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Environment assisted quantum 
model for studying RNA‑DNA‑error 
correlation created due to the base 
tautomery
Fatemeh Ghasemi 1* & Arash Tirandaz 2*

The adaptive mutation phenomenon has been drawing the attention of biologists for several decades 
in evolutionist community. In this study, we propose a quantum mechanical model of adaptive 
mutation based on the implications of the theory of open quantum systems. We survey a new 
framework that explain how random point mutations can be stabilized and directed to be adapted 
with the stresses introduced by the environments according to the microscopic rules dictated by 
constraints of quantum mechanics. We consider a pair of entangled qubits consist of DNA and mRNA 
pair, each coupled to a distinct reservoir for analyzing the spreed of entanglement using time-
dependent perturbation theory. The reservoirs are physical demonstrations of the cytoplasm and 
nucleoplasm and surrounding environments of mRNA and DNA, respectively. Our predictions confirm 
the role of the environmental-assisted quantum progression of adaptive mutations. Computing 
the concurrence as a measure that determines to what extent the bipartite DNA-mRNA can be 
correlated through entanglement, is given. Preventing the entanglement loss is crucial for controlling 
unfavorable point mutations under environmental influences. We explore which physical parameters 
may affect the preservation of entanglement between DNA and mRNA pair systems, despite the 
destructive role of interaction with the environments.

As the frontiers of quantum biology predicted, one of the most debating topics in relation to quantum origins 
of life is the evolution story1–4. Thus far, researchers have considered two different Darwinian and Lamarckian 
mechanisms for evolution process. Darwinian evolution mode occurs at low-stress levels, where random muta-
tions seem to be a dominant source for evolution5,6. In contrast, the Lamarckian mechanism happens at high-
stress levels, where the adaptive mutations are dominant and environmental factors introduce genomic changes. 
Here, the mutations target are specific genes and causes of adaptation to the original motive. Through the phe-
nomenon of adaptive or directed mutations individual organisms show suitable plasticity to contribute directly 
into the evolutionary process by changing their genome. Adaptive mutations are time-dependent and appear 
only after the cell exposion to a selective substrate7,8. For several decades, people have tried to explain how cells 
can selectively mutate a specific gene in response to environmental signals. Quantum studies of the evolution 
suggest that adaptive mutations may be generated by environment-induced collapse of the quantum wave func-
tion describing DNA in a superposition9 of mutated and unmutated states7,8,10. Proton tunneling is the way that 
DNA can become in superposition. Löwdin considering the proton tunneling between two adjacent sites within 
the H-bonded DNA bases proposed a quantum model for gene mutations11,12. The proton tunneling in DNA can 
cause the transformation like C-G → C*-G*. During the replication process, these tautomeric forms can cause 
incorporation errors in replicated DNA as shown in Fig. 1. If the incorporation errors not become corrected 
during the proofreading stage it may cause the mutations. For explaining adaptive mutation with the aid of proton 
tunneling it is necessary the incorporation of error within the coding strand of DNA. The quantum state of this 
proton can be introduced by a linear superposition of position states for tunneled and not-tunneled proton. 
Furthermore, an anomalous base-pairing of the tautomeric form can cause the incorporation of an incorrect 
base into DNA strand during the DNA replication, for instance incorporating base T instead of base C. Subse-
quent transcription and translation of the mutant form of the gene will result in expression of the mutant phe-
notype and sitting incorrect amino acid in protein chain7,8,13. For describing the adaptive mutation with such a 
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mechanism, the evolving DNA wave function must remain coherent for sufficiently long time to interact with 
the cell’s environment. The coherence must be maintained during the separation of the two strands of the DNA 
via helicase14–18. There is an intense debate on if both forms of tautomers can exist and dynamically be stable. 
The strengths of hydrogen bonds within DNA due to the inherently quantum mechanical nature of hydrogen 
bonding can be affected by nuclear quantum effects19–21. Moreover, the unzipping DNA is a complex biological 
process and involves strong interactions from several proteins22. It has been hotly debated for decades if the 
coherence of tautomers can survive the unzipping helicase23–25. McFadden and Al-khalili modeled a specific 
mutational process involving proton tunneling and investigated the possibility of the coherence to be maintained. 
They estimate the rate of decoherence for the protons initiating mutational events within DNA using the Zurek 
model26. Accordingly, for a system of mass m in a superposition of two position states separated spatially by a 
distance �x the decoherence time can be defined as tD ∼= tR

