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Investigating the effects of vaccine 
on COVID‑19 disease propagation 
using a Bayesian approach
Lu Ling 1,2 & Satish V. Ukkusuri 1,2*

The causal impact of COVID-19 vaccine coverage on effective reproduction number R(t) under the 
disease control measures in the real-world scenario is understudied, making the optimal reopening 
strategy (e.g., when and which control measures are supposed to be conducted) during the recovery 
phase difficult to design. In this study, we examine the demographic heterogeneity and time variation 
of the vaccine effect on disease propagation based on the Bayesian structural time series analysis. 
Furthermore, we explore the role of non-pharmaceutical interventions (NPIs) and the entrance of 
the Delta variant of COVID-19 in the vaccine effect for U.S. counties. The analysis highlights several 
important findings: First, vaccine effects vary among the age-specific population and population 
densities. The vaccine effect for areas with high population density or core airport hubs is 2 times 
higher than for areas with low population density. Besides, areas with more older people need a 
high vaccine coverage to help them against the more contagious variants (e.g., the Delta variant). 
Second, the business restriction policy and mask requirement are more effective in preventing COVID-
19 infections than other NPI measures (e.g., bar closure, gather ban, and restaurant restrictions) 
for areas with high population density and core airport hubs. Furthermore, the mask requirement 
consistently amplifies the vaccine effects against disease propagation after the presence of contagious 
variants. Third, areas with a high percentage of older people are suggested to postpone relaxing the 
restaurant restriction or gather ban since they amplify the vaccine effect against disease infections. 
Such empirical insights assist recovery phases of the pandemic in designing more efficient reopening 
strategies, vaccine prioritization, and allocation policies.

The COVID-19 pandemic has been reported to cause 6 million deaths worldwide since its initial outbreak in 
2019 and has deeply disrupted all aspects of daily life1. In the absence of vaccines against COVID-19 infection, 
mitigation of disease propagation was mostly achieved by implementing a wide range of non-pharmaceutical 
interventions (NPIs) and actions by restricting movement1–4 throughout the world, ranging from the emergency 
declaration, lockdowns, closure of non-essential businesses, social distancing mandates, to the increased testing 
and tracing. The trade-off between disease prevention and movement restrictions sacrifices the economy and 
social needs. Indeed, the speed and extent of COVID-19 propagation have challenged the economic system and 
public health care system of many counties across the world1,5. Fortunately, lab experiments proved vaccines 
efficacy in against COVID-19 infection6,7, such as Pfizer-BioNTech, Moderna, or Janssen COVID-19 vaccines. An 
opportunity for a gradual reintroduction of active business events and mobile population by lifting the NPIs can 
be achieved based on the availability of vaccines. However, vaccine efficacy varies on the age-specific population6,7 
and is proved to decay over time6. That makes the causal impact of vaccine coverage on disease spread rate in the 
real-world scenario, measured as the decreased quantity of effective reproduction number R(t) caused by vaccine 
coverage, vary in a temporal-spatial granularity. This fact could make the economic recovery process in the U.S. 
confront numerous obstacles while reestablishing a productive and socially acceptable environment. Indeed, 
CDC8,9 indicated that NPIs are still needed to prevent disease propagation and mortality during the process of 
increasing vaccine coverage. Besides, Wang et al.10 pointed out that prematurely reopening social contacts could 
initiate a new pandemic in the U.S. if vaccine coverage is low. Hence, quantifying the causal impact of vaccine 
coverage on R(t), defined as the vaccine effect in our study, is essential to assist optimal reopening strategies, 
which is critical to relieving the socio-economic burden in the COVID-19 emergency phase11.

Previous studies6,7 have analyzed the causal impact of the vaccine on disease infections through lab experi-
ments and a small-scale of targeted people. Although such studies provide a general understanding of the vaccine 
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effect in a controllable environment, they retain two critical drawbacks. First, observations are limited to an 
ideal setting by ignoring the multiple influencing factors, which introduces biases when adopting them to real-
world scenarios. Second, the applied methods fail to model the causal effect of the vaccine in a quantifiable, 
continuous, and longitudinal manner, which requires a statistical framework that predicts the performances of 
R(t) if the vaccine coverage is below the designed value. In real-world scenarios, the difficulty of investigating 
the causal impact of vaccine coverage is the confounding issue caused by influencing factors of R(t). Indeed, the 
larger airport hubs12 are an important indicator that produces a high influx of imported infections and boosts 
the local transmission of the virus. Besides, the local disease dynamics are greatly influenced by factors such as 
the demographic characteristics13–15, the presence of disease variants7,8, the protective behavior from imposed 
policies (e.g., mask requirement)16–18, mobility index and social contacts19–21.

