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Development and validation 
of a prediction model to assess 
the probability of tuberculous 
pleural effusion in patients 
with unexplained pleural effusion
Xiaoli Lei 1, Junli Wang 2 & Zhigang Yang 1*

Differentiating tuberculous pleural effusion (TPE) from non-tuberculosis pleural effusion remains a 
challenge in clinical practice. This study aimed to develop and externally validate a novel prediction 
model using the peripheral blood tuberculous infection of T cells spot test (T-SPOT.TB) to assess 
the probability of TPE in patients with unexplained pleural effusion. Patients with pleural effusion 
and confirmed etiology were included in this study. A retrospective derivation population was 
used to develop and internally validate the predictive model. Clinical, radiological, and laboratory 
features were collected, and important predictors were selected using the least absolute shrinkage 
and selection operator. The prediction model, presented as a web calculator, was developed using 
multivariable logistic regression. The predictive performance of the model was evaluated for 
discrimination and calibration and verified in an independent validation population. The developed 
prediction model included age, positive T-SPOT.TB result, logarithm of the ratio of mononuclear 
cells to multiple nuclear cells in pleural effusion (lnRMMPE), and adenosine deaminase in pleural 
effusion ≥ 40 U/L. The model demonstrated good discrimination [with area under the curve of 0.837 
and 0.903, respectively] and calibration (with a Brier score of 0.159 and 0.119, respectively) in both the 
derivation population and the validation population. Using a cutoff value of 60%, the sensitivity and 
specificity for identifying TPE were 70% and 88%, respectively, in the derivation population, and 77% 
and 92%, respectively, in the validation population. A novel predictive model based on T-SPOT.TB was 
developed and externally validated, demonstrating good diagnostic performance in identifying TPE.

Tuberculous pleural effusion (TPE), characterized by a large amount of chronic effusion and inflammatory cell 
accumulation in the pleural cavity, is caused by Mycobacterium tuberculosis infecting the  pleura1. It is a common 
cause of pleural effusion (PE) in tuberculosis epidemic  areas1. So far, the diagnosis of TPE is rather difficult. The 
accepted gold standard for the diagnosis of TPE is that the diagnosis can be confirmed if Mycobacterium tuber-
culosis is detected in PE or pleura tissue  specimen2,3. However, the detection rate of PE microorganism culture 
is low and the culture time is long (up to 8 weeks). In addition, the acquisition of pleura is an invasive procedure 
whether through transthoracic needle pleural biopsy or thoracoscopic pleural  biopsy4,5. In addition, if TPE is 
not treated as soon as possible, some patients often develop into active tuberculosis  later1. Therefore, there is an 
urgent need to develop an accurate, simple and safe diagnostic method.

In recent years, some clinical prediction models have been proposed to accurately diagnose  TPE6–8. However, 
due to differences in the source of research objects, variables, and model construction methods, the clinical 
models proposed by different studies to diagnose TPE vary greatly. In addition, with the progress of diagnostic 
methods, tuberculous infection of T cells spot test (T-SPOT.TB) have been widely used in the diagnosis of 
 tuberculosis2,3. However, only few studies that included T-SPOT.TB in TPE diagnostic model have been reported 
to date. Therefore, we developed and validated a clinical prediction model based on peripheral blood T-SPOT.
TB, hoping to provide clinicians a tool that could predict the probability of TPE accurately, simply and safely.
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Materials and methods
Derivation population for developing prediction model. We retrospectively collected clinical data 
of all inpatients with pleural effusion of unknown cause who underwent thoracoscopic examination in Henan 
Provincial People’s Hospital from January 1, 2014 to September 25, 2019. Henan Provincial People’s Hospital 
is a large teaching hospital located in Zhengzhou, China. Only patients meeting all the following conditions 
were eligible to participate in the study: (1) patients with pleural effusion of unknown cause at hospital admis-
sion; (2) patients who underwent thoracoscopic examination within 2 weeks of hospitalization; (3) patients who 
were ≥ 18 years at the time of admission. The exclusion criteria were as follows: (1) patients with neither pleural 
effusion dection results nor T-SPOT.TB results; (2) patients without T-SPOT.TB results only; (3) patients with-
out pleural effusion detection results only; (4) patients with undetermined cause of pleural effusion. Patients 
without pleural effusion detection results refers to patients who had undergone thoracoscopy but had not under-
gone pleural effusion examination.