�T

�x
 . Where �T = h̄

√
2mkBT  denotes the thermal 

de Broglie wavelength that is temperature, T, dependent, and tR is the relaxation time. Their estimation showed 
that DNA coding information of tautomeric forms may remain coherent for biologically feasible periods of time7. 
More recently, Slocombe et al. investigations demonstrated that the quantum rate of tautomeric lifetime is sig-
nificantly higher than the classical rate for a wide range of bath coupling strengths. The proton transfer processes 
and interconversion between the normal and tautomeric forms occur remarkably quicker than the helicase 
cleavage timescale19. These evidences for surviving coherence between tautomers allowed scientists to hire quan-
tum approaches of evolution on the genome7 and cellular level8 for describing the various aspects of adaptive 
mutations27–30. Both approaches inspect the situation in which the system under consideration fluctuates between 
two quantum states labeled as mutated and unmutated states due to the proton tansfer7,8,11–13. In the absence of 
a selective substrate, the mutated and unmutated states are not distinguishable by the environment7,8. In such 
situations the state is said to be stable. The application of the selective substrate destabilizes the fluctuating state 
that can lead to the generation of the mutant colony. The addition of a specific substrate may result in the collapse 
of the superposition by rapid decoherence, which corresponds to consecutive monitoring of the state of the 
system with its environment31–34.

Ogryzko argued that the quantum explanation for adaptive mutation can be established with the aid of a 
particular correlation between ‘R-error’ and ‘D-error’8,35. Where the term R-error refers to synthesis of a mutated 
strand of mRNA due to the recognition of a tautomeric form of a base along the gene by RNA-polymerase. Also, 
the term D-error specifies a similar mistake made by DNA-polymerase (see Fig. 1). According to him, using a 
scenario involving both errors is satisfying to describe adaptive mutations. In his model, generating the correla-
tion between R-error and D-error first requires that the RNA-polymerase activity create two superposed branches 
for the newly transcribed mRNA in the cell due to parental DNA base tautomerization. Furthermore, presence 
of the substrate is needed to provide enough energy and primary materials for DNA to initiate replication. The 
DNA-polymerase with a high probability should recognize the same incorrect nucleotide and make exactly the 

Figure 1.   Schematic representation for correlated R-D-error. The left branch shows the normal path of 
replication and transcription of DNA. This path creates no error in DNA and mRNA. The right branch 
contains the C-G → C*-G* transformation due to proton tunneling in DNA. The replication and transcription 
of transformed copy of DNA will create DNA and RNA copies, both containing error in the same position, 
denoted as D-error and R-error, respectively.
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same error as the error made by the RNA-polymerase. Thereby, mutant DNA copies also can be formed, and 
the colonies of the mutated states may emerge. The possibility of making the same error as the mistake made 
by the RNA-polymerase for DNA-polymerase guarantees a correlation between the R- and D-errors which can 
be called the ‘R-D-error correlation.’ Note that both errors must occur simultaneously in a cell. The correlation 
would have the form P = (Rer, Der), (Rcor, Dcor) where P is the set of possible outcomes consisting of two ele-
ments: ( Rer, Der ), corresponding to combination of R-error and D-error. ( Rcor, Dcor ), refers to combination of 
no D-error and no R-error.

Taking non-classical correlations between two different parts of the cell into account reveals a prominent 
feature of quantum mechanics, namely the entanglement36. The entangled states are sensitive to the system-envi-
ronment interaction and can be destroyed quickly due to the environmentally induced decoherence (EID)10,37. 
Here, a related question arises as to what extent this kind of non-classical correlation in the cell is prone to sur-
vive from the EID. In different words, how decoherence can play a positive role in stabilizing some non-classical 
correlations in the macroscopic object of living cell?

After transcription and replication processes within the nucleus and before translation, the daughter DNA 
and mRNA separate from each other and lie in different places. The daughter DNA remains in the nucleoplasm, 
and mRNA migrates to the cytoplasm according to their biological tasks. From now on, daughter DNA will be 
referred to as DNA for simplicity. For such a bipartite system of DNA and mRNA, it is desirable to describe what 
occurs for the available information of two separated parts after they have correlated for a while. Putting in quan-
tum language, entanglement implies dealing with just a single composite system, instead of two isolated ones. 
Therefore any change to one subsystem, regardless of the distance between two parts, would influence the other.

In this investigation, we consider a model consisting of the pair of DNA and mRNA located in nucleoplasm 
and cytoplasm, respectively. Both DNA and mRNA are two-level systems created due to the base tautomerizatio. 
We use this model to study their correlation and the related entanglement dynamics. The correlation between 
DNA and mRNA is a primary correlation after the replication and transcription of error containing DNA. Corre-
lation between daughter DNA and amino acids is a secondary correlation and is a consequence of the correlation 
between mRNA and DNA. We mainly focus on the time-evolution study of the entanglement between DNA and 
mRNA while they interact with the corresponding environments. We analyze the interaction between DNA and 
mRNA subsystems and the environments using a framework proposed by Takagi in38 for tackling macroscopic 
quantum tunneling in the presence of the environments. By calculating concurrence of the two entangled qubits, 
as a measure of entanglement propagation, we comment on the extent of dispersing of entanglement on the 
whole system. Our approach opens a new perspective to study genetic errors and adaptive mutations through 
the distinct framework of quantum mechanics39.

