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A deep convolutional neural 
network for efficient microglia 
detection
Ilida Suleymanova 1*, Dmitrii Bychkov 2 & Jaakko Kopra 3

Microglial cells are a type of glial cells that make up 10–15% of all brain cells, and they play a 
significant role in neurodegenerative disorders and cardiovascular diseases. Despite their vital role 
in these diseases, developing fully automated microglia counting methods from immunohistological 
images is challenging. Current image analysis methods are inefficient and lack accuracy in detecting 
microglia due to their morphological heterogeneity. This study presents development and validation 
of a fully automated and efficient microglia detection method using the YOLOv3 deep learning-
based algorithm. We applied this method to analyse the number of microglia in different spinal cord 
and brain regions of rats exposed to opioid-induced hyperalgesia/tolerance. Our numerical tests 
showed that the proposed method outperforms existing computational and manual methods with 
high accuracy, achieving 94% precision, 91% recall, and 92% F1-score. Furthermore, our tool is 
freely available and adds value to exploring different disease models. Our findings demonstrate the 
effectiveness and efficiency of our new tool in automated microglia detection, providing a valuable 
asset for researchers in neuroscience.

Microglial cells are immune cells of the central nervous system (CNS), representing 10–14% of all  glia1. Differ-
ent studies report the activation of microglia in  glaucoma2, neuropathic  pain3,  viral4,  bacterial4 and  parasitic4 
infections. They are also essential to learning and  memory5,6 and protect neurons from damage. Microglia spread 
inflammatory signals in response to even small pathological changes in the  CNS7.

Microglial cells have small, rounded bodies with large and ramified branches. These cells spread through-
out the nerve tissue but without overlapping adjacent cells. Developing fully automated methods for counting 
microglia cells from immunohistological images with no user-defined parameters is a significant challenge in 
the field. Traditional CNS microglia quantification techniques are manual or semi-automated. Manual counting 
is time-intensive and involves human error. Several detection approaches have been developed for fluorescently 
stained  microglia8–11. For example, Kozlowski et al.9 used the Outsu threshold method, and de Gracia et al.8 fixed 
the manual threshold. Detecting the positive cells in a fluorescent image is very simple because the positive signal 
of the cells is substantially higher than the  background12. Microglia markers can also be visualised using a more 
sensitive version of immunohistochemistry: secondary antibodies conjugated with 3,3′-diaminobenzidine (DAB). 
DAB staining is typically more sensitive and typically enables measuring the more detailed texture of the  cells13. 
DAB staining is known for making the definition of a positive object vast and is, therefore, more challenging to 
quantify than the fluorescence-stained  cells14. One possible solution is using or developing ImageJ  plugins15,16. 
Morrison et al. applied ImageJ plugins to segment DAB-stained  microglia16. To achieve this goal, they utilised 
skeletal and fractal analyses while manually counting the number of cells. The use of plugins, however, presents 
a significant limitation due to their inconsistent and often unpredictable performance, which is influenced by 
various factors. Moreover, the method is not entirely automated.

Deep convolutional neural networks (DCNN)-based models are a way to overcome many shortcomings of 
manual or semi-automated methods in cell  detection17. DCNN applications outperformed traditional methods 
in 2012, attracting increasing attention to computational cell biology and  healthcare18–27. DCNN models are 
successful, notably in complex cell classification  tasks28. Kyriazis et al. proposed a custom DCNN model, but 
this method is  inaccurate29. In the recent work, Stetzik et al. trained the DCNN model as part of the commercial 
software Aiforia™ to detect DAB-stained microglia in mouse models of viral  infection30. The main limitations of 
commercial software are that they are costly, and the performance is time-consuming. Furthermore, there are 
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no universally best tools, and many of these tools require manual changes, which strongly limits their efficient 
use within the biologist  community31–33.

Several methods have been developed to detect microglia in past years using traditional image processing 
tools and  DCNN8–11,15,16,29,30. Our research aim was to develop a fully automated tool for microglia detection 
that would be more accurate, efficient, and faster than existing approaches. We present an innovative algorithm 
for the automatic detection of microglia based on  YOLOv334—a powerful DCNN platform that can be custom-
ised to deal with a range of object detection tasks (Supplementary Information). A significant advantage of this 
platform is that it can be tuned to deal with a range of object detection tasks. This platform enables a simple 
selection of the deep learning architecture size, which can be matched to the object detection task’s complex-
ity, allowing the network to be trained with a relatively small number of annotated images. Furthermore, this 
platform delivers competitive performance without requiring extensive training processes or optimisation of 
various hyperparameters.