In this study, to overcome the aforementioned issues, we first classify the U.S. counties into four groups based 
on county-level demographic information (e.g., population density, hospital bed capacity, median household 
income, and the percentage of older people) and core airport hubs. This procedure specifies the experiment by 
testing the causal impact of vaccine coverage within each county group. Then, we cut the study period from 
January to July 2021 into six continued experiments corresponding to vaccine coverage of 0%, 10%, 20%, 30%, 
40%, and 50%. That makes the influencing policies much more controllable within a shorter period. Besides, 
we consider a set of covariates in the model to avoid the confounding issue, such as the NPI measures (e.g., 
business reopening policy, restaurant restriction, bar closure, gather ban, and mask requirement), the presence 
of Delta variant, mobility index, and the hospital bed utilization rate. Last but not least, we apply the Bayesian 
structural time series22 (BSTS) model to capture the causal impact over a longitudinal time horizon rather than 
2 static points, which is much more flexible than the conventional difference in difference models23 and Rubin 
causal model24. The overview of the study is presented in Fig. 1, which contains the objective, input data, model 
framework, and results. This study aims to shed light on: first, demographic heterogeneity and longitudinal time 
variation of the causal impact of vaccine coverage on disease propagation; second, the role of NPI measures on the 
vaccine effect and disease propagation. We propose four corresponding hypotheses to investigate these research 
questions: (H1) Vaccine coverage has a higher impact on preventing disease spread in counties without core 
airport hubs than in counties with core airport hubs. (H2) Mask requirement has a higher effect on decreasing 
disease spread for counties with low population density than counties with high population density. (H3) The 
vaccine effect for counties relaxing NPIs in the early time is significantly higher than for counties relaxing NPIs 
later. (H4) Mask requirement amplifies the vaccine effect under the presence of the Delta variant. The explora-
tion of these hypotheses helps to gain knowledge about the effect of the COVID-19 vaccine and the NPIs in a 
real-world scenario. Furthermore, it assists in the economic recovery process in designing vaccine prioritization 
and reopening strategies for COVID-19 as well as further pandemics.

Results
The causal impact of vaccine coverage on effective reproduction number R(t) for counties with 
different demographics.  To investigate the first hypothesis, we aggregate the causal impact of vaccine 
coverage on R(t) over the time horizon by county category and coverage level. The mean and standard deviation 
in Fig. 2A–D characterize the temporal variation of vaccine effect for 30 consecutive days, and the causal impact 
in Fig. 2E designates the demographic heterogeneity of cumulative vaccine effect for each county class.

Figure 2 E presents the average cumulative causal impact ( � =
∑

t θt , t = 1, 2, . . . , 30 ) of vaccine coverage 
at 0%, 10%, 20%, 30%, 40%, and 50%. The cumulative causal impacts are aggregated by county class for each 

Figure 1.   Study overview.
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vaccine coverage. The numbers of �i(i = 1, 2, 3, 4) should be interpreted as “the number of effective reproduction 
number R(t)-as-usual days worth of impact”. For example, counties with core airport hubs experienced a cumula-
tive median vaccine effect of � = −2.6 after 30 consecutive days when vaccine coverage was 10% on March 10, 
2021. This suggests that the R(t) was decreased by 2.6 on 30 consecutive days for counties with core airport hubs 
compared with the R(t) if the vaccine coverage was above 10% on March 10, 2021. Most counties experienced a 
positive impact at vaccine coverage of 0%, except for counties (“class1”) with high median income, low popula-
tion density, low percentage of older people, and low hospital bed capacity. The vaccine does not immediately 
reduce R(t). That might be because that imposed control measures were gradually relaxed after January 2021, 
and people’s less cautious about maintaining protective behaviors as soon as they have the injection25 led to a 
surge in infection risk. We also clearly observe the demographic disparity in the negative causal impact of vac-
cine coverage across county classes from vaccine coverage of 10% to 30%. In particular, the significantly higher 
vaccine effect for counties with core airport hubs ( −3.8 ) than counties without core airport hubs on average with 
a t statistic of 73 at 0.05 significance level leads to the rejection of H1. However, the cumulative negative effects 
gradually shift to positive as vaccine coverage reaches 40% and 50% for all county classes after May 25, 2021, 
which seems a counter-intuitive observation. The presence of the Delta variant at the end of April 2021 (when 
vaccine coverage reaches 40%) might account for that observation since it leads to the surge of infection risk and 
decreases the vaccine effect when it initially spreads, which parallels the previous study7.