The paper is organized as follows. In Sect. "Model and Quasi-classical approach", we first describe the model 
of the entire system consisting of the bipartite mRNA and DNA system and reservoirs, including cytoplasm and 
nucleoplasm. As we are interested in the interaction between DNA and mRNA subsystems and the environments, 
in Sect. "Time evolution study of the entangled bipartite system", we examine the dynamics of the bipartite system 
and solve the related equations in the framework of the perturbation theory. The results are used in Sect. "The 
concurrence of the bipartite system" to calculate the concurrence of the two entangled subsystems when they 
are located in different environments. We briefly conclude our results at the very end.

Model and Quasi‑classical approach
Consider a bipartite system S = S1 + S2 composed of a DNA and mRNA pair denoted by S1 and S2 , respectively. 
Because of tautomerization, both DNA and mRNA can be represented by two-state systems including the un-
mutant and mutant forms. To study the error-correlation in DNA and RNA as a result of tautomerization, we 
consider the time-evolution of the entangled bipartite system coupled to two environments consist of bosonic 
modes. Hamiltonian of the entire bipartite system and environments can be defined as:

where HS = HS,1 +HS,2 and HE = HE ,1 +HE ,2 are the system and the environment Hamiltonian, respectively. 
Here, we use HS,1 and HS,2 to demonstrate the Hamiltonian corresponding to two-state DNA , S1 and two-state 
mRNA as S2 . HE ,1 and HE ,2 denote the corresponding Hamiltonian of the harmonic environments coupled to 
DNA and mRNA, respectively. HSE = HS1E1 +HS2E2 represents the interaction Hamiltonian of the DNA and 
mRNA systems with the nucleoplasm and cytoplasm, respectively which HSiEi has the following form38:

where qi represents the position variable of ith system, ωαi is the frequency of the harmonic oscillator of the ith 
environment bosonic mode. b̂†αi and b̂αi are the creation and annihilation operators for the oscillators and fαi (q̂i) 
describes coupling strength of particle qi to the α th mode of ith environmental mode. Here, we use a linearly 
coupled harmonic environment model, named ’separable interaction’ in which fαi (q̂i) = γαi f (q̂i) . Where f (q̂i) 
is an arbitrary function of qi and γαi is a positive constant. We set all variables dimensionless, respecting the 
approach taken by Takagi in38, noting that h̃ is also the dimensionless Planck constant which quantifies the extent 
to which a system is expected to behave as a macroscopic one. Supposing that for a macroscopic two-level system, 
the potential has the characteristic length R0 with the unit of length and the characteristic energy U0 with the 
unit of energy, the corresponding characteristic time τ0 may be introduced as the time required for a particle 
of mass M to pass the distance R0 at a constant speed with the kinetic energy of the order of U0 . It is possible to 
determine τ0 by the height and the width of the energy barrier. It is usually called the tunneling time. Considering 

(1)H = HS +HE +HSE ,

(2)HSiEi = −

√

h̃

2

∑

αi

ω3/2
αi

fαi (q̂i)(b̂αi + b̂†αi )+
1

2

∑

αi

ω2
αi
{fαi (q̂i)}2,
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τ0 as the unit of time, we introduce the parameter h̃ , which instead of Planck’s constant appears in a particular 
dimensionless form of the Schrödinger equation resulting from our choice of units:

where P0 is the unit of momentum defined as P0 := (MU0)
1/2 . The magnitude of h̃ is related to U0τ0(= P0R0 ). It 

determines how much a near macroscopic system can show quantum traits. In this sense, the condition in which 
h̃ ≪ 1 is called the quasi-classical limit. In the region in which h̃ = 1 , the system tends to show its quantum-
ness, purely. If h̃ is too small, it is almost impossible to track its quantum behavior in experience. As a result, the 
amount of h̃ is a fair measure for quantifying the quantumness of a system on the boundary of being resembled 
to a classical system. Taking a purely quantum-mechanical approach one prefers to work with h̃ = 1 . If h̃ is too 
small, it is impossible to detect quantum effects. Then, h̃ quantifies the limit in which quantum mechanical 
behavior could be expected.