In this project, we used sections from the control and opioid-induced hyperalgesia/tolerance (OIH/OIT) 
groups described by Jokinen et al.35. OIH/OIT refers to the dose escalation during long-term opioid therapy, 
which can lead to increased  pain36. Research has shown that the long-term use of morphine can cause glia 
 activation37. This activation can lead to the production and release of various neuro-excitatory  substances38,39. 
Microglia tend to undergo extensive morphological changes during activation, significantly increasing variability 
in size and shape and showing complex arrangements of their processes and  networks36. For our analysis, we 
chose specific brain and spinal cord regions believed to be involved in chronic pain  management35.

To demonstrate the effectiveness of our microglia detection, we trained YOLOv3 using its general network 
architecture. To validate the performance of YOLOv3, we compared it with other commonly used approaches 
such as expert observer’s detection, ImageJ, and semi-automated tools such as ilastik. In addition, we evaluated 
the detection accuracy in an experimental biological task by counting the number of cells in the forelimb motor 
cortex under the effect of morphine. We selected the forelimb motor cortex brain sections as we had previously 
reported changes in the number of microglia in this  area35. Our results show that our algorithm performs excep-
tionally well compared to modern methods in terms of accuracy and computational efficiency.

Materials and methods
Animals
The study protocol was approved by the experimental animal ethics committee of the provincial government of 
Southern Finland (Uudenmaan Lääninhallitus, Hämeenlinna, Finland, permission # ESAVI/7929/04.10.07/2014). 
All methods were performed in accordance with the relevant guidelines and regulations of the International 
Association for the Study of  Pain40, and European Communities Council Directive, 24 November 1986. All 
experiments were performed in accordance with ARRIVE guidelines. Ten adult male Sprague–Dawley rats (from 
Scanbur, Sollentuna, Sweden) weighing 225 ± 25 g (mean ± SEM) were used at the beginning of  experiment35. Rats 
were divided into an OIH/OIT group and a control group (saline), with five rats per each  group35. The animal 
model, including precise biological experiments, is published by Jokinen et al.35.

Preparation of samples
The experimental dataset utilised different regions of the rat brain to examine the efficiency of the proposed 
approach. Tissue sections of 6 μm were prepared from selected regions of the brain and lumbar regions of the 
spinal cords as previously  described35. The selected sections were labelled with antibody for Ionized calcium-
binding adapter molecule 1 (Iba1) (1:1000, Catalogue No. 019-19741, Wako, Richmond, VA, USA), using anti-
rabbit and anti-mouse biotinylated secondary antibodies and the VECTASTAIN ABC HRP Kit (Cat PK-6101, 
PK-4002 Vector Laboratories, Burlingame, CA, USA)35. Slides were scanned and imaged by the 3DHISTECH 
Scanner (3DHISTECH Ltd, Budapest, Hungary).

Annotation procedure
Annotations were made manually using a graphical image annotation tool LabelImg. 22 images and 6500 cells 
were labelled for the training set. All images and data analysed during the study are included in  Supplementary 
Information. The cells were inserted into the training set by an expert drawing a bounding box around them. 
The training data was annotated twice by the expert. In the second round of cell labelling, all images were rotated 
180° to evaluate intra-person accuracy.

Convolutional neural network
Using general default architecture of YOLOv3, as a one-step object detection algorithm, YOLOv3 transforms the 
detection problem into a regression  problem34,41,42. YOLOv3 uses darknet-53 as a backbone and binary cross-
entropy loss function. The Darknet53 network consists of a convolutional layer and a residual block.

The residual network employed by Darknet53 can be represented:

where X is an input feature, (W1, X) is an input feature, a weight of W1 is a weight, the size of the convolution 
kernel of W1 is 1 × 1. β is batch normalisation, σ is nonlinear ReLU activation. X2 is a backbone output feature of 
the residual structure, where the size of the convolution kernel of W2 is 3 × 3, X3 is a final output feature of the 
residual network. First, a traditional 3 × 3 convolution on the input features is performed, next step is stacks of 

X1 =σ {β(W1,X)}

X2 =σ {β(W2,X1)}

X3 =X + X2
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five residual blocks. The residual network number of each residual block is 1, 2, 8, 8, and 4. Residual blocks are 
connected by the downsampling convolution.

During training, all hyperparameters were set: learning rate is 0.001; momentum is 0.9; weight decay is 
0.0005; batch size is 32.