To further understand the impact of vaccine coverage over a longitudinal time horizon, we summarize the 
mean and standard deviation of the point-wise causal impact of vaccine coverage in Fig. 2A–D. Each dot in 
Fig. 2A–D corresponds to the difference between the actual and the predicted R(t) across time ( θt = ˆR(t)− R(t) ) 
in vaccine coverage of 0%, 10%, 20%, and 30%. The vertical error bars show the standard deviation of the esti-
mated causal effect. The negative value of θt means that the vaccine had a negative impact on R(t), resulting in 
the decrease of R(t) and otherwise. Several interesting observations can be made from these visualizations. First, 
we notice that the impact of vaccine coverage on R(t) is not linear. The age-structured vaccine allocation strategy 
(e.g., the first got vaccinated age group) might be a potential reason for that observation as indicated by Matrajt 
et al.26. Second, we see the negative vaccine effect decreases earlier for counties (“class2”) with a high percentage 
of older people, low population density, low median household income, and low hospital bed capacity (starting at 
vaccine coverage of 20%) than it for other county classes (start at vaccine coverage of 30%). The surge of infection 
risk introduced by the Delta variant at the end of April 2021 accounts for the decreased negative vaccine effect7. 
It also indicates that older people are more vulnerable to being infected by the new variant than others. This 
finding is consistent with Powels et al.7. Third, from the cross-comparison of vaccine effects for county classes, 
the average point-wise vaccine effect for counties with core airport hubs is higher than for other counties. A 

Figure 2.   Causal effect of vaccine coverage for counties with different demographics. The demographic 
characteristics of each county are presented in Table 1. (A–D) present the point-wise causal effect for each 
county class. (E) shows the cumulative causal effect for each county class.
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potential reason could be that people who plan for long travel are more cautious about mask-wearing, which 
might amplify the vaccine effect by interfering with the virus transmission process17,27.

Role of NPI measures on effective reproduction number R(t).  To examine the second hypothesis, 
we regress NPI measures (e.g., business reopening, restaurant restriction, gather ban, bar closure, and mask 
requirement) as covariates in a dynamic approach when investigating the vaccine effect. We measure the mean 
effect of NPIs by calculating the mean of marginal effects in each county and aggregating them based on the 
county class. Figure 3 summarizes the continuous and longitudinal effect of the NPIs and the presence of the 
Delta variant on disease infections for each county class at each vaccine coverage.

The interpretation of the positive marginal effect of NPI measures should be “the increased number of R(t) 
by relaxing one step of the NPI measure”. And the steps within each NPI measure are presented in Table 2. For 
example, Fig. 3 A shows that relaxing one step of the business reopening policy (e.g., from “restrictions” to “easing 
restriction”) increases 0.0022 of R(t) for counties (“class3”) with high population density, high median income, 
high hospital bed capacity, and low percentage of older people at vaccine coverage of 50%. For the impact of NPI 
measures on R(t), we gain three observations from Fig. 3A–D. First, we see that the marginal effect of relaxing 
the business reopening policy for high population density counties (“class3”) is about 3.5 times that of coun-
ties with low population density (“class1” and “class2”). That indicates high population density counties have a 
higher infection risk by relaxing business reopening policy due to their active commercial activities. Second, we 
observe a lower marginal effect of relaxing restaurant restriction, gather ban, and bar closure policies on average 
compared with the marginal effect of relaxing business reopening policy for all counties classes in Fig. 3B–D. 
Third, We observe that the effects of relaxing mask requirement in Fig. 3E increase along with augmenting vac-
cine coverage overtime for all counties. In particular, a significantly higher marginal effect (t statistic of 93 at 
0.05 significance level ) for counties with core airport hubs (“airport”) or high population densities (“class3”) 
than for counties with relatively low population density (“class1” and “class2”) leads to the rejection of H2. It 
indicates that mask requirement is more effective in decreasing disease infection for counties with core airport 
hubs or high population density. Indeed, Barasheed et al.28 suggested that wearing masks in crowded places could 
reduce the risk of respiratory infections by 20%. More importantly, although the presence of the Delta variant 
significantly increases the infection risk as described in Fig. 3F, our results indicate that the mask requirement is 
more effective than other NPIs in preventing the disease spread after 50% people got vaccinated, which parallels 
the finding suggested by Brüssow and Zuber17.