We aim to study the sources of genetic errors and genetic mutations using quantum-mechanical formalism. 
Thus, we describe the quantum state of the entangled bipartite DNA and mRNA systems which alluded to each 
other by quantum correlation due to the replication and transcription of tow-state mother DNA strand with 
|ψ(0)� = α|0�1|0�2 + β|1�1|1�2 . Where similar to the study of a typical two-state system in quantum mechanics, 
we labeled the excited and ground pure states of the DNA and mRNA as |1�i and |0�i , respectively. As we specified 
before i = 1 refers to DNA and i = 2 to mRNA. We denote the states as follows 

 For the environment |vac�1 and |vac�2 describe initial states of nucloplasm and cytoplasm, respectively. Accord-
ingly, the initial state of the entire system is

Note that the Hilbert space of the whole S1 + S2 is four-dimensional and this is integrated by all the possible linear 
combinations of the Kronecker product between the basis elements of Hilbert space of the system one H1 , and 
those of the Hilbert space of the system two H2 . The basis for the four-dimensional Hilbert space are defined as:

The state |ψ(0)� is a linear combination of the two basis |ϕ1� and |ϕ4� . In general, it is a statistical ensemble of pure 
states {pk ,ϕk}k=1,2 where each |ϕk� that occurs with probability pk can be represented by the orthogonal projector 
ρk = |ϕk��ϕk| . Hence, the density matrix representation of the initial state can be written as:

where 
∑

k=1,2 pk = 1.

Time evolution study of the entangled bipartite system
With H defined in Eq. (1) time translation of the initial vector can be represented as |�(t)�� = ÛI (t)|�(0)�� , 
where ÛI (t) is the unitary time evolution operator in interaction picture:

We suppose that the mRNA and DNA systems placed in separate environments does not interact with each other 
and hence the action of time evolution operator can be written by:

(3)h̃ := �

U0τ0
= �

P0R0
= {�

2/MR0
2

U0
}1/2,

(4a)|0�1 =
1√
2
(|Dcor� − |Der�)

(4b)|1�1 =
1√
2
(|Dcor� + |Der�)

(4c)|0�2 =
1√
2
(|Rcor� − |Rer�)

(4d)|1�2 =
1√
2
(|Rcor� + |Rer�).

(5)
|�(0)�� = |ψ(0)�|vac�1|vac�2

= (α|0�1|0�2 + β|1�1|1�2)|vac�1|vac�2.

(6)

|0�1 ⊗ |0�2 ≡ |0, 0� = |ϕ1�
|0�1 ⊗ |1�2 ≡ |0, 1� = |ϕ2�
|1�1 ⊗ |0�2 ≡ |1, 0� = |ϕ3�
|1�1 ⊗ |1�2 ≡ |1, 1� = |ϕ4�.

(7)ρ =
∑

k=1,2

pk|ϕk��ϕk|,

(8)UI (t) = ei(HS+HE )t/he−i(HS+HE+HSE )t/h,

(9)|�(t)�� = ÛI ,1(t)⊗ ÛI ,2(t)|�(0)��,
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UI ,1(t) = e−iHS1E1 t/h and UI ,2(t) = e−iHS2E2 t/h represent the time evolution operators for DNA and mRNA 
strands, respectively. We have used i = 1 or 2 to show the basis states of the the Hilbert space of DNA as S1 and 
mRNA as S2 , belonging to {|n�|n = 0, 1} . We obtain the state of the total system at time t, expanded in terms of 
the basis states of the system as follows:

| ˜χn1,n2(t)� is the time-dependent coefficients belonging to the Hilbert space of the environment Hε1 ⊗Hε2 , with 
the following definition:

n1 and n2 in the state | ˜χn1,n2(t)� specify the states of the DNA as S1 and mRNA as S2 , respectively. In order to calcu-
late these coefficients, we resort to the perturbation theory, which can be applied when the system-environment 
interactions are considered to be weak. Here, regarding |ψ(0)� = α|0�1|0�2 + β|1�1|1�2 and using Eqs. (10) and 
(11) we can calculate the coefficients | ˜χn1,n2(t)� for different values of n1 and n2 as: 

 We can expand the time-evolution operator UI ,i(t) , regarding the interaction Hamiltonian HSiEi up to the second 
order to find

where the second and third terms of the right-hand side in Eq. (13) are the first and second order correlations, 
respectively. According to Eqs. (13) and (12) we evaluate the expressions HSiEi (t1)|vac� and HSiEi (t2)HSiEi (t1)|vac� 
to specify the coefficients | ˜χn1,n2(t)� . Thereby, we arrive at:

The detailed forms of the operators ûvac,i and ûα,i are given in Supporting Information (SI). Also, the results for 
substituting Eq. (14) into (12) to specify the coefficients | ˜χn1,n2(t)� are given in SI. Here, due to the long equations 
we avoid to bring all coefficients, and we only bring the coefficient |χ̃0,0(t)� here:

(10)

|�(t)�� =
∑

n

|n�i i�n|ÛI (t)|�(0)��

=
∑

n

|n�11�n|ÛI ,1(t)|�(0)��|n�22�n|ÛI ,2(t)|�(0)��

=
∑

n

|n�| ˜χn1,n2(t)�.