This study was approved by the ethics committee of Henan Provincial People’s Hospital. Written informed 
consent was waived owing to the use of retrospective data. All methods were performed in accordance with the 
relevant guidelines and regulations.

Population used for external validation. To assess external validation of the prediction model, we ret-
rospectively used an independent population which included all inpatients who were admitted to Henan Pro-
vincial People’s Hospital for thoracoscopic examination due to unexplained pleural effusion from September 26, 
2019 to August 4, 2022. The inclusion criteria and exclusion criteria of the validation population were the same 
as those of the derivation population.

Data collection. Whether in the derivation population or in the validation population, the researchers used 
structured data tables customized for this study to collect clinical data of qualified patients. These clinical data 
were obtained from the discharged medical records of patients. Two experienced respiratory doctors reviewed, 
refined and cross checked the patient’s clinical data. All data were collected by blinding data collectors to the 
final outcome measures.

Outcome measures. The outcome categories were TPE and non-tuberculous pleural effusion (non-TPE). 
Diagnostic criteria of TPE were as follows: (1) Ziehl–Neelsen staining or Lowenstein-Jensen cultures positive of 
PE, or pleural biopsy specimens; (2) Histopathology of pleural biopsy revealed  granuloma1. Thoracoscopy must 
be completed within 2 weeks after admission. Thoracoscopic operation was carried out according to the method 
recommended in the  literature1. Non-TPE included parapneumonic pleural effusion, empyema, malignant pleu-
ral effusion and pleural effusion caused by other reasons. If some specific malignant tumor cells were found 
by the pathological cytology of PE or pleural biopsy specimen, the diagnosis of a malignant tumor could be 
 determined9. The diagnosis of other diseases causing PE followed the corresponding clinical diagnostic  criteria9.

Predictive variables. Based upon key literatures on predictive models of TPE and our clinical experience, 
we selected 15 candidate variables, which were not only clinically available but also minimally  invasive6–8. Those 
potential predictive variables included the following clinical characteristics of patients: demographic data, medi-
cal history, symptoms, imaging results and laboratory findings. Whereas demographic variables included age 
and sex, medical history included the history of diabetes and the history of glucocorticoid use. Similarly, clini-
cal symptoms included fever, cough, chest pain and chest distress. Imaging examination included the presence 
of abnormal lesion in the lungs and the location of pleural effusion. Laboratory findings included peripheral 
blood T-SPOT.TB, and routine biochemical examination of PE such as ratio of mononuclear cells to multiple 
nuclear cells (RMMPE), ratio of total protein in PE to total protein in serum (TPPE/TPS), ratio of LDH in PE 
to LDH in serum (LDHPE/LDHS) and ADA in PE (ADAPE). The source of the specimen is peripheral blood 
or pleural effusion or pleura obtained during the patient’s hospitalization. The peripheral blood T-SPOT.TB 
test was performed in accordance with the instructions of the T-SPOT.TB kit (Oxford Immunotec, UK)10. For 
RMMPE, we used a logarithmic transformation (lnRMMPE).We tested the linearity of continuous variables 
with restricted cubic splines using the Hmisc and Design library in R statistical  software11,12. A linear relation-
ship with the outcomes was found to be a good approximation for age and lnRMMPE. According to the Light’s 
criteria, TPPE/TPS, LDHPE/LDHS and ADAPE, which had no linear relationship with the outcomes, were con-
verted to dichotomous data with generally accepted cut-off values of 0.5, 0.67 and 40 U/L,  respectively1.

Modelling procedure and validation. Fifteen variables in the derivation population were included for 
variable selection and development of prediction model. Variables identified by least absolute shrinkage and 
selection operator (LASSO) regression analysis were entered into logistic regression model. Enhanced bootstrap 
method was applied to validate the developed prediction model internally. The prediction model was externally 
validated using validation population. Data were analyzed between September 1, 2022 and October 31, 2022.

