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Parametrically driving a quantum 
oscillator into exceptionality
C. A. Downing  1* & A. Vidiella‑Barranco  2

The mathematical objects employed in physical theories do not always behave well. Einstein’s theory 
of space and time allows for spacetime singularities and Van Hove singularities arise in condensed 
matter physics, while intensity, phase and polarization singularities pervade wave physics. Within 
dissipative systems governed by matrices, singularities occur at the exceptional points in parameter 
space whereby some eigenvalues and eigenvectors coalesce simultaneously. However, the nature of 
exceptional points arising in quantum systems described within an open quantum systems approach 
has been much less studied. Here we consider a quantum oscillator driven parametrically and subject 
to loss. This squeezed system exhibits an exceptional point in the dynamical equations describing its 
first and second moments, which acts as a borderland between two phases with distinctive physical 
consequences. In particular, we discuss how the populations, correlations, squeezed quadratures and 
optical spectra crucially depend on being above or below the exceptional point. We also remark upon 
the presence of a dissipative phase transition at a critical point, which is associated with the closing of 
the Liouvillian gap. Our results invite the experimental probing of quantum resonators under two-
photon driving, and perhaps a reappraisal of exceptional and critical points within dissipative quantum 
systems more generally.

Conventionally, Hermitian physics has reigned supreme. Non-Hermitian extensions to standard theories 
were typically considered as mere perturbations, perhaps allowing for some small amount of dissipation to be 
accounted for. However, when a non-Hermitian matrix permits degeneracies in both its spectrum and its eigen-
functions at some special point—a so-called exceptional point ( EP)1—everything changes. Indeed, the physics 
arising in the vicinity of an EP may be significantly different to anything occuring in the Hermitian version of 
the theory2,3.

The basic ingredients underpinning EP s ensures their widespread manifestation across large swathes of phys-
ics, including in acoustics4,5, mechanics6,7 and perhaps most famously in optics8,9. More recently, EP s arising 
in truly quantum mechanical systems have been studied using quantum master equations, which has revealed 
a certain richness beyond the realm of essentially classical EPs10–15. In particular, the non-Hermitian quantum 
physics associated with parametrically driven systems has been shown to be rather captivating, especially for 
such formally simple systems, due to their close connection with parity-time symmetry and related concepts16–22.

Inspired by the recent studies of nonlinear, Kerr-like resonators with two-photon driving23–31, here we study 
a parametric driven-dissipative quantum oscillator. We place an emphasis on the squeezing and the phase-space 
representation of the quantum state of the oscillator, as well as both the first moments and the second moments 
of the system (including their steady state and transient behaviours). We link the EP arising in each case to a 
relevant observable quantity, including the mean populations32,33, optical spectrum, degrees of coherence and 
squeezed quadratures. We also highlight the importance of a critical point in the system, which is associated 
with a dynamical instability and a dissipative phase transition. The effects of anharmonicities on the oscillator 
are briefly discussed, mostly in relation to its effect on the closing of the Liouvillian gap and the presence of the 
dynamical instability, since a full treatment of such a nonlinearity can be found in Refs.23–31.

The studied driven-dissipative parametric system may be realized in modern quantum optical laboratories 
with judicious use of cavities and traps34–37, or by designing certain types of nonlinear quantum circuits38–40. The 
discovery of EP s in such a parametric system would join a growing list of quantum systems, mostly involving 
superconducting qubits but also including trapped-ion systems, which exhibit exceptional point physics41–48. 
Already, EP s have been experimentally shown to be useful for the control of quantum states and even for the 
enhancement of quantum heat engines49–51.

The parametric driven-dissipative quantum harmonic oscillator model, as sketched in Fig. 1a, may be 
described by the following Hamiltonian Ĥ (here and throughout we take � = 1)52
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where, without loss of generality, the oscillator-driving detuning � ≥ 0 , the two-excitation driving amplitude 
� ≥ 0 , and the driving phase −π ≤ θ ≤ π (see the Supplementary Information for more details). The crea-
tion and annihilation ladder operators b† and b act on a number state |n� as follows: b†|n� =

√
n+ 1|n� and 

b|n� = √
n|n− 1� , and they obey the bosonic commutation relation [b, b†] = 1 . The diagonalization of the 

Hamiltonian Ĥ of Eq. (1) is possible with the aid of the bosonic Bogoliubov operator β , defined in terms of the 
squeezing parameter φ as

which satisfies the commutator [β ,β†] = 1 , and which is valid for sufficiently small driving amplitudes such that 
� < �53,54. This Bogoliubov transformation leads to the diagonalized form of the Hamiltonian Ĥ , complete with 
Bogoliubov mode eigenfrequency ω̃ , as follows

This brief analysis reveals a squeezed energy ladder with the eigenfrequencies En = nω̃ , which correspond to the 
squeezed number states |n,φ� = Sφ |n� , where the squeezing operator Sφ = exp

(

1
2φe

−iθbb− 1
2φe

iθb†b†
)

 . The 
squeezed oscillator levels En are separated by the spacing � at small driving amplitudes (namely, the harmonic 
oscillator limit with � ≪ � ), while the inter-level spacing is vanishing in the limit of large driving amplitudes 
( � → � ). Notably, there is so-called “spectral collapse” for � > � , where the eigenfrequencies En become 
complex [in keeping with the construction of the squeezing parameter φ in Eq. (2)], however we do not enter 
this regime within the closed system version of our theory as solely described by Eq. (1).