Role of postponing relaxing NPI measures on vaccine effects.  To examine the third hypothesis, 
we selected two groups of counties A and B, within the same county class. Group A contains counties applying 
the NPIs 15 days earlier than counties within group B during the study period. Then, we used the φ to measure 
the role of NPIs on vaccine effects, and it is calculated by using the average cumulative vaccine effect of group A 
to subtract it from group B such that φ =

∑∑

i,f ∈A �i,T ,f −
∑∑

i,e∈B �i,T ,e  , where φ is the cumulative causal 
effect. f and e belong to group A and B separately and are counties within the same county class at designed vac-
cine coverage i. T is the observation period and is defined as 30 days. Figure 4 shows the improved cumulative 
vaccine effect φ for each policy. The negative values of φ mean that the vaccine could decrease more number of 
R(t) by postponing relaxing the control policy for 15 days, otherwise. For example, Fig. 4A indicates that the vac-
cine could reduce the R(t) by 2 more if counties (with high median household income, relatively low population 

Figure 3.   Average marginal effect of policies on disease infections. The demographic characteristics of each 
county class are presented in Table 1. (A–F) summarizes the marginal effects of studied NPIs on R(t) at each 
designed vaccine coverage.
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density, low percentage of older people, and low hospital bed capacity) postponed relaxing the business reopen-
ing policy by 15 days ( φ = −2 for postponing relaxing business reopening policy).

From Fig. 4A–D, we observe the disparity of the role of NPI measures in the vaccine effect across county 
classes. Several interesting observations can be made from these visualizations. First, we notice that postponing 
relaxing the restaurant restriction amplifies the vaccine effect of reducing R(t) for all counties, while postponing 
relaxing the bar closure barely affects the vaccine effect. This observation leads to the rejection of H3. Second, 
postponing relaxing mask requirement amplifies the vaccine effect by 2 more times for counties with core airport 
hubs (“airport”) and counties (“class3”) with high population density, high median household income, high 
hospital bed capacity, and low percentage of older people than counties with low population densities (“class1” 
and “class2”). Third, in addition to restaurant restriction, postponing relaxing gather ban can also significantly 
amplify the vaccine effect of reducing R(t) for counties (“class2”) with a relatively high percentage of older peo-
ple, low population density, low median household income, and low hospital bed capacity. Last but not least, we 
observe that the presence of the Delta variant significantly decreases the vaccine effect of reducing R(t) for all 
counties, especially the impact of the presence of the Delta variant for counties with core airport hubs (“airport”) 
is significantly higher than its effect for counties without core airport hubs (“class1”, “class2”, and “class3”). That 
finding is consistent with our previous statement that the causal impact of vaccine coverage is lower for coun-
ties with core airport hubs than counties without core airport hubs after the presence of the Delta variant. That 
might be because core airport hubs connecting cross-border mobility and gathering it into a high spatial density 
movement results in high infection risk among people12.

The Role of mask requirement on the vaccine effect with the presence of Delta variant.  Mask 
wearing has been highly recommended by CDC16 due to being less costly to apply than other NPI measures, 
which are associated with high social costs17. However, the role of mask requirement on vaccine effect after the 
Delta variant remains to be quantified. The fourth hypothesis aims to gain insight into whether the mask require-
ment is needed when the vaccine coverage for the general public reaches 50%, which corresponds with the pres-
ence of the Delta variant. To construct the experiment, we selected two groups of counties C and D within the 
same county class, with group C keeping applying the mask requirement and group D relaxing the mask require-
ment after the vaccine coverage reaches 50%. We quantify improved effects by taking the difference of vaccine 
effects (both daily and cumulative) for two counties groups ( σt = θC,t − θD,t and � =

∑

t σt , t = 1, 2, . . . , 30 ). 
Figure 5 A summarizes the average improved daily effect, and Fig. 5B introduces the cumulative effect for each 
county class. Negative values of σt and � would mean that the vaccine would reduce more number of R(t) by 
applying the mask requirement policy after the presence of the Delta variant. For example, the vaccine would 
reduce 0.5 ( σ30 = −0.5 ) more of the R(t) on the day of 30 if counties with core airport hubs apply the mask 
requirement than those without the mask requirement after the presence of the Delta variant.

Figure 5 presents a demographic heterogeneity in the role of mask requirement on vaccine effect across 
counties. We observe that there is a significantly improved daily negative vaccine effect by applying mask require-
ment after the presence of Delta variant for almost all counties (t statistic being 65 and 109) except the counties 
(“class1”) with a high median household income, low percentage of older people, low population density, and 
low hospital bed capacity. That observation leads to the rejection of H4. Besides, we observe that the improved 
negative vaccine effect is about 2 times higher after applying the mask requirement for counties with core 

Figure 4.   Improved vaccine cumulative effect on disease propagation for applying different policies 15 days 
earlier versus 15 days later. The demographic characteristics of each county class are presented in Table 1.
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airport hubs than counties without core airport hubs. In particular, we see that counties with high population 
density, high median household income, high hospital bed capacity, and a low percentage of older people obtain 
the highest improved negative vaccine effect among counties without core airport hubs. It indicates that the 
mask requirement amplifies the vaccine effect of reducing disease propagation for counties with high mobility 
and activities needs. In conclusion, the estimated results suggest that although the mask requirement does not 
amplify the vaccine effect for all areas, it greatly amplifies the vaccine effect in reducing the viral burden against 
the disease infection for areas with core airport hubs, high population density, and vulnerable people even with 
the presence of the Delta variant. Palcu et al.18 also suggested that facial masks should be encouraged even after 
the vaccine is available.