Model performance. The predictive performance of the prediction model was estimated by discrimination 
and calibration. The area under the receiver operator characteristic curve (AUC) was used to estimate the ability 
to discriminate of the prediction model. The diagnostic performance (sensitivity, specificity, positive and nega-
tive predictive values, and positive and negative likelihood ratios) for several risk thresholds (from 40 to 80%) of 
patients with TPE compared with non-TPE were calculated. The Youden index was used to determine the cutoff 
value for the risk probability of TPE, because at the highest level of the Youden index, the cutoff value has the 
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highest sensitivity and specificity for diagnosing TPE. To assess calibration of prediction model, we compared 
the predicted probability of TPE with the observed proportions of TPE. Calibration curve was constructed, and 
Brier score was calculated by “rms” package in R statistical software. Brier score is an indicator to evaluate the 
calibration, and if it is less than 0.25, it usually indicates that the calibration of a prediction model is good.

Presentation of the prediction model. A digital calculator was constructed to illustrate and accommo-
date potential clinical use. The calculator was based directly on the final regression formula, which was available 
at the website (https:// yzg19 72. shiny apps. io/ dynno mapp/?_ ga=2. 16791 6065. 18534 86038. 16707 63324- 35843 
408. 16702 99435).

Statistical analysis. For the consideration of sample size, we followed the principle that the effective sam-
ple size was greater than 10 times the number of prediction variables. Variables with > 20% missing data were 
excluded. Imputation for missing variables was considered if missing values were less than 20%. We used pre-
dictive median matching to impute numeric variables. The “glmnet” package was used to perform the LASSO 
regression. A multivariable prediction model was developed by using ‘lrm’ function in R ‘rms’ package. Continu-
ous variables were presented as median (interquartile ranges, IQR), and qualitative data were presented using 
frequency distribution n (%). SPSS software v.23.0 (IBM Inc., Chicago, IL, USA) and R software v.4.2.1 (R Core 
Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https:// www.R- proje ct. org/) were used for statistical analysis. All significance tests were 
two-tailed, and P < 0.05 was considered as statistically significant.

Ethics approval and consent to participate. The study was approved by Henan Provincial People’s 
Hospital Medical Ethics Committee (No.2020119), and the requirement for written informed consent was 
waived by the Henan Provincial People’s Hospital Medical Ethics Committee.

Results
Characteristics and outcome measures of derivation population and validation popula-
tion. The flowchart of the patient inclusion and exclusion process in this study is presented in Fig. 1. A total 
of 418 eligible patients were reviewed and divided into the derivation populations (n = 281) and the external 
validation populations (n = 137). The general characteristics of the populations and the validation population 
are summarized in Table 1. A similar prevalence of TPE was observed in both the derivation population (50.5%) 
and validation population (44.5%). Moreover, the two population groups exhibited slight difference for some 
characteristics such as age and sex. Univariate logistic regression analysis of TPE diagnosis in the derivation 
population is shown in Table 2.

Among 281 subjects in the derivation population, 142 (50.5%) were diagnosed with TPE and 139 (49.5%) 
were diagnosed with non-TPE. Among 137 subjects in the validation population, 61 (44.5%) were diagnosed 
with TPE and 76 (55.5%) were diagnosed with non-TPE. Among patients diagnosed with TPE, the number of 
culture-confirmed cases in the derivation and validation population was 9 (6.3%) and 5 (8.2%), respectively. The 
number of biopsy-compatible cases was 133 (93.7%) and 56 (91.8%), respectively (Table 1).

