

org/ 10. 1007/ bf000 36191 (1981).
 11. Tvergaard, V. & Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169. https:// doi. 

org/ 10. 1016/ 0001- 6160(84) 90213-x (1984).
 12. Wen, J., Huang, Y., Wang, K. H., Liu, C. & Li, M. The modified Gurson model accounting for the void size effect. Int. J. Plast. 21(2), 

381–395. https:// doi. org/ 10. 1016/j. ijplas. 2004. 01. 004 (2005).
 13. Zheng, C., Zhang, G. & Mi, C. On the strength of nanoporous materials with the account of surface effects. Int. J. Eng. Sci. 160, 

103451. https:// doi. org/ 10. 1016/j. ijeng sci. 2020. 103451 (2021).
 14. Nasir, M. W., Chalal, H. & Abed-Meraim, F. Prediction of forming limits for porous materials using void-size dependent model 

and bifurcation approach. Meccanica 55(9), 1829–1845. https:// doi. org/ 10. 1007/ s11012- 020- 01222-1 (2020).
 15. Espeseth, V., Morin, D., Faleskog, J., Børvik, T. & Hopperstad, O. S. A numerical study of a size-dependent finite-element based 

unit cell with primary and secondary voids. J. Mech. Phys. Solids 157, 104493. https:// doi. org/ 10. 1016/j. jmps. 2021. 104493 (2021).
 16. Usman, M., Waheed, S. & Mubashar, A. Effect of shape on void growth: A coupled extended finite element method (XFEM) and 

discrete dislocation plasticity (DDP) study. Eur. J. Mech. A/Solids 92, 104471. https:// doi. org/ 10. 1016/j. eurom echsol. 2021. 104471 
(2022).

 17. Li, Z., Huang, M. & Wang, C. Scale-dependent plasticity potential of porous materials and void growth. Int. J. Solids Struct. 40(15), 
3935–3954. https:// doi. org/ 10. 1016/ s0020- 7683(03) 00178-1 (2003).

 18. Monchiet, V. & Bonnet, G. A Gurson-type model accounting for void size effects. Int. J. Solids Struct. 50(2), 320–327. https:// doi. 
org/ 10. 1016/j. ijsol str. 2012. 09. 005 (2013).

 19. Niordson, C. F. & Tvergaard, V. A homogenized model for size-effects in porous metals. J. Mech. Phys. Solids 123, 222–233. https:// 
doi. org/ 10. 1016/j. jmps. 2018. 09. 004 (2019).

 20. Ban, H., Peng, Z., Fang, D., Yao, Y. & Chen, S. A modified conventional theory of mechanism-based strain gradient plasticity 
considering both size and damage effects. Int. J. Solids Struct. 202, 384–397. https:// doi. org/ 10. 1016/j. ijsol str. 2020. 05. 023 (2020).

https://doi.org/10.1115/1.3443401
https://doi.org/10.1016/j.jmps.2005.02.009
https://doi.org/10.1016/j.mechmat.2006.02.009
https://doi.org/10.1177/1081286520915259
https://doi.org/10.1016/j.ijsolstr.2020.11.034
https://doi.org/10.1016/j.ijsolstr.2013.04.029
https://doi.org/10.1016/j.ijsolstr.2017.11.012
https://doi.org/10.1016/j.ijengsci.2013.04.006
https://doi.org/10.1016/j.mechmat.2013.05.006
https://doi.org/10.1007/bf00036191
https://doi.org/10.1007/bf00036191
https://doi.org/10.1016/0001-6160(84)90213-x
https://doi.org/10.1016/0001-6160(84)90213-x
https://doi.org/10.1016/j.ijplas.2004.01.004
https://doi.org/10.1016/j.ijengsci.2020.103451
https://doi.org/10.1007/s11012-020-01222-1
https://doi.org/10.1016/j.jmps.2021.104493
https://doi.org/10.1016/j.euromechsol.2021.104471
https://doi.org/10.1016/s0020-7683(03)00178-1
https://doi.org/10.1016/j.ijsolstr.2012.09.005
https://doi.org/10.1016/j.ijsolstr.2012.09.005
https://doi.org/10.1016/j.jmps.2018.09.004
https://doi.org/10.1016/j.jmps.2018.09.004
https://doi.org/10.1016/j.ijsolstr.2020.05.023


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10951  | https://doi.org/10.1038/s41598-023-38050-8

www.nature.com/scientificreports/

 21. Dormieux, L. & Kondo, D. An extension of Gurson model incorporating interface stresses effects. Int. J. Eng. Sci. 48(6), 575–581. 
https:// doi. org/ 10. 1016/j. ijeng sci. 2010. 01. 004 (2010).