Discussion
Although increasing vaccine coverage is the most effective approach against COVID-19 infections, the optimal 
reopening strategy is still needed to balance the trade-off between disease prevention and economic recovery in 
the short term. However, the lack of understanding of the causal impact of dynamic vaccine coverage and the 
joint effects of NPIs in real-world scenarios limits us in designing the optimal vaccine prioritization and the cor-
responding reopening strategies. This study examines the vaccine effect’s temporal variations and demographic 
heterogeneity for U.S. counties based on the causal time series analysis. Furthermore, we examine the role of 
NPI measures and the presence of the Delta variant on the vaccine effect and disease spread, which allows us to 
monitor and understand the impact of relaxing imposed policies in the COVID-19 period with unprecedented 
spatiotemporal granularity and scale. The analysis concludes that (1) The vaccine allocation strategy (e.g., age-
specific allocation) would greatly affect the causal impact of vaccine coverage on disease infections. Although 
vaccine effect in reducing the disease infections for areas with high population density and fewer older people 
or core airport hubs is 2 times higher than areas with less population density. Areas with more older people 
need a high vaccine coverage to help them against the more contagious variants (e.g., the Delta variant) due to 
their physical weakness. Therefore, age and population density-specific vaccine prioritization is needed, espe-
cially when facing vaccine supply constraints. (2) Although business restriction policy and mask requirements 
are proved to be more effective measures to prevent COVID-19 infections than other NPIs for areas with high 
population density and core airport hubs after the vaccine is available. The mask requirement is more applicable 
to assist disease prevention during the economic recovery process for two reasons. First, the mask requirement 
policy is less costly. Second, the mask requirement is more effective than other NPI measures in amplifying the 
vaccine effects against disease infections for areas with high population density or core airport hubs. In particular, 
the vaccine would reduce 8 more of the R(t) in 30 consecutive days by applying the mask requirement for counties 
with airport hubs after more contagious variants show up. (3) Areas with a high percentage of older people are 
suggested to postpone relaxing the restaurant restriction or gather ban since these two measures significantly 
amplify the vaccine effect against disease infections. However, the bar closure policy barely affects the disease 
infections as well as the vaccine effect. The analysis specifies vaccine effects for counties with different demo-
graphics and explores how the NPI measures affect the vaccine effects and disease propagation in the COVID-19 
period. The implication assists the economic recovery process in designing a more efficient reopening strategy, 
vaccine prioritization, and relocation policies.

This study investigates the causal impact of vaccine coverage on R(t) from a Bayesian time series approach. 
It has certain limitations related to the causal experiment for the observational study. First, to avoid potential 
confounding issues in this study, we specify the experiment to a more controllable setting by separating the 
study period into six continued periods. Besides, we consider NPI measures, the presence of the Delta vari-
ant, daily mobility index, and dynamic hospital bed utilization rate as covariates to eliminate the confounding 
issue in examining the vaccine effects on disease spread. Although the influencing factors of disease infection 

Figure 5.   Improved effect of the vaccine on disease propagation under the presence of Delta variant (with vs. 
without mask requirement). The daily vaccine effect is calculated by using the point-wise vaccine effect under 
the presence of the Delta variant for counties with mask requirements to subtract the point-wise causal effect 
of vaccine for counties without mask requirements. The demographic characteristics of each county class are 
presented in Table 1.
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might not be fully captured in real-world scenarios, we address this issue by matching the most similar control 
county, which provides a best prior for the unknown factors. Second, additional disease variant shocks (e.g., the 
Delta variant), present later in the study period, significantly affect the R(t) value and directly introduce biases 
in estimating vaccine effects under the lack of the measure of these new variants. We address the interference 
of the Delta variant by coding it as a binary indicator after it was detected at the end of April 2021. However, it 
might not be sufficient to capture the full effect later due to its rapid growth. Last but not least, the lack of disag-
gregated individual-level behavior analysis leaves the underlying reason for our insight to remain to be explored.