Model development and performance. In the derivation population, 15 variables were first included 
in the LASSO regression (Supplementary Fig. 1). After LASSO regression selection, 4 variables were selected 
as significant predictors for diagnosing TPE, which were then included in the logistic regression model. These 
four predictors of TPE were age per year (odds ratio 0.96, 95% CI 0.94 to 0.98 per year), positive T-SPOT.TB 
result (5.04, 2.63 to 10.0), lnRMMPE (1.40, 1.20 to 1.66) and ADAPE ≥ 40 U/L (2.87, 1.45 to 5.82). Table 3 pre-
sents multivariate logistic regression analysis of TPE diagnosis in the derivation population. In the derivation 
population the AUC for TPE diagnosis was 0.845 (95% CI 0.800–0.891) (Fig. 2A) and Brier score was 0.159. 
Figure 3A shows calibration plot of the prediction of TPE diagnosis in the derivation population. The AUC for 
TPE diagnosis was 0.837 by internal bootstrap validation. Figure 3B shows that the bias-corrected calibration 
curve roughly overlaps with the ideal reference curve, indicating that the model still has good calibration after 
internal verification.

In the derivation population, low risk thresholds were useful to rule out the diagnosis of TPE. A risk cut-off of 
40% had a sensitivity of 0.81 (95% CI 0.74 to 0.87) and a negative likelihood ratio of 0.28. According to the ROC, 
the probability of 60% is selected as the cut off value of TPE diagnosis because Youden index is the maximum 
at this level. Risk thresholds of 60% or more were useful to identify TPE. For example, a risk threshold of 70% 
had a specificity of 0.94 (0.89–0.98) and positive likelihood ratio of 10.28 (Table 4). Figure 2A shows the ROC 
for the prediction of TPE in the derivation population.

The prediction model for TPE diagnosis in patients with unknown effusion expresses the probability of TPE 
as a function of the 4 clinical variables as follows:

(1) Probability of TPE = e^x/(1 + e^x)
(2) x = 0.3483 − (0.0424 × Age) + (1.6172 × T-SPOT.TB) + (0.3397 × lnRMMPE) + (1.0530 × ADAPE)

where e is the base of natural logarithms; age is the patient’s age in years; T-SPOT.TB = 1 if the result of the 
patient’s T-SPOT.TB test is positive and 0 if otherwise; lnRMMPE is logarithmic transformation of RMMPE; 
ADAPE = 1 if patient’s ADAPE concentration is equal to or greater than 40 U/L and 0 if otherwise.

https://yzg1972.shinyapps.io/dynnomapp/?_ga=2.167916065.1853486038.1670763324-35843408.1670299435
https://yzg1972.shinyapps.io/dynnomapp/?_ga=2.167916065.1853486038.1670763324-35843408.1670299435
https://www.R-project.org/)were
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An online calculator was developed to allow clinicians to enter the values of the four required variables with 
automatic calculation of the probability of TPE in patients with unknown effusion (Fig. 4).

External validation of prediction model. In the external validation population the AUC of this model 
to predict the presence of TPE was 0.903 (0.847–0.958). Figure 2B shows the ROC for the prediction of TPE 
diagnosis in the validation population. Calibration for the internal validation was adequate for outcome and 
Brier value was 0.119. Figure 3C shows that the calibration curve of the prediction model roughly overlaps with 
the ideal calibration curve in the validation population.

In the validation population, low risk thresholds could also rule out the presence of TPE. For example, a risk 
threshold of 40% or more had a sensitivity of 0.85 (0.74–0.93) and negative likelihood ratio of 0.19. High risk 
thresholds of 60% or more were useful to identify TPE. For example, a risk threshold of 70% had a specificity of 
0.95 (0.87–0.99) and positive likelihood ratio of 13.7 (Table 4).

ROC analysis demonstrated that the AUC for the developed multi-parameter prediction model, as well 
as for the individual application of T-SPOT.TB, ADA, lymphocyte/neutrophil ratio, and the combined use of 
ADA and lymphocyte/neutrophil ratio in diagnosing TPE, were as follows: 0.845 (95% CI 0.800–0.891), 0.710 
(0.649–0.772), 0.771 (0.712–0.830), 0.691 (0.629–0.753), and 0.726 (0.667–0.784), respectively. Hence, the dis-
crimination ability of our developed multi-parameter prediction model for TPE outperformed other parameters 
(all p < 0.05, compared to the predictive model). For more details, refer to Supplementary Table 1 and Fig. 2.