(11)| ˜χn1,n2(t)� = 1�n|2�n|ÛI ,1(t)ÛI ,2(t)|�(t)��,

(12a)
|χ̃0,0(t)� =α[1�0|e−iHE1 t/hÛI ,1(t)|0�|vac�12�0|e−iHE2 t/hÛI ,2(t)|0�2|vac�2]

+β[1�0|e−iHE1 t/hÛI ,1(t)|1�|vac�12�0|e−iHE2 t/hÛI ,2(t)|1�2|vac�2]

(12b)
|χ̃0,1(t)� =α[1�0|e−iHE1 t/hÛI ,1(t)|0�|vac�12�1|e−iHE2 t/hÛI ,2(t)|0�2|vac�2]

+β[1�0|e−iHE1 t/hÛI ,1(t)|1�|vac�12�1|e−iHE2 t/hÛI ,2(t)|1�2|vac�2]

(12c)
|χ̃1,0(t)� =α[1�1|e−iHE1 t/hÛI ,1(t)|0�|vac�12�0|e−iHE2 t/hÛI ,2(t)|0�2|vac�2]

+β[1�1|e−iHE1 t/hÛI ,1(t)|1�|vac�12�0|e−iHE2 t/hÛI ,2(t)|1�2|vac�2]

(12d)
|χ̃1,1(t)� =α[1�1|e−iHE1 t/hÛI ,1(t)|0�|vac�12�1|e−iHE2 t/hÛI ,2(t)|0�2|vac�2]

+β[1�1|e−iHE1 t/hÛI ,1(t)|1�|vac�12�1|e−iHE2 t/hÛI ,2(t)|1�2|vac�2].

(13)
ÛI ,i(t) ≃ 1− i

h̃

∫ t

0
dt1HSiEi (t1)

− 1

h̃2

∫ t

0
dt2

∫ t2

0
dt1HSiEi (t2)HSiEi (t1),

(14)ÛI ,i(t)|vac�i ≃ ûvac,i(t)|vac�i +
∑

α

e−iωα,i t ûα,i(t)|α�i .

(15)

|χ̃0,0(t)� = α(1�0|ûvac,1(t)|0�1|vac�1 +
∑

α

e−iωα,1t
1�0|ûα,1(t)|0�1|α�1)

(2�0|ûvac,2(t)|0�2|vac�2 +
∑

α

e−iωα,2t
2�0|ûα,2(t)|0�2|α�2)

+β(1�0|ûvac,1(t)|1�1|vac�1 +
∑

α

e−iωα,1t
1�0|ûα,1(t)|1�1|α�1)

(2�0|ûvac,2(t)|1�2|vac�2 +
∑

α

e−iωα,2t
2�0|ûα,2(t)|1�2|α�2),
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At last, the problem of calculation of the coefficients | ˜χn1,n2(t)� is reduced to finding the matrix elements of the 
operators ûvac,i , ûα,i . In this sense, some parity considerations will be useful to estimate the matrix elements of 
the operators: 

 Using the parity rules in Eq. (16) we can simplify |χ̃0,0(t)� to obtain the following expressions: 

 Using the coefficients specified in Eqs. (17a) to (17d) the total state of the system at time t would be

Evaluating the non-zero matrix elements in Eq. (17) and then substituting the results into (18), enables us to 
obtain the probability of finding the system in initial state as:

Figure 2 showes the dynamics of the probability for initial entangled state of bipartite system composed from 
DNA and mRNA. In this figure, the probability is plotted for different tunneling amplitudes and system-envi-
ronment interaction strengths.

The concurrence of the bipartite system
Here, we use the obtaind result of the previous section to evaluate the degree of entanglement of the system as 
a function of time. One striking measure to evaluate the degree of entanglement is concurrence that takes the 
value 1 for maximal entangled and 0 for unentangled systems. The concurrence of two qubits introduced by 
Hill and Wootters represents an appropriate option to answer the question of what extent the given quantum 
state is entangled40,41? According to40,41, for a given two-qubit density operator ρ , the measure of concurrence 
C(ρ) is calculated as:

where the �i parameters, sorted in descending order, are the eigenvalues of the matrix ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) 

and ρ∗ is the complex conjugation of the density matrix ρ . For the given |�(t)� , the density operator ρ of the 