Although this study used aggregated measures to quantify the county-level demographic heterogeneity and 
temporal variation of vaccine effects and the corresponding NPIs at the COVID-19 phase, more microscopic 
analysis is worth to be explored with additional data. Further research focuses on extending the causal effects 
of vaccines to a more disaggregated level, where different patterns of vaccine effects on disease propagation 
can be obtained, and individuals’ activities can be explored to provide a detailed explanation for the vaccine 
effect. Besides, comparative analysis containing multiple communities could yield novel and more generalizable 
insights on vaccine effects and the corresponding control measures for developing better disease surveillance 
and economic recovery strategy. Furthermore, examining vaccine effects on disease spread after the entrance 
of new disease variants could strengthen the understanding of the reliability of vaccine effects in adjusting to 
diverse variants under real-world scenarios.

Materials and methods
Experiment design.  The R(t) is a key epidemic factor in measuring the disease propagation over time. It 
is the expected number of new infections caused by an infectious individual in a population. The goal of the 
experiment is to explore the causal impact of the vaccine coverage ( from 0%, 10%, 20%, 30%, 40%, to 50%) on 
R(t) and the effects of diverse NPIs on R(t). NPIs are a set of strategies to prevent disease propagation. In our 
study, NPIs include business reopening policy, restaurant restriction, bar closure, gather ban, and mask require-
ments. Within each vaccine coverage level, we conduct one experiment to examine the causal impact. Figure 6 
described four steps in each experiment: (1) We classify four class counties by characterizing the demographic 
heterogeneity of disease dynamics based on K-mean clustering. Within each county class, we cut the time period 
from January to July 2021 into six continued periods and match each time period with a vaccine coverage level 
(such as 0%—01/10/2021, 10%—03/10/2021, 20%—04/10/2021, 30%—05/05/2021, 40%—05/25/2021, 50%—
06/15/2021). Figure  6 A presents the matching mechanism for each coverage level. That procedure specifies 
the time period for each experiment to explore the temporal variation of the causal impact. (2) As shown in 
Fig. 6B, we selected the “treatment counties” and “control counties” within each county class. The “treatment 
county” is defined by the counties whose vaccine coverage is greater than the designed vaccine coverage level 
within the time period. Then, we used the time-varying variable R(t) as the matching similarity metric to select 
the best matching control county g. To avoid the multicollinarity issue, we do not consider other variables in the 
matching procedure. (3) In Fig. 6C, we predicted the disease propagation R(t) after the vaccine coverage of the 

Figure 6.   Model procedure. The model procedure follows the order below. (A) we define treatment county 
class and intervention; B we select the best matching control candidate; C we calibrate the BSTS model; D we 
estimate the causal effect of the vaccine. The date for each designed vaccine coverage are: 0%—01/10/2021, 
10%—03/10/2021, 20%—04/10/2021, 30%—05/05/2021, 40%—05/25/2021, 50%—06/15/2021.
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treatment county f reaching the designed vaccine coverage i (what if the vaccine coverage does not reach the 
designed coverage?). To avoid the confounding issue, we consider a set of covariates in the prediction includ-
ing the R(t) from the best matching control county and non-epidemiological factors14. (4) Fig. 6D describes the 
calculation of the counterfactual disease propagation R(t) causal impact. We computed the causal impact of the 
vaccine at the designed coverage i by taking the difference between the predicted and observed R(t) for county f.

In the first step, we classify counties into four classes based on the critical influencing factors14,30 such as 
population density, the percentage of older people, hospital resources, income, and core airport hubs. The first 
county class comprises counties with core airport hubs in the U.S. The rest of the county classes are obtained 
using K-mean clustering31 based on population density, median household income, percentage of older people, 
and the average daily number of beds in the hospital. They are grouped into three classes by comparing the 
Akaike Information Criterion based on the elbow method. The performance of each county group is presented 
in Table 1. In the second step, we define the experiment period as 70 consecutive days for each treatment county 
f at designed vaccine coverage i. As indicated in Fig. 6B, we select the best matching control county based on 
the similarity of R(t) between treatment county and the control county before the date of reaching the designed 
vaccine coverage (t). R(t) offers a direct observation in timer-varying disease evolution for the control county 
and the treatment county. In the third step, we calibrate the model parameter via a cross-validation method for 
the first 40 consecutive days in training and testing periods to ensure the model’s reliability, which is indicated 
in Fig. 6C. The well-trained model is then used to predict the R(t) in 30 consecutive days after reaching the 
designed vaccine coverage. In particular, we consider a set of dynamic covariates in modeling to avoid the con-
founding issue. In addition to the R(t) itself, we consider the impact of non-epidemiologic factors on the R(t), 
such as diverse NPIs (including business reopen policy, restaurant restriction, bar closure, gather ban, and mask 
requirement), the presence of the Delta variant, within county trips, and the bed utilization rate. In the fourth 
step, we define the point-wise causal effect of vaccine at its designed coverage i in time t for treatment county f as 
θi,t,f = ˆR(t)i,t,f − R(t)i,t,f  and the cumulative causal effect of vaccine at its designed coverage i from time t = 0 
to time t = T for treatment county f as �i,T ,f =