Discussion
In this study, we developed and externally validated an accurate, simple, reliable and minimally invasive pre-
diction model for the probability of TPE in patients with unknown pleural effusion. The model was shown in 
the form of web calculator convenient for clinicians, and contained four strong predictors of TPE: age, positive 

Figure 1.  Flowchart of the study participants.
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Table 1.  General characteristics and outcome measures of derivation and validation populations. Values are 
numbers (percentages) unless stated otherwise. IQR interquartile range, TPE tuberculosis pleural effusion, 
Non-TPE non tuberculosis pleural effusion, T-SPOT.TB tuberculous infection of T cells spot test, lnRMMPE 
logarithm of the ratio of mononuclear cells to multiple nuclear cells in pleural effusion, ADAPE adenosine 
deaminase in pleural effusion.

Variables Derivation population (n = 281) Validation population (n = 137)

Age, median [IQR], years 56 (40–69) 58 (43–69)

Male 202 (72%) 101 (74%)

T-SPOT.TB ( +) 185 (66%) 78 (57%)

lnRMMPE, median [IQR] 2.14 (0.18–3.21) 1.93 (0.69–3.20)

ADAPE ≥ 40U/L 87 (31%) 48 (35%)

Outcome measures

 TPE 142 (50.5%) 61 (44.5%)

  Culture-confirmed 9 (6.3%) 5 (8.2%)

  Biopsy-compatible 133 (93.7%) 56 (91.8%)

 Non-TPE 139 (49.5%) 76 (55.5%)

 Parapneumonic effusion 29 (10.3%) 13 (9.5%)

 Empyema 18 (6.4%) 9 (6.6%)

 Bacterial pleural effusion 19 (6.8%) 15 (10.9%)

 Connective tissue disease 2 (0.7%) 3 (2.2%)

 Other aseptic inflammation 1 (0.4%) 5 (3.6%)

 Lung cancer 38 (13.5%) 23 (16.8%)

 Malignant mesothelioma 14 (5.0%) 3 (2.2%)

 Other types of tumors 13 (4.6%) 3 (2.2%)

Transudate 5 (1.8%) 2 (1.5%)

Table 2.  Univariate logistic regression analysis of TPE diagnosis in the derivation population.

Variables OR (95% CI) P value

Age, year 0.96 (0.94–0.98)  < 0.001

Male 0.94 (0.46–1.90) 0.9

Fever 1.97 (1.00–3.91) 0.05

Cough 0.94 (0.49–1.81) 0.9

Chest pain 0.95 (0.48–1.87) 0.9

Chest distress 2.02 (0.99–4.24) 0.057

Diabetes mellitus 0.36 (0.13–0.95) 0.044

Glucocorticoid application 0.37 (0.03–2.84) 0.4

Abnormal lesions of chest imaging 0.75 (0.36–1.55) 0.4

Location of pleural effusion

 Right side Ref

 Left side 0.63 (0.30–1.28) 0.2

 Both sides 1.2 (0.50–2.91) 0.7

T-SPOT.TB ( +) 4.79 (2.35–10.1)  < 0.001

lnRMMPE 1.4 (1.18–1.69)  < 0.001

TPPE/TPS ≥ 0.5 3.7 (1.13–14.6) 0.043

LDHPE/LDHS ≥ 0.67 0.94 (0.23–4.13)  > 0.9

ADAPE ≥ 40U/L 2.57 (1.21–5.64) 0.016

Table 3.  Multivariate logistic regression analysis of TPE diagnosis in the derivation population.

Variables OR (95% CI) P value

Age, year 0.96 (0.94–0.98)  < 0.001

T-SPOT.TB ( +) 5.04 (2.63–10.0)  < 0.001

lnRMMPE 1.4 (1.20–1.66)  < 0.001

ADAPE ≥ 40U/L 2.87 (1.45–5.82) 0.003
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T-SPOT.TB, lnRMMPE and ADAPE ≥ 40 U/L. High risk thresholds of 60% or more were able to rule in TPE 
diagnosis.