Interestingly, the quantum oscillator population �n,φ|b†b|n,φ� = n cosh (2φ)+ sinh2 (φ) , so that the Bogo-
liubov ground state |0,φ� has a nonzero population �0,φ|b†b|0,φ� = sinh2 (φ) due to the parametric driving. 
With the twin definitions of dimensionless position X̂ = (eiθ/2b† + e−iθ/2b)/

√
2 and dimensionless momentum 

P̂ = i(eiθ/2b† − e−iθ/2b)/
√
2 , the normalization ensures that the quadrature commutation relation [X̂, P̂] = i 

holds, while we have chosen the phase θ/2 in these definitions in order to compensate for the phase θ appear-
ing the drive term [cf. Eq. (1)]. The mean value of the complex field amplitude in the vacuum squeezed state is 
zero, so the quadrature expectation values �0,φ|X̂|0,φ� = �0,φ|P̂|0,φ� = 0 . However, the squared counterparts 
�0,φ|X̂2|0,φ� = e−2φ/2 and �0,φ|P̂2|0,φ� = e2φ/2 , highlighting the quadrature squeezing as governed by the 
squeezing parameter φ [cf. Eq. (2)]. These closed system results follow from the inverse relation of Eq. (2), where 
b = cosh (φ)β − eiθ sinh (φ)β†.

(1)Ĥ = �b†b+ �

2
eiθb†b† + �

2
e−iθbb,

(2)β = cosh (φ)b+ eiθ sinh (φ)b†, φ =
ln
(

�+�
�−�

)

4
,

(3)Ĥ = ω̃β†β , ω̃ =
√

�2 −�2.

Figure 1.   Fundamentals of the parametric driven-dissipative oscillator. Panel (a): a sketch of the quantum 
oscillator (green ball), being driven coherently (two red arrows) with an amplitude � and phase θ , and where 
the detuning is � [cf. Eq. (1)]. The oscillator suffers losses (blue arrow) at the rate γ [cf. Eq. (4)]. Panel (b): 
the real parts of the eigenvalues ω± , arising from the first moments matrix (or effective Hamiltonian) H , as a 
function of the drive amplitude � (in units of γ ) [cf. Eq. (7)]. Panel (c): the corresponding imaginary parts of 
ω± . Dashed grey lines: the exceptional point (where � = � ). Panel (d): the phase diagram of the system as a 
function of � and � , where the green region is below the exceptional point ( � < � ) and the red region is above 
the exceptional point ( � > � ) [cf. Eq. (10)]. No steady state forms in the blue region [cf. Eq. (15)]. In this figure, 
we consider the case of � = 3γ /2 , so that the exceptional driving amplitude �EP = 3γ /2 [cf. Eq. (10)] and the 
critical driving amplitude �c =

√
5/2γ ≃ 1.58γ [cf. Eq. (16)].
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We include dissipation in the model via an open quantum systems approach. Employing the Born, Markov 
and secular approximations, the associated quantum master equation for the system’s reduced density matrix 
ρ may be given by55,56

where γ ≥ 0 is the dissipation rate and the Hamiltonian Ĥ is given by Eq. (1). This quantum model includes 
the unitary evolution of the density matrix ρ via the the first term on the right-hand-side of Eq. (4)—the Liou-
ville–von Neumann equation—while non-unitary evolution is accounted for by the second term in Eq. (4), 
which upgrades Eq. (4) to the form of a Gorini–Kossakowski–Sudarshan–Lindblad equation. We take γ as a 
phenomenological parameter, but in the case of modelling a thermal bath γ is the zero-temperature decay rate, 
and we show in the Supplementary Information that the effects of nonzero temperatures are rather negligible 
(for example, the location of the EP is unchanged).

Using the property Tr (Oρ) = �O� , which leads to the mean value 〈O〉 of any operator O , the averages of the 
first moments of the system (like 〈b〉 for example) may be readily found. For the presented parametric model, as 
defined by Eq. (4) supplemented with Eq. (1), this procedure leads to the following Schrödinger-like dynamical 
equation

where ψ , the two-dimensional column vector which collects the first moments, and the dynamical matrix H 
are defined via

The two complex eigenfrequencies ω± arising from the 2× 2 matrix effective Hamiltonian H read

which generalizes the closed Hamiltonian Ĥ description of Eq. (3), with its wholly real energies ω̃ and its restric-
tion � < � . In particular, we have introduced the effective decay rate Ŵ , defined via the relation [cf. the definition 
of the frequency ω̃ from Eq. (3)]

which captures the physics of system in its dissipative phase with purely imaginary eigenvalues ω± . The two 
normalized eigenvectors α± , corresponding to the eigenfrequencies ω± , are given by

Clearly, both Eq. (7) and Eq. (9) present a point of coalescence – a so-called EP – at the particular driving ampli-
tude � = �EP , defined by

At this special point the eigenfrequency ω̃ = 0 [cf. Eq. (3)], and the effective Hamiltonian H in Eq. (5) becomes 
defective2,3. Since the EP of Eq. (10) has arisen from the Hamiltonian-like analysis of the dynamical equation in 
Eq. (5), it can be considered to be a so-called ‘Hamiltonian EP ’. Using the eigenfrequencies of Eq. (7), we plot 
in Fig. 1b,c the real and imaginary parts of ω± as a function of the drive amplitude � (for an example case with 
the detuning � = 3γ /2 ). The EP is marked by the vertical, dashed grey line in both panels and highlights the 
bifurcations in the complex eigenvalues ω± , as well as the guarding of the boundary between two drastically dif-
ferent physical phases. In what follows, we shall consider the consequences of this EP for the physical responses 
of the squeezed oscillator system.