∑T
t=0 θi,t,f  . ˆR(t)i,t,f  is the estimated value by model prediction 

and R(t) is the observed value. Then, the key question is how to estimate θi,t,f .
There are many methods to estimate the causal effect of diverse interventions on the outcome of interest23,24,32. 

Compared to the traditional difference-in-difference model, the structural time series model extensively relaxes 
the parallel trends assumption and captures the time-varying effects of the outcome of interest. In addition, the 
Bayesian approach has been widely used to estimate the uncertainty of the parameters in the structure models33,34. 
The BSTS models have been conducted to strengthen causal inference for the time series data by simulating the 
counterfactual as the synthetic post-treatment controls via posterior predictive samples20,35. The BSTS models 
have been extensively applied in diverse areas such as political science36 and socio-economics35,37. We used the 
BSTS model to predict R(t) for selected treatment counties. BSTS model captures time-varying local trends and 
seasonality variations for the time-correlated disease spread rate. It enables us to analyze the dynamic effects of 
vaccines on disease propagation for 30 consecutive days after reaching each designed coverage. The BSTS model 
for the treatment county f is defined as the following35:

yt is the observed R(t) for the treatment county f on day t and αt denoting the unobserved latent states. The 
evolution of unobserved latent states is defined as αt+1 = Ttαt + Rtηt . Matrices Zt ,Tt , and Rt contain unknown 
parameters. The vector αt is formed by concatenating individual state components, such as the local trend µt , sea-
sonality γt , and regression x⊺t βt components. µt represents local variations of the time series data and γt captures 
the seasonal variation (e.g., week) with S period. x⊺t βt is the dynamic regression components with the coefficient 
βj,t for covariate j at day t with the time-varying way of βj,t+1 = βj,t + ηβ ,j,t . Then, the effects of the covariates j 
are estimated from the coefficient βj,t . A weakly informative prior (Cauchy distribution), which is restricted to 
a positive number and allows for potentially larger standard deviations38, is elicited for each state component. 

(1)















yt = Z
⊺

t,αt + εt
µt+1 = µt + ηµ,t

γt+1 = −
�s−2

s=0 γt−s, + ηγ ,t

x
⊺

t βt =
�J

j=1 xj,tβj,t

Table 1.   The performance of mean scores for each county class after the normalization. “class 1” refers to 
counties with high median household income, relatively low population density, low percentage of older 
people, and low hospital bed capacity; “class 2” refers to counties with relatively high percentage of older 
people, low population density, low median household income, and low hospital bed capacity; “class 3” refers 
to counties with high population density, high median income, high hospital capacity, and low percentage of 
older people. Note (1) “airport” refers to counties having core airport hubs in U.S.29. (2) older people mean 
people who are at least 65 years old.

Name Population density Median household income
Percentage of the older 
people Hospital bed capacity Core airport hubs Number

Class 1 0.12 0.56 0.12 0.12 No 97

Class 2 0.02 0.21 0.30 0.08 No 160

Class 3 0.42 0.42 0.13 0.43 No 68

Airport – – – – Yes 16
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Model parameters of the hyperprior distribution such as εt , ηµ,t , ηγ ,t , ηβ ,j,t are the hyperparameters contained in 
the BSTS model. They are calibrated using cross-validation method, and 40 consecutive days before reaching the 
designed vaccine coverage are used to train and test the model. The model training process is presented in Sup-
plementary Fig. 1. Besides, Supplementary Fig. 2A shows the sensitivity of model parameters of the hyperprior. 
It indicates that the model performance is not sensitive to the selection of hyperparameters (from 1 to 5). Thus, 
we choose the hyperprior as εt , ηµ,t , ηγ ,t , ηβ ,j,t ∼ Cauchy(0, 2.5) . Besides, we use the estimated residuals to test 
the normality assumption of the model. The estimated results are presented in Supplementary Fig. 2B. It shows 
the alignment of the empirical quantiles with the theoretical quantiles.