Owing to the difficulty of TPE diagnosis, different scholars have been attempting to apply various available 
non-invasive variables to develop multiple prediction models for TPE diagnosis. However, the conclusions of 
previous studies were different and the studies were associated with pertinent limitations which impacts their 
applications. For example, Porcel et al. developed two clinical scoring models for differentiating TPE and malig-
nant  PE13. The variables included in model 1 were ADA > 40 U/L, age < 35 years, temperature > 37.8 °C, red blood 
cell count < 5 ×  109/L. In model 2, the included variables were age < 35 years, temperature > 37.8 °C, red blood cell 
count < 5 ×  109/L, no previous history of malignant tumors and pleural effusion/serum LDH ratio > 2.2. The sensi-
tivity of model 1 and model 2 was 95% and 97%, respectively. Whereas the specificity was 94% and 91% for model 
1 and model 2, respectively. The model was limited to the identification of TPE and malignant PE, and excludes 
other common etiologies, such as infectious diseases or rheumatic diseases, which may also lead to PE. Our study 

Figure 2.  Receiver operating characteristic curve for TPE diagnosis in derivation population (A) and in the 
validation population (B). T-SPOT.TB tuberculous infection of T cells spot test, lnRMMPE logarithm of the 
ratio of mononuclear cells to multiple nuclear cells in pleural effusion, ADAPE adenosine deaminase in pleural 
effusion.
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included various etiologies of common non-TPE in clinic, and thus not limited to merely distinguishing TPE 
from malignant PE. Sun et al. also proposed a diagnostic scoring model for TPE. A total of seven factors were 
included in the model, which were body temperature > 38 °C (1 point), positive tuberculin skin test (1 point), 
C-reactive protein ≥ 26 mg/L (1.5 points), PE lymphocyte ratio ≥ 85% (1 point), PE protein ≥ 49 g/L (1 point), 
ADAPE ≥ 43 U/L (2.5 points), and any positive tuberculosis antibody in blood and PE (2 points). When the score 
is ≥ 6.0, the sensitivity, specificity and accuracy of the model in diagnosing TPE were 90.1%, 94.3% and 92.3%, 
 respectively14. Although some of the variables selected in this study such as PE lymphocyte ratio and PEADA 
were similar to ours, the variables included in the model were not convenient for clinical application. Moreover, 
due to the high prevalence of tuberculosis and high vaccination rate of BCG in China, the specificity of tuberculin 
skin test is too low, which led to the examination being stopped in most hospitals. Demirer et al. developed a 
cheap and simple prediction model, which only included two variables (age < 47 years and PEADA > 35 U/L)7. 
The variables of this study were essentially similar to that of our study. However, their study was not without a 
drawback as it did not include interferon-γ release assays (IGRAs) data which discriminate TPE from non-TPE, 
and the diagnostic performance of their model was not verified in a prospective independent  cohort7.

Our study revealed that positive T-SPOT.TB in peripheral blood was independently associated with the 
diagnosis of TPE. Therefore, it was selected as an important predictive variable with diagnostic value. T-SPOT.
TB, as one of commercial products of IGRAs developed in recent years, has been widely used in the diagnosis 
of latent  tuberculosis2,3. Losi et al15 found that the sensitivity and specificity of T-SPOT.TB in peripheral blood 
in the diagnosis of TPE were 90% and 67%, respectively. However, a similar study found that the sensitivity and 
specificity of peripheral blood T-SPOT.TB in the diagnosis of TPE were only 73% and 73.1%,  respectively16. It can 
be seen that there were great differences in the sensitivity and specificity of T-SPOT.TB in the diagnosis of TPE 
when applied separately, especially the low specificity, which can easily cause misdiagnosis of TPE. Thus, the use 

Figure 3.  Calibration plot of the prediction of TPE probability in the derivation population (A), in internal 
validation (B) and in the external validation population (C). In figures (A,C), the solid diagonal line represents 
ideal calibration and dotted line is the calibration line of the prediction model. In figure (B), dashed diagonal 
line represents ideal calibration, straight line represents the bias-corrected calibration line of the prediction 
model, and dotted line represents the apparent calibration line of the prediction model.

Table 4.  Diagnostic performance measures at different risk thresholds of the prediction model in derivation 
population and validation population.  + LR positive likelihood ratio, − LR negative likelihood ratio, + PV 
positive predictive value, − PV negative predictive value.