Results
Similar to the calculation leading to the coupled dynamical equations of Eq. (5), the second moments of the 
system (that is quantities like 〈b†b〉 , the average population of the oscillator) are defined through the non-
homogeneous equation

where the three-dimensional column vector � , which gathers the second moments, the driving term P and the 
3× 3 matrix M read [cf. Eq. (6)]

(4)∂tρ = i[ρ, Ĥ] + γ

2

(

2bρb† − b
†
bρ − ρb†b

)

,

(5)i∂tψ = Hψ ,

(6)ψ =
(

�b�
�b†�

)

, H =
(

�− i γ2 �eiθ

−�e−iθ −�− i γ2

)

.

(7)ω± =







−i
γ
2
± ω̃, (� < �),

−i
γ
2
, (� = �),

−i
�

γ
2
± Ŵ

�

, (� > �),

(8)Ŵ =
√

�2 −�2,

(9)α± = 1√
2

(

�±ω̃
�

−e−iθ

)

, (� < �), α± = 1√
2

(

�∓iŴ
�

−e−iθ

)

, (� > �).

(10)�EP = �.

(11)i∂t� = M� + P ,

(12)� =





�b†b�
�bb�
�b†b†



 , M =





−iγ −�e−iθ �eiθ

2�eiθ 2�− iγ 0

−2�e−iθ 0 − 2�− iγ



 , P =





0

�eiθ

−�e−iθ



 .
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The three complex eigenvalues �+, �− and �3 of the dynamical matrix M are given by [cf. Eq. (7)]

where ω̃ and Ŵ are defined in Eq. (3) and Eq. (8) respectively. The three corresponding (and unnormalized) eigen-
vectors β3,β+ and β− read (we assume � < �EP for the moment, the results for � > �EP are of course similar)

The simultaneous coalescing of all three eigenvalues �i and eigenvectors βi at the certain point � = �EP reveals 
that the EP in the second moments occurs at exactly the same point in parameter space as the EP in the first 
moments [cf. Eq. (13) and Eq. (14) with Eq. (10)]. This suggests that the ‘Hamiltonian EP ’ [arising from Eq. (5)] 
and ‘Liouvillian EP ’ [arising from Eq. (11)] are identical for this simple system. Furthermore, the second moments 
EP may be classed as being of third-order (due to its emergence with the coalescing of three objects), while the 
first moments are associated with a second-order EP (only two objects coalesce in this case)57,58. The higher-
order EP associated with Eq. (11) is graphed in Fig. 2a,b using the results of Eq. (13), where the real parts of the 
eigenvalues �i are displayed in the upper panel, and the corresponding imaginary parts in the lower panel. This 
analysis shows the importance of exceptional point physics throughout the different levels of description of open 
quantum systems (for example with increasing large moments).

Average populations.  The mean population of the oscillator n(t) = �b†b� is contained within the first ele-
ment of � [cf. Eq. (12)] and is found by formally solving the equation of motion defined in Eq. (11). At long time 
scales ( t → ∞ ), the steady state population n(∞) = limt→∞�b†b� readily follows from Eq. (11) by noting that 
in this limit ∂t� = 0 and so its steady state solution −M−1P yields

where ω̃ is defined in Eq. (3) and Ŵ in Eq. (8). As a population, the denominator of Eq. (15) should be non-
negative. This suggests that the presented system is stable for driving amplitudes � < �c , where the critical 
driving frequency �c is defined as

(13)�3 = −iγ , �± =
{ −iγ ± ω̃, (� < �EP),

−iγ , (� = �EP),

−i(γ ± Ŵ), (� > �EP),

(14)β3 =





−�

�eiθ

�e−iθ



 , β± =





−�(�± ω̃)
�

2�(�± ω̃)−�2
�

eiθ

�2e−iθ



 .

(15)n(∞) = 1

2

�2

ω̃2 +
(

γ
2

)2
= 1

2

�2

(

γ
2

)2 − Ŵ2
,

Figure 2.   Populations of the parametric driven-dissipative oscillator. Panel (a): the real parts of the eigenvalues 
�i , arising from the second moments matrix M , as a function of the drive amplitude � (in units of the loss rate 
γ ) [cf. Eq. (13)]. Panel (b): the corresponding imaginary parts of �i . Dashed grey lines: the exceptional point 
(where � = � ). Panel (c): the mean population of the oscillator n(t), as a function of time t (in units of γ−1 ) 
with the initial mean population n(0) = 1 due to the oscillator being in its first excited state [cf. Eq. (17)]. We 
consider several values of � , including below the exceptional point (green lines) and above the exceptional point 
(red line). The result exactly at the exceptional point is given by the orange line [cf. Eq. (19)]. Thin grey lines: 
intermediate values of � . In this figure, we consider the case of the detuning � = 3γ /2 , so that �EP = 3γ /2 [cf. 
Eq. (10)] and �c =

√
5/2γ ≃ 1.58γ [cf. Eq. (16)].
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Otherwise there is no steady state – the competition from the driving and the dissipation is conclusively won 
by the driving and the population increases in time without bound. In practice, this continual climbing of 
the infinite and bosonic energy ladder of the oscillator can be tamed by either truncating the oscillator or by 
considering anharmoncities (both cases are discussed later on, although we are not so concerned with driving 
amplitudes satisfying � ≥ �c since the EP has already been passed by this stage). Notably, the result of Eq. (16) 
was foreshadowed by the complex eigenvalues ω± provided in Eq. (7). In particular, in the regime of � > � one 
of the eigensolutions ( ω− ) corresponds to exponentially growing behaviour in time when γ /2 < Ŵ , consistent 
with the relation of Eq. (16).