 22. Monchiet, V. & Bonnet, G. Interfacial models in viscoplastic composites materials. Int. J. Eng. Sci. 48(12), 1762–1768. https:// doi. 
org/ 10. 1016/j. ijeng sci. 2010. 09. 024 (2010).

 23. Monchiet, V. & Kondo, D. Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials. 
Int. J. Plast. 43, 20–41. https:// doi. org/ 10. 1016/j. ijplas. 2012. 10. 007 (2013).

 24. Steigmann, D. J. & Ogden, R. W. Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. Royal Soc. London 
Ser. A Math. Phys. Eng. Sci. 453, 853–877. https:// doi. org/ 10. 1098/ rspa. 1997. 0047 (1997).

 25. Steigmann, D. J. & Ogden, R. W. Elastic surface-substrate interactions. Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci. 
455(1982), 437–474. https:// doi. org/ 10. 1098/ rspa. 1999. 0320 (1999).

 26. Zhang, W. X. & Wang, T. J. Effect of surface energy on the yield strength of nanoporous materials. Appl. Phys. Lett. 90(6), 063104. 
https:// doi. org/ 10. 1063/1. 24591 15 (2007).

 27. Chen, H., Liu, X. & Hu, G. Overall plasticity of micropolar composites with interface effect. Mech. Mater. 40(9), 721–728. https:// 
doi. org/ 10. 1016/j. mechm at. 2008. 03. 005 (2008).

 28. Zheng, C. & Mi, C. On the macroscopic strength criterion of ductile nanoporous materials. Int. J. Eng. Sci. 162, 103475. https:// 
doi. org/ 10. 1016/j. ijeng sci. 2021. 103475 (2021).

 29. Brach, S., Dormieux, L., Kondo, D. & Vairo, G. Strength properties of nanoporous materials: A 3-layered based non-linear homog-
enization approach with interface effects. Int. J. Eng. Sci. 115, 28–42. https:// doi. org/ 10. 1016/j. ijeng sci. 2017. 03. 001 (2017).

 30. Brach, S., Anoukou, K., Kondo, D. & Vairo, G. Limit analysis and homogenization of nanoporous materials with a general isotropic 
plastic matrix. Int. J. Plast. 105, 24–61. https:// doi. org/ 10. 1016/j. ijplas. 2017. 10. 007 (2018).

 31. Tian, L. & Rajapakse, R. Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41(1), 
44–53. https:// doi. org/ 10. 1016/j. comma tsci. 2007. 02. 013 (2007).

Acknowledgements
This work was supported by the Innovation Project of Huadong Engineering Corporation Limited [Grant Num-
bers KY2023-SD-02-02].

Author contribution
Both authors materially participated in the research and preparation of this manuscript. H.W. and Y.J. conceived, 
designed and composed the research. C.Z. and G.L. conducted the analytical derivation of the yield function 
and the velocity field and also performed the parametric analysis.Both authors approved the final version of the 
manuscript and its submission.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.Z. or G.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1016/j.ijengsci.2010.01.004
https://doi.org/10.1016/j.ijengsci.2010.09.024
https://doi.org/10.1016/j.ijengsci.2010.09.024
https://doi.org/10.1016/j.ijplas.2012.10.007
https://doi.org/10.1098/rspa.1997.0047
https://doi.org/10.1098/rspa.1999.0320
https://doi.org/10.1063/1.2459115
https://doi.org/10.1016/j.mechmat.2008.03.005
https://doi.org/10.1016/j.mechmat.2008.03.005
https://doi.org/10.1016/j.ijengsci.2021.103475
https://doi.org/10.1016/j.ijengsci.2021.103475
https://doi.org/10.1016/j.ijengsci.2017.03.001
https://doi.org/10.1016/j.ijplas.2017.10.007
https://doi.org/10.1016/j.commatsci.2007.02.013
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On the yield criterion of porous materials by the homogenization approach and Steigmann–Ogden surface model
	Method of solution
	Homogenization approach. 
	Macroscopic equivalent bulk modulus ( ). 
	Macroscopic equivalent shear modulus ( ). 

	Results and discussion
	Concluding remarks
	References
	Acknowledgements