Group Indicators

Risk threshod

 > 40%  > 50%  > 60%  > 70%  > 80%

Derivation popula-
tion

Sensitivity (95%CI) 0.81 (0.74–0.87) 0.77 (0.71–0.83) 0.70 (0.62–0.77) 0.59 (0.51–0.67) 0.45 (0.37–0.54)

Specificity (95%CI) 0.67 (0.58–0.75) 0.75 (0.67–0.82) 0.88 (0.81–0.93) 0.94 (0.89–0.98) 0.94 (0.93–0.99)

 + LR 2.45 3.05 5.7 10.28 15.66

− LR 0.28 0.31 0.35 0.43 0.57

 + PV(%) 71.4 75.7 85.3 91.3 94.1

− PV(%) 77.5 75.9 73.9 69.3 63.4

Validation popula-
tion

Sensitivity (95%CI) 0.85 (0.74–0.93) 0.82 (0.70–0.91) 0.77 (0.65–0.87) 0.72 (0.59–0.83) 0.56 (0.42–0.69)

Specificity (95%CI) 0.78 (0.67–0.86) 0.86 (0.76–0.93) 0.92 (0.84–0.97) 0.95 (0.87–0.99) 0.96 (0.89–0.99)

 + LR 3.81 5.66 9.76 13.7 14.12

− LR 0.19 0.21 0.25 0.29 0.46

 + PV(%) 75.4 82 88.7 91.7 91.9

− PV(%) 86.8 85.5 83.3 80.9 73.0
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of T-SPOT.TB in the diagnosis of TPE needs to be studied in the future. Moreover, studies on prediction model 
with T-SPOT.TB as the predictor are relatively few. Only one study reported in 2020 showed that the predictive 
nomogram included TB-IGRA is superior to the single TB-IGRA detection in diagnosing TPE. The confirmed 
tuberculous pleurisy and presumptive tuberculous pleurisy nomograms had an AUC of 0.93 (95% CI 0.90–0.95) 
and 0.92 (95% CI 0.90–0.94) in the training group, and 0.91 (95% CI 0.87–0.96) and 0.93 (95% CI 0.89–0.96) in 
the validation group,  respectively17. However, the IGRAs used in mentioned research was to measure the amount 
of released interferon-γ, rather than the more commonly used T-SPOT.TB method. Additionally, the model 
had 12 predictors, which was inconvenient for clinical use, and the calibration of the model was not analyzed. 
Cognizant of this fact, the prediction model proposed in this study included four commonly used clinical vari-
ables including T-SPOT.TB. The AUC of the model for diagnosing TPE was 0.845 (95% CI 0.800–0.891), which 
greatly improved the prediction performance of TPE diagnosis.

Similar to previous studies, our study found that elevated ADA in PE was independently correlated with the 
diagnosis of TPE. It was considered that PEADA < 40 U/L was rarely caused by tuberculosis, and it was an excel-
lent examination to exclude  tuberculosis18. The higher the ADA level, the greater the probability of TPE, while 
the lower the ADA level, the lower the probability of  TPE19. Therefore, the increase of ADA in PE was naturally 
reasonably included in our model.

The study showed that in 60%-90% of TPE, the cells in pleural effusion are mainly infiltrated by lymphocytes, 
and the other cases are mainly  neutrophils20. While the multinuclear neutrophils predominate in the first few days 
after the onset of tuberculous pleurisy, the mononuclear lymphocytes predominate  thereafter21. We previously 
found that pleural effusion mononuclear cells count is relatively useful for TPE  diagnosis22. Another study also 
revealed that mononuclear cell/leukocyte ratio was significantly higher in TPE than in non-TPE23. On the basis 
of the these studies, in this study lnRMMPE is found to be an additional important predictor of TPE, which 
indirectly confirmed the important diagnostic value of lymphocytes in pleural effusion for TPE.