The steady state phase diagram of the system implied by Eq. (16), as a function of the detuning � and the driv-
ing amplitude � , is shown in Fig. 1d. The green region occurs below the EP ( � < � ), while the red region arises 
above the EP ( � > � ). No steady state is able to form in the blue region, as suggested by Eq. (16), and hence the 
population here is unbounded with increasing time. Hence for vanishing detuning � ≪ γ the steady state most 
likely exists in the ‘above EP ’ red region, within the bound 0 < � < γ/2 . Contrarily, with large detuning � ≫ γ 
the steady state is most likely to be in the ‘below EP ’ green region � > � , with a smaller chance of being in the 
slither of ‘above EP ’ red region when � < � < �

(

1+ γ 2/8�2
)

 . The diagram of Fig. 1d thus acts as a kind of map 
for the parametric oscillator, highlighting both the exceptional point at � = �EP and the critical point at � = �c.

The full solution of the equation of motion given in Eq. (11) leads to the oscillator population n(t), including 
both transient and steady state parts, which in general is given by

for driving amplitudes � < �EP , where the frequency ω̃ is defined in Eq. (3), and where n(0) is the population 
of the oscillator at the initial time t = 0 . Similarly, for driving amplitudes � > �EP the analogous result, using 
the damping rate Ŵ as given in Eq. (8), is

The solution of Eq. (17) displays characteristic sinusoidal and cosinusoidal Rabi-like oscillations, along with an 
exponential decay with the time constant γ , until the driving amplitude � overcomes the detuning � and the 
nonoscillatory solution of Eq. (18) supersedes it. However, when the driving amplitude is exactly � = �EP [cf. 
Eq. (10)] the solution of Eq. (17) is drastically reconstructed into the much simpler form

Most notably, while the exponential decay is unaffected, the expression of Eq. (19) features both linear and 
quadratic terms in the dimensionless time γ t (instead of this quantity only appearing in trigonometric or hyper-
bolic functions) due to the nature of the EP . We plot the average population n(t) in Fig. 2c for several values of 
driving amplitude � , where the detuning is fixed at � = 3γ /2 (so that �EP = 3γ /2 and �c =

√
5/2γ ≃ 1.58γ 

from Eq. (10) and Eq. (16) respectively). For small driving amplitudes � – well below the EP (dark green line) 
– the population of the oscillator never becomes significant and monotonically decreases to a low plateau. With 
increasing drive amplitudes � a non-monotonic behaviour develops in the manner of Rabi oscillations (lime 
green line), which is more pronounced for larger drives, for example approaching the EP (orange line). Above 
the EP (red line) the population surges to increasingly large steady state plateaus without oscillation. Finally, 
above the critical amplitude �c no steady state is formed such that a form of dynamical instability has arisen due 
to the driving overpowering the dissipation.

Correlation functions.  The impact of the EP is also felt in the n-th degree of coherence g (n)(τ ) , of which 
we consider the first-order and second-order degrees in particular55,56. The normalized first-order correlation 
function g (1)(τ ) , with some delay time τ , may be defined as g (1)(τ ) = limt→∞�b†(t)b(t + τ)�/�b†(t)b(t)� . For 
the presented model, using the results for the first and second moments and the quantum regression formula, 
it is explicitly given by either a damped-trigonometric expression or a damped-hyperbolic expression (see the 
Supplementary Information for details)

(16)�c =
√

�2 +
(γ

2

)2
.

(17)

n(t) =n(∞)+ ω̃−2/4

ω̃2 +
(

γ
2

)2

{

4n(0)�2
[

ω̃2 +
(

γ
2

)2
]

− γ ω̃�2 sin (2ω̃t)

− 2�2

(

2n(0)
[

ω̃2 +
(

γ
2

)2
]

+ ω̃2

)

cos (2ω̃t)

}

e−γ t ,

(18)

n(t) =n(∞)− Ŵ−2/4
(

γ
2

)2 − Ŵ2

{

4n(0)�2
[

(

γ
2

)2 − Ŵ2
]

+ γŴ�2 sinh (2Ŵt)

− 2�2

(

2n(0)
[

(

γ
2

)2 − Ŵ2
]

− Ŵ2

)

cosh (2Ŵt)

}

e−γ t .

(19)nEP(t) =
2�2

γ 2
+

{

n(0)+ 2�2

γ 2

(

γ t
[

n(0)γ t − 1
]

− 1

)}

e−γ t , (� = �EP).