(16a)i�m|ûvac,i|n�i =
{

zero : m− n is odd
non-zero : m− n is even

(16b)i�m|ûα,i|n�i =
{

zero : m− n is even
non-zero : m− n is odd

(17a)
|χ̃0,0(t)� = α(1�0|ûvac,1(t)|0�1|vac�12�0|ûvac,2(t)|0�2|vac�2)

+β(
∑

α

e−iωα,1t e−iωα,2t
1�0|ûα,1(t)|1�1|α�12�0|ûα,2(t)|1�2|α�2)

(17b)

|χ̃0,1(t)� = α(1�0|ûvac,1(t)|0�1|vac�1
∑

α

e−iωα,2t
2�1|ûα,2(t)|0�2|α�2)

+β(
∑

α

e−iωα,1t
1�0|ûα,1(t)|1�1|α�12�0|ûvac,2(t)|0�2|vac�2)

(17c)

|χ̃1,0(t)� = α(
∑

α

e−iωα,1t
1�1|ûα,1(t)|0�1|α�12�0|ûvac,2(t)|0�2|vac�2)

+β(1�1|ûvac,1(t)|1�1|vac�1
∑

α

e−iωα,2t
2�0|ûα,2(t)|1�2|α�2)

(17d)
|χ̃1,1(t)� = α(

∑

α

e−iωα,1t e−iωα,2t
1�1|ûα,1(t)|0�1|α�12�1|ûα,2(t)|0�2|α�2)

+β(1�1|ûvac,1(t)|1�1|vac�12�1|ûvac,2(t)|1�2|vac�2)

(18)

|�(t)�� =
∑

n

e−iEn,1t/he−iEn,2t/h|n�1|n�2| ˜χn1,n2(t)�

=
∑

n

e−iE0,1t/he−iE0,2t/h|0�1|0�2|χ̃0,0(t)�

+
∑

n

e−iE0,1t/he−iE1,2t/h|0�1|1�2|χ̃0,1(t)�

+
∑

n

e−iE1,1t/he−iE0,2t/h|1�1|0�2|χ̃1,0(t)�

+
∑

n

e−iE1,1t/he−iE1,2t/h|1�1|1�2|χ̃1,1(t)�.

(19)|��(0)|�(t)�|2 = α4 + β4e−Ŵ1t e−Ŵ2t + 2α2β2e−Ŵ1t/2e−Ŵ2t/2 cos(�1 +�2)t.

(20)C(ρ) = max{0,
√

�1 −
√

�2 −
√

�3 −
√

�4},
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whole system is the defined as ρ = |�(t)���(t)| . Here, we calculate ρS := TrE1,E2ρ to gain information about 
entangled system composed of DNA and mRNA qubits. We obtain ρS as

By evaluating the expressions | ˜χn1,n2(t)�� ˜χn1,n2(t)| in Eq. (21) we obtain the density matrix ρS in terms of the 
matrix elements of the components of the time evolution operator, ûvac(t) and ûα(t) as follows

where the matrix elements �ij are calculated in SI.
Accordingly, we obtain all non-vanishing matrix elements of the operators ûvac(t) and ûα(t) as 

 where F±,i(t) = −π(−1)P
∫∞
0 dωiJ(ωi)

sin (ωi ±�i)t

(ωi ±�i)2
 . Here the symbol P denotes that the integral is a princi-

pal-value integral, �i :=
E1,i − E0,i

h̃
 is called the tunnel splitting of the ground-state energy. It is worth to note 

that the function J(ω) namely the spectral function in the literature38, has the form J(ω) := π

2
{γ̄ (ω)}2D(ω) . The 

function D(ω) presents the frequency distribution of the environmental oscillators and J(ω) expresses the cor-
responding distribution weighted by the function {γ̄ (ω)}2 which describes the interaction strength. In our regime, 
D(ω) is defined as D(ω) := 1

2π t
{ sin(ωt/2)

ω/2
}2 . Substituting non-vanishing matrix elements of the operators 

ûvac(t) and ûα(t) into the expressions obtaind for �ij (see SI) and simplifying consequent relations we have

(21)