Data collection.  The experiment resolution is based on the U.S. county-level from October 2020 to July 
2021 on a daily basis. We use the county-level R(t) to measure the dynamic disease propagation and take vaccine 
coverage as the treatment action of preventing disease propagation. To capture the demographic heterogeneity 
of the vaccine effect, we classify all selected counties into four classes. The first county class includes counties 
with core airport hubs, defined by Federal Aviation Administration (FAA)29. The rest of the three county classes 
are classified by the county-level demographic variables obtained from the U.S. Census Bureau’s MAF/TIGER 
Geodatabases39 (e.g., population density, median household income, percentage of older people), and county-
level average daily number of beds in the hospital obtained from the Health and Human Service Protect Public 
Data Hub40. In light of the confounding issue, we consider a set of covariates in the causal experiment such as 
the NPIs obtained from Kaiser Family Foundation41, the presence of the Delta variant obtained from local news, 
daily bed utilization rate obtained from the Health and Human Service Protect Public Data Hub40, and the 
number of trips per person obtained from the U.S. Department of Transportation42. To ensure that the disease 
dynamics are statistically meaningful, we remove counties with incomplete data, which results in 341 counties 
from 42 states in the study. These counties are classified into four groups based on the demographic variables. 
The performance of each county class can be found in Table 1. Then, we use selected data to explore the causal 
impact of the vaccine coverage and the joint effects of covariates on COVID-19 propagation in the U.S.

Effective reproduction number R(t).  The effective reproduction number R(t) is used to characterize the poten-
tial for COVID-19 spread rate at a specific time, defined as the average number of secondary infectious cases 
generated by a primary infectious case. As indicated by previous study43, the virus would spread out if R(t) > 1 , 
and the virus would spread locally if R(t) = 1 , and the virus would stop spreading, and the disease disappears 
eventually if R(t) < 1 . We collected the R(t) from October 2020 to July 2021 from a well-established online 
resource44. Supplementary Fig. 3A shows the variation of average daily R(t) within each county class. We report 
that the mean R(t) value is 1.20, with the standard deviation being 0.51 during the study period.

Vaccine coverage.  U.S. county-level vaccine data are obtained from the CDC45. The vaccine coverage refers to 
the percentage of fully vaccinated people, which is the county-level percent of people who have a second dose 
of a two-dose vaccine (Pfizer-BioNTech and Moderna vaccines) or one dose of a single-dose vaccine (Johnson 
& Johnson’s Janssen vaccine) as reported by CDC. Supplementary Fig. 3B shows the variation in average daily 
vaccine coverage within each county class. We report that the vaccine coverage ranges from 0 to 69.7% during 
the study period, with a mean value of 14.7%.

NPI measures and the Delta variant.  The NPI measures in our study are obtained from Kaiser Family 
Foundation41 including business reopening policy, restaurant restriction, gather ban, bar closure, and mask 
requirement. Each measure contains multiple steps to match the recovery stages and is presented in Table 2. To 
capture the effect of the presence of the Delta variant, We collect the earliest state-level detected date of the Delta 
variant from Web news by hand and apply a 2-weeks delay for an incubation time. Besides, we code the pres-
ence of the Delta variant as a binary variable. We visualize the mask requirement, business reopening policy, and 
Delta detection in Supplementary Fig. 4.

Bed utilization rate and mobility index.  Daily bed utilization rate and individual mobility directly reflect local 
disease dynamics. In this study, the hospital resource data are obtained from the Health and Human Service 
Protect Public Data Hub40. We calculate the bed utilization rate as the total number of staffed inpatient and 
outpatient beds divided by the total number of staffed inpatient beds occupied in the hospital during the 7 days. 
We report that the mean and standard deviation of the county-level bed utilization rate is 60.23% and 16.91%. 
Previous studies46,47 have asserted a close association between mobility and social distancing policies and disease 

Table 2.   Status for NPI measures in the COVID-19 period.

Policy Description

Business reopening Reopened: 0; Easing restrictions: 1; Restrictions: 2

Mask requirement No: 0; Unvaccinated people only: 1; Yes: 2

Bar closure Open: 0; Open with service limit: 1 ; Closed: 2

Gather ban No limit: 0; Limit on large gatherings: 1; All gatherings prohibited: 2

Restaurant restriction Open: 0; Open with limited number of people to indoor service: 1 ; Closed to indoor service: 2
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propagation before the vaccine is available. However, this relationship might be changed since people might 
loosen their protective action based on their vaccinated statues25. In this study, we use the county-level daily trips 
generated by each person to capture the temporal variation of the mobility index. The data are obtained from the 
U.S. Department of Transportation42. The mobility index and bed utilization rate are visualized in Supplemen-
tary Fig. 5. We report the mean and standard deviation of county-level daily trips per person to be 3.49 and 0.88.

Data availibility
Publicly available datasets were analyzed in this study. This data can be found here: all data are cited.
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