(20)g (1)(τ ) =
{

[

cos (ω̃τ )+ γ
2ω̃ sin (ω̃τ )

]

e−
γ τ
2 , (� < �EP),

[

cosh (Ŵτ)+ γ
2Ŵ sinh (Ŵτ)

]

e−
γ τ
2 , (� > �EP),
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where the frequency ω̃ and the damping rate Ŵ are defined in Eq. (3) and Eq. (8) respectively, and where the 
characteristic time constant γ /2 appears in the decay factor. Clearly, in the regime of smaller driving amplitudes 
where � < �EP , the first-order coherence g (1)(τ ) is damped out at long timescales to zero, limτ→∞ g (1)(τ ) = 0 . 
However, in the opposing regime where � > �EP , the asymptotics are instead described by

which describes a convergent solution only when γ /2 > Ŵ , or equivalently when the driving amplitude � < �c 
[cf. Eq. (16)], which corresponds to when the system supports a steady state. Otherwise, a divergence in g (1)(τ ) 
with increasing time may be prevented by truncating the infinite energy ladder of the harmonic oscillator or by 
introducing anharmonicities. Notably, the formal definition of the normalized first-order correlation function 
g (1)(τ ) , as given above, ensures that g (1)(0) = 1 for all values of the driving amplitude �.

At the intermediate case between those described in Eq. (20), that is when the EP is approached [cf. Eq. (10)], 
the first-order correlation function g (1)(τ ) collapses [in a similar manner to the population dynamics reconstruc-
tion of Eq. (19)] into the damped-quadratic form

We plot g (1)(τ ) as a function of the delay time τ in Fig. 3a, which in general shows partial coherence with 
0 < |g (1)(τ )| < 1 , as opposed to complete coherence with |g (1)(τ )| = 1 or full incoherence with |g (1)(τ )| = 0 . We 
plot the results for driving amplitudes below the EP (green lines), at the EP (orange line), above the EP (red line) 
and at the critical driving amplitude (blue line). Notably, below the EP (two thickest lines) the correlation function 
displays characteristic damped oscillations in ω̃τ , and the exponential damping ensures limτ→∞ g (1)(τ ) = 0 , and 
thus total incoherence, for all uncritical cases. Above the EP (red line) the behavior becomes, quite predictably, 
nonoscillatory. However, exactly at the critical driving amplitude � = �c , Eq. (20) reduces to g (1)c (τ ) = 1 and 
complete coherence (thin blue line) is displayed for all times τ.

Temporal light intensity correlations may be measured using the second order cor-
relat ion function g (2)(τ ) ,  which can l ikewise be def ined in its  normalized form as 
g (2)(τ ) = limt→∞�b†(t)b†(t + τ)b(t + τ)b(t)�/�b†(t)b(t)�2 , for some delay time τ . Bunched light emissions 
arise from the oscillator when g (2)(0) > g (2)(τ ) , while photon antibunching occurs for g (2)(0) < g(2)(τ ) . The 
analytic expression for g (2)(τ ) may be calculated using the quantum regression formula and the first and second 
moments as (see the Supplementary Information for details)

The expression valid for � < �EP exhibits exponential decay with the time constant γ  , such that 
limτ→∞ g (2)(τ ) = 1 , suggesting a tendency towards Poissonian statistics for large delay times τ . However, for 
the case of � > �EP the long delay time asymptotics may be described by

(21)lim
τ→∞
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2
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2Ŵ

)

e−(
γ
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γ τ
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Figure 3.   Correlations of the parametric driven-dissipative oscillator. Panel (a): the degree of first-order 
coherence g (1)(τ ) as a function of the delay time τ , in units of the inverse damping rate γ−1 [cf. Eq. (20)]. We 
consider several values of driving amplitude � , including below the exceptional point (green lines), exactly at 
the exceptional point (orange line) and above the exceptional point (red line), as described in the legend found 
in panel (b). Panel (b): the degree of second-order coherence g (2)(τ ) as a function of τ [cf. Eq. (23)]. Dashed 
grey line: g (2)(τ ) = 1 for coherent light as a guide for the eye. In this figure, we consider the case of the detuning 
� = 3γ /2 , so that �EP = 3γ /2 [cf. Eq. (10)] and �c =

√
5/2γ ≃ 1.58γ [cf. Eq. (16)], a case which is given by 

the blue lines in both panels.
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which describes a convergent solution only when γ > 2Ŵ , or equivalently when � < �c [cf. Eq. (16)], which 
corresponds to the situation when the system is able to support a steady state. At zero time delay ( τ = 0 ), we 
find from Eq. (23) the much simpler expression

which has the upper bound g (2)(0) ≃ (�c/�)2 for weak driving amplitudes � ≪ �c , while the lower bound 
g (2)(0) = 3 for strong drivings tending towards the critical amplitude � → �c . These results effectively assume 
zero temperature of the thermal bath encasing the oscillator [cf. the discussion after the quantum master equa-
tion of Eq. (4)], however the order of limits is important in this case, and the expression of Eq. (25) should be 
replaced in the finite temperature case with a more complicated formula (as given in the Supplementary Infor-
mation), such that one instead obtains the weak driving limit result lim�→0 g

(2)(0) = 2 for all temperatures, 
corresponding to photon bunching.

Exactly at the EP , the following specific form of the correlation function g (2)(τ ) arises [cf. Eq. (23) for the 
marginal cases directly below and above it]

where again the EP has reconstructed the response of the system into a damped algebraic one. In Fig. 3b, we plot 
g (2)(τ ) as a function of the delay time τ , using the same colour coding as in panel (a). For drivings below the 
EP (green lines) we see gentle damped oscillations in the correlation function – always satisfying the bunching 
inequality g (2)(0) > g(2)(τ ) . Exactly at the EP (orange line) we see the damped-quadratic scaling in γ τ following 
Eq. (26) before a fast washing out of the correlations with large delay times τ → ∞ , and a similar pattern occurs 
for cases above the EP (red line). Finally, at the critical driving amplitude � = �c (blue line), where Eq. (23) 
reduces to the critical result g (2)c (τ ) = 3 , the delay time-independent result is observed. All of these results have 
been obtained at zero temperature (see the Supplementary Information for a discussion of nonzero temperature).