ρS = TrE1,E2ρ =|0�1|0�2|χ̃0,0(t)��χ̃0,0(t)|2�0|1�0|

+e+i�1t e+i�2t |0�1|0�2|χ̃0,0(t)��χ̃1,1(t)|2�1|1�1|

+|0�1|1�2|χ̃0,1(t)��χ̃0,1(t)|2�1|1�0|

+e+i�1t e−i�2t |0�1|1�2|χ̃0,1(t)��χ̃1,0(t)|2�0|1�1|

+e−i�1t e+i�2t |1�1|0�2|χ̃1,0(t)��χ̃0,1(t)|2�1|1�0|

+|1�1|0�2|χ̃1,0(t)��χ̃1,0(t)|2�0|1�1|

+e−i�1t e+i�2t |1�1|1�2|χ̃1,1(t)��χ̃0,0(t)|2�0|1�0|

+|1�1|1�2|χ̃1,1(t)��χ̃1,1(t)|2�1|1�1|

(22)ρS =







�11 0 0 �14

0 �22 �23 0
0 �32 �33 0

�41 0 0 �44







(23a)�0|ûvac,i(t)|0� ≃ exp[− i

h̃
{tδE0,i − |f10,i|2F+,i(t)}]

(23b)�1|ûvac,i(t)|1� ≃ exp[− i

h̃
{tδE1,i − |f01,i|2F−,i(t)}]

(23c)�0|ûα,i(t)|1� = �1|ûα,i(t)|0�∗ = 2π i
√

2h̃
γ̄α,i f01,i

(

1

π

)

sin (ωi +�i)t/2

ωi +�i
ei(ωi+�i)t/2

Figure 2.   The dynamics of the probability for initial entangled state of bipartite system of DNA and mRNA, 
(a) plot of P(� = �(0)) as a function of t (dimensionless) with the values �1 = �2 = � = 1 , Ŵ1 = Ŵ2 = Ŵ 
and Ŵblue < Ŵred < Ŵgreen (b) same plot as (a) with the values �1 = �2 , Ŵ1 = Ŵ2 for red curve and �1 > �2 , 
Ŵ1 > Ŵ2 for blue curve, (c) same plot as (b) but with the values �1 ≫ �2 and Ŵ1 ≫ Ŵ2 for blue curve. See exact 
values in SI.
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The eigenvalues of the matrix ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) read as follows

Therefore, according to Eq. (20) we find the concurrence of the bipartite entangled system as

Figure 3 shows the behavior of the concurrence as a function of time for the equally weighted entangled state 
(5), i.e. �α=β=1/

√
2 considered as initial conditions for the bipartite state. The state �(t = 0) corresponds to the 

situation in which the mRNA-DNA system has the probability cos (
π

4
) to be in the state |ϕ1� = |0, 0� and sin (

π

4
) 

to be in the state |ϕ4� = |1, 1� . That is, the repeat of measurement will give equally the states |ϕ1� = |0, 0� and 
|ϕ4� = |1, 1� at times the system is checked whether it is in the examined state or not. Remark that in this case 
the correlation obtained from the interaction process is present and the state �(t = 0) encodes a strong entangle-
ment between the components of the entire system. In this figure, C(ρ) is plotted for different tunneling ampli-
tudes and system-environment interaction strengths. In Figure 3, we can infer that the concurrence curve for 
the state �(t = 0) begins from a maximally entangled condition, where concurrence is equal to one, and after a 
while goes to the less entangled condition. For large values of �i s and Ŵi s, the concurrence approaches zero faster 
than the region in which their amounts are negligible. For a situation in which the entangled state confront with 
environments with different values of �i and Ŵi , the decoherence process occurs slowly. Thus the entanglement 
between mRNA and DNA survives for a longer time. In contrast, the environments with similar properties (the 

(24)

�11 =α2

�14 =αβ∗e−Ŵ1t/2e−Ŵ2t/2e+i�1t e+i�2t

�22 =β2Ŵ1te
−Ŵ2t/2 ≃ β2(1− eŴ1t)e−Ŵ2t

�23 ≃0

�32 ≃0

�22 =β2Ŵ2te
−Ŵ1t/2 ≃ β2e−Ŵ1t/2(1− eŴ1t)

�41 =βα∗e−Ŵ1t/2e−Ŵ2t/2e−i�1t e−i�2t

�44 =β2e−Ŵ1t e−Ŵ2t

(25)

�1 = �2 = �22�33

�3 =
1

2
[(2�11�44)

1/2 − (2�14�41)
1/2]

�4 =
1

2
[(2�11�44)

1/2 + (2�14�41)
1/2]

(26)C(ρ) = 2αβe−Ŵ1t/2e−Ŵ2t/2 − 2β2e−Ŵ1t/2e−Ŵ2t/2(1− eŴ1t)1/2(1− eŴ2t)1/2.