An epidemiological study from the United States showed that about 50% of TPE patients were under 45 years 
 old24. In areas with high burden of tuberculosis, TPE mainly affects young people (average age = 34 years), of 
which primary infection accounts for a large percentage of patients with  TPE13. Our findings are similar to these 
studies. We found that age was an independent predictor of TPE diagnosis and was negatively related to the 
diagnosis of TPE (OR 0.96; 95% CI 0.94–0.98; P < 0.001).

Our study had some advantages. Firstly, all the patients included in this study underwent thoracoscopy, and 
the pleural specimens obtained were examined by histopathology and acid fast staining. The etiological diagno-
sis of TPE and non-TPE was accurate, making the bias from the gold standard small. Secondly, the developed 
prediction model in derivation population was verified in an independent validation population to confirm the 
reliability of the prediction performance of the model. Thirdly, the four variables included in the model were 
easy to obtain and minimally invasive, so the model was more simple, practical and safe. Finally, we first included 
T-SPOT.TB in the diagnosis model of TPE, which further proved the diagnostic value of T-SPOT.TB for TPE.

Figure 4.  Calculator: TPE probability in patients with unknown pleural effusion. Note: “Age” is the patient’s 
age in years; “T_SPOT.TB” = 1 if the patient’s T-SPOT.TB result is positive and 0 if otherwise; “lnRMMPE” is 
the logarithm of the ratio of mononuclear cells to multinuclear cells in patient’s pleural effusion; “ADAPE” = 1 if 
the patient’s pleural effusion ADA is ≥ 40 U/L and 0 if otherwise. The calculator can be available at the website: 
https:// yzg19 72. shiny apps. io/ dynno mapp/?_ ga=2. 16791 6065. 18534 86038. 16707 63324- 35843 408. 16702 99435.

https://yzg1972.shinyapps.io/dynnomapp/?_ga=2.167916065.1853486038.1670763324-35843408.1670299435
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Inevitably, this study also had some limitations. Firstly, the collected data were clinically driven rather than 
research driven, and case selection bias is difficult to avoid. Therefore, the conclusions of this study needed to 
be interpreted carefully when applied clinically. Secondly, this study was a single center study. The research unit 
is a university affiliated hospital. The cases might not truly represent the overall TPE population. Therefore, the 
population to which the conclusions of this study are applied should be similar to the population included in this 
study as much as possible. For example, in order to increase the accuracy of the study, we used live tissue samples 
obtained through thoracoscopy for histopathological examination as the gold standard for diagnosis. Of course, 
this was not without a cost, which was that patients who received thoracoscopy were usually younger. Therefore, 
our findings may not be suitable for patients who cannot tolerate thoracoscopy, such as physically weak patients 
or elderly patients.Thirdly, this study was a retrospective study. Thus, prospective and multicenter studies are 
needed to further verify the conclusion of this study. One final disadvantage to note was that the T-SPOT.TB 
result was an important variable that constituted our model. In nations where tuberculosis is prevalent, particu-
larly in Asia, the likelihood of obtaining positive results from the IGRA test increases with age.This implies that 
the accuracy of the predictive model may decline among older individuals.Therefore, for older individuals, it is 
necessary to exercise extreme caution when applying the model proposed in this study.

In clinical practice, for the diagnosis of TPE, we have the following experience: if a patient is young with fever, 
increased ratio of mononuclear cells in pleural effusion, elevated concentration of ADA, and positive T-SPOT.TB 
result in peripheral blood, then the patient’s diagnosis is likely to be TPE. However, clinical experience cannot 
correctly determine the probability of a patient suffering from TPE. Our model not only verified our clinical expe-
rience and accurately identified the predictive variables for the diagnosis of TPE but also accurately calculated 
the probability of a patient with TPE. This improved understanding makes our diagnosis of TPE more accurate.

We strongly recommend validating and updating our prediction model, derived from prospective data, rather 
than developing new models. In addition, studies that focus on the impact of prediction models on clinical prac-
tice, preferably through the clinical decision support system test, are also an important last step in implementing 
prediction models in clinical  practice25.

Conclusions
We developed and validated a novel prediction model including age, positive T-SPOT.TB, lnRMMPE and 
ADAPE ≥ 40 U/L, which could predict the probability of TPE accurately, simply and safely.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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