Optical spectrum.  The optical spectrum S(ω) , describing the mean number of photons emitted from the 
oscillator with the frequency ω , is defined via the integral of the population correlator �b†(t)b(t + τ)� , that is 
S(ω) = limt→∞ π−1�b†(t)b(t)�−1Re

∫∞
0 �b†(t)b(t + τ)�eiωτdτ55,56,59. We have included a normalization pref-

actor in this definition so that the spectral integral is equal to unity, that is 
∫∞
−∞ S(ω)dω = 1 . We compute the 

analytic expression for the spectrum S(ω) of the parametric oscillator as (see the Supplementary Information 
for the derivation)

where the key quantities ω̃ and Ŵ were introduced in Eq. (7) and Eq. (8) respectively. This spectral result S(ω) 
is plotted in Fig. 4 as the thick lines. In panel (a), the driving amplitude � is below the EP ( � < �EP ), such that 
the optical spectrum presents a characteristic doublet lineshape (thick green line). This response may have been 
anticipated due to the presence of two distinct real parts of the complex eigenfrequencies ω± in this regime [cf. 
Fig. 1b]. However, for the case of Fig. 4b, where the driving amplitude is above the EP ( � > �EP ), the spectrum 
displays a singlet structure (thick red line) since there is now only one distinct real part of ω± , which is essentially 
the only transition frequency appearing in the system [cf. Fig. 1b]. In both panels of Fig. 4, alongside the full 
spectrum S(ω) we plot its decomposition into two parts S+(ω) (thin cyan lines) and S−(ω) (thin orange lines), 
where each contribution S±(ω) corresponds to an allowed transition in the system (see the Supplementary 
Information for further information). In panel (a) we therefore see one peak centered around ω̃ and the other 
peak at −ω̃ , while in panel (b) both peaks are at resonance. The presence of a singlet lineshape within the lower 
expression within Eq. (27) can be more easily seen exactly at the EP , where the optical spectrum S(ω) reduces 
to the more compact result

This expression is of the form of a probability density function for a certain type of Student’s t-distribution 
with the degree of freedom ν = 3 (notably, a Lorentzian distribution corresponds to ν = 2 , and a Gaussian 
distribution arises in the limit of ν → ∞)60. Hence the optical spectrum S(ω) presents one of the most tangible 
indicators of passing through an EP , due the stark difference in spectral features presented, namely a doublet 
to singlet transition.
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Quantum states.  The quantum states of the system can be analysed within a phase-space formalism61,62. In 
particular, the expectation value of the density operator ρ̂ , with respect to the coherent state |α� , is the so-called 
Husimi function Q(α) = �α|ρ̂|α�/π . This Q-function acts like a kind of phase-space quasiprobability distribu-
tion, since it has the normalization 

∫

Q(α)d2α = 1 and it is non-negative for all quantum states. In Fig. 5 we 
show the evolution of the Q-function with increasing driving amplitude � across the row of panels (in the steady 
state t → ∞ , where the detuning � = 3γ /2 and for a truncated oscillator with N = 40 levels). In panel (a) the 
driving amplitude � = γ /2 , which is sufficiently small such that the Q-function is approximately circular since 
the quantum state is essentially brought into the vacuum state with n = 0 due to the dissipation (approximately, 
here Q(α) ≃ e−|α|2/π and its maximum max{Q} = 1/π ≃ 0.318 ). With increasing drive amplitude up to � = γ 
in panel (b), the Q-function becomes increasingly oval-shaped in the first manifestations of the parametric 
driving inducing squeezing behavior. In panel (c) the situation at the EP is shown ( � = �EP = 3γ /2 ), and the 
significance of the squeezing Hamiltonian of Eq. (1) is clearly seen through the highly squeezed Q-function (the 
tilt is caused by the competition between the driving and the dissipation). Finally in panel (d), where the criti-
cal point is finally reached ( � = �c =

√
5/2γ ≃ 1.58γ ), the Q-function becomes stadium-shaped (and rather 

diluted) due to the finite truncation (see the Supplementary Information for more details). While the results of 
Fig. 5a–c are essentially those for an oscillator with an infinite number of levels, the truncation to N = 40 levels 
is necessary in panel (d) since the driving amplitude there coincides with the critical point in the untruncated 
limit [where no steady state exists, as suggested by Eq. (15)].

Figure 4.   Optical spectrum of the parametric driven-dissipative oscillator. The spectrum S(ω) (thick lines) 
of the emitted photons of frequency ω [cf. Eq. (27)], and its decomposition into two constituent lineshapes 
S+(ω) and S−(ω) (thin cyan and orange lines respectively), all in units of the inverse loss rate γ−1 . Panel 
(a): the doublet regime, with the driving amplitude � = γ /2 < �EP . Panel (b): the singlet regime, with 
� = 1.54γ > �EP . In this figure, we consider the case of the detuning � = 3γ /2 , so that �EP = 3γ /2 [cf. 
Eq. (10)] and �c =

√
5/2γ ≃ 1.58γ [cf. Eq. (16)].