Figure 3.   The time-evolution of the concurrence associated to the mRNA-DNA entangled state, (a) plot of C(ρ) 
as a function of t (dimensionless) with the values α = cosπ/4 , β = sinπ/4 , �1 = �2 = 1 , Ŵ1 = Ŵ2 and also Ŵ1 
( Ŵ2 ) is equal to κ�1 ( κ�2 ), (b) same as (a) but �1 > �2 , (c) same as (a) but �1 ≫ �2 , (d) 3D plot of C(ρ) as a 
function of t and �2 with same values as (a) but �2 changes from 0 to 1. See SI for exact values.
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near values for �i s and Ŵi s) cause more rapid decoherence. Note that here decoherence can stabilize the wave 
function in the mutated state and thus generate colonies from the mutated states as a representation for tumor 
formation.

M o r e o v e r ,  e m p l o y i n g  a n  e x p l i c i t  e x p r e s s i o n  f o r  Ŵi  a s 

Ŵ(τ) = 1

π h̃
|f01|2η

∫

0
∞
dω

(

ω

ωc

)s−1

ω exp(−ω/ωc)
1

t
{ sin(ωt/2)

ω/2
}2 , can connect this process to Ohmic behavior 

of the environments. In this relation, s characterizes the Ohmicity of the environment, ωc is the cutoff frequency, 
and η is a positive constant to quantify the system-environment interaction strength.

If �α  =β  =1/
√
2 is the initial condition, then we see a very similar process, but the concurrence starts with a 

smaller value, admits that entanglement is going to be shaped and has not been completed, yet).
Let us now attend to another measure of entanglement. For a given mixed state ρ of two quantum systems S1 

and S2 , we consider all possible decomposition of pure states of ρ in terms of an ensemble of pure states |ψi� and 
associated probabilities pi , that is ρ =

∑

i pi|ψi��ψi| , then the entanglement of formation E(ρ) can be defined 
as the average entanglement of the pure states of the decomposition, minimized over all decomposition of ρ:

It has been verified that this entanglement of formation can be written as

where the function C(ψi) is concurrence of ψi and and the function E is given by

Using the Eq. (28) we can obtain the entanglement of formation E(C) for the calculated expression of the cun-
currence. Figure 4 demonstrates the variation of the measure E(C) with time for different values of �i and Ŵi . 
According to Fig. 4, as we expect the entanglement of formation E(C) shows a similar behavior to the concur-
rence which is demonstrated in Fig. 3.

Conclusion
In the present work, we studied the environment-induced decoherence for mRNA-DNA-error correllation cre-
ated due to the base tautomery, considering the mRNA-DNA system as entangled bipartite system, where each 
part coupled to a different bosonic environments. The time-evolution of the energy states of the pair has been 
studied entangled biomolecules has been studied using time-dependent perturbation theory. The concurrence 
of these systems calculated in order to determine how extent the components are entangled. We have found 
that the mRNA-DNA-error correlation depends on the interaction strength of the each component and the 
corresponding environment. The parameters Ŵi and �i which represent the system-environment interaction 
and tunneling strength, respectively, are effective factors in EID process. When the interaction strength for both 
parts are strong, the generated entanglement cannot survive for long time. In fact, EID will suppress one of the 
cat-like states, but another states will be stabilized by EID. If the mutated state selectid as stabilized state, in some 
condition (presence of special substrate) colonies of mutayed cells will be generated. Some other questions like 
the dependence of the entanglement with the self-measurement process in presence of a substrate, controling 
time evolution dynamics and EID process are going to be discussed in future works. Moreover, in this work, as 
previous studies, we have treated helicase opening to come after the proton transfer. But there is not reasonable 
evidence that the helicase does not induce the decoherence event. There is the possibility that the helicase, in 
interaction with DNA, acts as a measuring device. Consequently, two macroscopically distinguishable states of 
the normal and tautomeric forms may be generated after the complete separation of strands. In other words, the 

(27)E(ρ) = min
∑

i

piE(ψi).

(28)E(ψ) = E(C(ψi)).

(29)
E(C) = h

(

1+
√
1− C2

2

)

;

h(x) = −x log2 x − (1− x) log2(1− x).

Figure 4.   The time-evolution of the entanglement of formation associated to the bipartite mRNA-DNA 
entangled state, (a) plot of E(C) as a function of t (dimensionless) with the values α = cosπ/4 , β = sinπ/4 , 
�1 = �2 = 1 , Ŵ1 = Ŵ2 and also Ŵ1 ( Ŵ2 ) is equal to κ�1 ( κ�2 ), (b) same as (a) but �1 > �2 , (c) same as (a) but 
�1 ≫ �2 . See SI for exact values.
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helicase may open Schrödinger’s box as an observer. This issue needs to be considered and addressed. Further 
investigations on the effect of the separation distance between nucleotides on the amount of coherence of the par-
ent DNA nucleotides and the consequent mutational event should be considered and performed in future works.

Data availability
All theoretical findings during the current study are not publicly available due to the extended calsulations but 
are available from the corresponding author on reasonable request.
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