Figure 5.   The phase-space quasiprobability distribution and variances of the parametric driven-dissipative 
oscillator. Panels (a–d): the Husimi function Q(α) = �α|ρ̂|α�/π , or the expectation value of the density 
operator ρ̂ with respect to the coherent state |α� , for several values of the driving amplitude � . The Q-function is 
calculated in the steady state ( t → ∞ ) for a truncated oscillator with N = 40 levels. Panel (a): � = γ /2 , where γ 
is the loss rate. Panel (b): � = γ . Panel (c): � = 3γ /2 , corresponding to the exceptional point �EP [cf. Eq. (10)]. 
Panel (d): � = √

5/2γ ≃ 1.58γ , corresponding to the critical point �c [cf. Eq. (16)]. Panel (e): the quadrature 
variances σ 2

X (thick green line) and σ 2
P (thick orange line) in the steady state, as a function of � . The product 

of the standard deviations σXσP (medium red line) is also shown, as is a guide for the eye at the Robertson-
Schrödinger minimum uncertainty of 1/2 (horizontal, dashed grey line). Vertical grey lines: driving amplitudes 
corresponding to �EP and �c respectively. Throughout this figure, we consider the case of the detuning 
� = 3γ /2.
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The quasiprobability distribution results of Fig. 5a–d can be better understood in conjunction with an analysis 
of the variances σ 2

X and σ 2
P of the generalized quadrature operators X̂ and P̂ [cf. the discussion above Eq. (4)]. The 

two quadrature variances σ 2
X = �X̂2� − �X̂�2 and σ 2

P = �P̂2� − �P̂�2 should then satisfy, in their standard deviation 
forms σX and σP , the Robertson-Schrödinger uncertainty relation σXσP ≥ 1/2 . In the steady state ( t → ∞ ), we 
find the following simple expressions for the variances (see the Supplementary Information for the derivation)

where the critical driving amplitude �c is given by Eq. (16), and where Eq. (29) is defined for driving amplitudes 
� < �c so that a steady state limit exists. We plot the variances σ 2

X (thick green line) and σ 2
P (thick orange line), 

as a function of � in Fig. 5e. Most notably, for drivings � < �EP the position variance σ 2
X < 1/2 , showcasing the 

same steady-state squeezing as displayed pictorially in Fig. 5a–c. In particular, Eq. (29) implies that the position 
variance minimum, min{σ 2

X} = [1+ γ /(2�c)]/4 , occurs when � = �c(�c − γ /2)/� . For the case of Fig. 5e, 
where the detuning parameter � = 3γ /2 , this means that the extremum min{σ 2

X} = (1+ 1/
√
10)/4 ≃ 0.329 is 

realized when the driving amplitude � = γ (10−
√
10)/6 ≃ 1.14γ , which is the case somewhere between those 

described in panels (b) and (c). Notably, exactly at � = �EP the position variance σ 2
X = 1/2 , suggesting the role 

of the EP as the threshold above which steady state squeezing is absent (this coincidence is seemingly acciden-
tal and does not hold at sufficiently high temperatures of the thermal bath, as is shown in the Supplementary 
Information). Finally, the product of the standard deviations σXσP (medium red line) has the lower bound 1/2 
in the vanishing driving limit � → 0 and tends to infinity in the maximum driving limit of � → �c , marking 
the onset of the dynamical instability associated with the loss of the steady state.

Liouvillian gap.  The Liouvillian eigenmatrix L , corresponding to the model of Eq. (4) truncated into its 
finite-dimensional matrix form ∂tρ = Lρ , possesses a certain number of eigenvalues (see the Supplementary 
Information for more details). From this, one may obtain the Liouvillian spectral gap (formally, the Liouvil-
lian eigenvalue with the smallest real part after discounting any zero eigenvalues)63–65. A closing of the Liouvil-
lian gap at some critical value of a system parameter signifies a dissipative phase transition, examples of which 
have recently been observed in several photonic platforms66–68. We plot the Liouvillian gap as a function of the 
drive amplitude � for the studied squeezed oscillator in Fig. 6a. We show results for an increasingly large num-
ber of levels N of the oscillator (thin cyan-blue lines), such that in the untruncated limit – that is, the infinite 
limit N → ∞ as is written in Eq. (1) – the Liouvillian gap closes. This closing of the gap occurs at the critical 

(29)lim
t→∞

σ 2
X = 1

2

�2
c −��

�2
c −�2
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σ 2
P = 1

2
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Figure 6.   The effect of interactions on the parametric driven-dissipative oscillator. Panel (a): the Liouvillian 
gap as a function of the drive amplitude � (in units of the loss rate γ ) for the harmonic case ( U = 0 ). Results 
are shown for various cases when the oscillator is truncated to have a finite number of levels N. Vertical line: 
the gap closes as � → �c with N → ∞ [cf. Eq. (16)]. Panel (b): as for panel (a), but for a typical anharmonic 
case ( U = γ /100 ). Panel (c): the minimum value of the Liouvillian gap as a function of the system size N. The 
algebraic scaling for the harmonic case (cyan line) is γA/NB , with {A,B} = {1.505, 0.933} . The anharmonic case 
(pink line) has the exponential scaling γA/BN , with {A,B} = {1941, 1.230} . Panel (d): the mean steady state 
population of the oscillator limt→∞�b†b� as a function of � , computed for the harmonic case ( U = 0 ). Thick 
grey line: the untruncated oscillator expression of Eq. (15). Panel (e): as for panel (d), but for the considered 
anharmonic case ( U = γ /100 ). Thick grey line: the semiclassical expression of Eq. (31). Panel (f): the value of 
�/γ at which min {Liouvillian gap} occurs as a function of N. The harmonic case (cyan line) approaches �c via 
the algebraic scaling � = �c + γA/NB , with {A,B} = {5.282, 1.333} . The anharmonic case (pink line) diverges 
exponentially like � = γABN , with {A,B} = {1.189, 1.0024} . In this figure, we consider the case of the detuning 
� = γ , so that �c =

√
5γ /2 ≃ 1.12γ [cf. Eq. (16)] for the harmonic case.
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amplitude �c (vertical grey line), as was previously defined in Eq. (16), and which signifies a dissipative phase 
transition. Furthermore, the purity P = Tr (ρ)2 of the density matrix ρ in the steady state suggests that while 
below �c the state is relatively pure ( P ≃ 1 ), sharply above �c the state is maximally mixed ( P ≃ 1/N ), as is 
shown in the Supplementary Information. In the panel directly below, Fig. 6d, we plot the average population of 
the oscillator in the steady state, limt→∞�b†b� , again as a function of � and for different level numbers N (thin 
yellow-red lines) due to the truncation. These restricted results approach the behaviour of the infinite-level oscil-
lator result [thick grey line, Eq. (15)] with higher N, revealing that the critical amplitude �c is indeed linked to 
the disappearance of a steady state population (or at least a saturation for finite N cases) as well as a dissipative 
phase transition.

A note on interactions.  Anharmonic deviations to the harmonic oscillator described in Eq. (1) can be 
modelled by adding a Kerr-like energy to the Hamiltonian, Ĥ → Ĥ + ĤI , with the help of the nonlinear term

where the on-site interaction strength U ≥ 0 is considered to be repulsive. Carrying out an analysis of the Liou-
villian gap of this anharmonic model, again for a spread of different truncations to N energy levels (pink-purple 
lines), leads to the results of Fig. 6b. Notably, unlike the harmonic case of panel (a), the Liouvillian gap in panel 
(b) seems to decrease with increasing N without a convergence to some critical value of the driving amplitude � 
in the large N thermodynamic limit. This statement is supported by Fig. 6c,f. In panel (c), where the minimum of 
the Liouvillian gap is shown as a function of the restriction parameter N, for the anharmonic case (pink circles) 
and harmonic case (cyan circles), we see how the Liouvillian gap is closing as a power function and exponentially 
respectively (coloured lines) via the presented fittings. Meanwhile in panel (f), which displays the value of the 
drive amplitude � at which min {Liouvillian gap} occurs as a function of N, the fittings suggest that the harmonic 
case (cyan line) approaches �c via a power function, while the anharmonic case (pink line) seems to diverge 
exponentially. This apparent absence of a dissipative phase transition at some critical system parameter for the 
anharmonic oscillator comes with the guarantee of a steady state population in this case. Indeed, a semiclassical 
analysis69 of this nonlinear model [cf. Eq. (1) with Eq. (30)] leads to the following expression for the steady state 
population nI(∞) of the anharmonic oscillator (see the Supplementary Information for the derivation)

where the critical frequency �c is defined in Eq. (16) (cf. Eq. (15) for the corresponding harmonic oscillator 
population result). Clearly, it is necessary (within this semiclassical analysis) for the driving amplitude to be suf-
ficiently strong � > �c , in order to ensure a physical steady state with n(∞) > 0 . The population of Eq. (31) is 
plotted in Fig. 6e as the thick grey line, along with results for various truncations N of the anharmonic oscillator 
(thin green lines). This panel suggests that Eq. (31) is indeed a reasonable approximation in the thermodynamic 
limit N → ∞ of a large number of excitations. We conclude that while interactions in the form of Eq. (30), 
at least for perturbative values of U, do not strongly modify the majority of our results, this anharmonicity is 
important for the extinction of the critical closing of the Liouvillian gap and hence for the absence of a dissipa-
tive phase transition.

Discussion
In conclusion, we have studied one of the simplest driven-dissipative quantum models in which exceptional 
points can arise – that of a quantum harmonic oscillator with parametric driving. We have revealed that the 
exceptional point is of second-order in the first moments of the system, which impacts upon the lineshape of 
the optical spectrum and the character of the first-order degree of coherence. In the second moments of the 
system the exceptional point instead appears at the third-order, which influences both the dynamics of the 
populations and the behaviour of the second-order degree of coherence. Furthermore, the exceptional point is 
shown to coincide with last remnants of quantum squeezing in the steady state, which perhaps highlights the 
importance of this kind of physics for quantum states, as described within an open quantum systems approach. 
We have also discussed the occurrence of a critical point for the parametric oscillator which is associated with 
a dynamical instability, the phenomenon of a dissipative phase transition (as adjudicated by the closing of the 
Liouvillian gap), and the impact of small anharmonicities and truncations of the oscillator. Overall, we hope 
that our results can stimulate further experimental work, with platforms including photonic cavities70,71 and 
quantum circuits72,73, which can observe the predicted non-Hermitian quantum physics through the insightful 
lens of exceptional points and critical points.

Methods
We use methods from theoretical quantum optics as outlined in the main text and as discussed in detail in the 
Supplementary Information.

Data availability
There is no additional data. Further information is given in the Supplementary Information.
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