Evaluation methods and metrics
We evaluated the detection results by calculating precision, recall and F1-score. A correct detection (true posi-
tive, TP) happens when a ground truth object has a matched pair, and false positive (FP) detection happens 
when an extra object is present. In contrast, a false negative (FN) happens in the case of missing objects. Based 
on these definitions we calculated precision [defined as P = TP/(TP + FP)], recall [defined as R = TP/(TP + FN)], 
and F1-score [defined as F1 = TP/(TP + (FP + FN) × 0.5)].

The same example images of cells were mirrored and rotated, and blindly shown to the annotators to be 
labelled again to reduce bias to the lowest possible level. Altogether the annotators manually annotated ~ 10 
different images containing ~ 650 cells using the LabelImg tool.

In ilastik, we used pixel and object classifications with Gaussian Smoothing colour/intensity feature, Gaussian 
Gradient Magnitude and Difference of Gaussian edge features. In ImageJ, we used global threshold maximum 
entropy since it performed best to other available global and local thresholds in ImageJ. All pixels outside the 
threshold were set to zero. Small objects were deleted as noise objects based on the object size threshold.

Correlation analysis was performed with the Pearson correlation test. The statistical test was performed in 
Matlab.

Results
Using precision, recall, and F1-score metrics, we evaluated the detection results from DCNN by comparing 
them with manual counting, ilastik, and ImageJ. Figure 1a presents examples of detected microglia by DCNN.

As shown in Fig. 1b, DCNN achieved precision, recall, and F-1 score values P = 0.94, R = 0.91, and F1 = 0.92, 
respectively. Whereas precision and recall values for ilastik were P = 0.74, R = 0.94, F1 = 0.83, and for ImageJ 
P = 0.62, R = 0.95, F1 = 0.75, for manual counting P = 0.88, R = 0.86, F1 = 0.87. As expected, our method gener-
ally performed very competitively. We hypothesise that possible reasons for any discrepancy in the accuracy 
are related to the atypical shape of microglia or/and variability in staining intensity. Statistics for all evaluated 
metrics are shown in the Supplementary Table.

In practice, the runtime of a method is also an important factor. DCNN is approximately 170 times faster 
than manual counting, 60 times less than ilastik, and 30 times less than ImageJ. This indicates that the DCNN 
model is characterised by a highly beneficial cell detection time besides its good quality performance. Annota-
tion of 6500 cells took ~ 4 h of continuous labelling, and for training, the model took ~ 45 h of training time, 300 
epochs. The annotated cells were chosen to include the training data from various quality images, representative 
variations in staining, tissues preparations, and imaging (Supplementary Information). Taken together, DCNN 
has appears to have a very favourable runtime, in addition to good performance.

Additionally, we applied the proposed model for detecting cells in forelimb motor cortex brain sections of 
CTR and OIH/OIT groups. The microglia ratio between groups is 1.12 for manual counting and 1.13 for DCNN, 
indicating only ~ 2% measurement difference (Fig. 2a). The newly developed model is highly correlated with the 
manual counting method, with Spearman correlation of R = 0.95 (Fig. 2b).

Discussion and conclusions
Our approach introduces a novel, fully automated method for accurately detecting microglia, which can aid to 
better understand their pathophysiological processes.

Figure 1.  Examples of microglia detection by FindMyCells. (a) Detection results. (b) Evaluated metrics for 
DCNN, manual counting, ImageJ, and ilastik.
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Unlike traditional object detection models that use multiple stages, YOLOv3 uses a single neural  network43,44. 
YOLOv3 can achieve high accuracy in object detection while remaining fast due to its functional pyramidal 
network and prediction engine. In addition, it offers excellent speed for detecting objects of different sizes, in a 
wide range of settings and scenarios, which is crucial in cell detection. General architecture YOLOv3 was chosen 
to perform microglia detection since it has been designed to be fast and  efficient34, making it rather ideal for the 
task. 6500 cells were manually labelled to train the model. To benchmark our detection approach, we compared 
it against ImageJ, machine learning-based tool ilastik, and manual detection. The model achieved F1 score of 
92% and significantly outperformed other approaches. In addition, DCNN output showed high correlation 
compared to the manual microglia counting, which demonstrates its validity. Notably, the F1 score of the human 
expert was 4% units lower than YOLOv3 (88% vs 92%). We consider that the intra-observer accuracy indicates 
the complex nature of microglia.

We also want to remark that DAB-based staining of cells results in a significantly wider staining intensity 
between the samples than fluorescent dyes. Intensity inhomogeneity is a significant issue in the analysis of medi-
cal images and can greatly undermine the performance of image analysis processing and  segmentation45. Several 
approaches are generally used to overcome this issue from magnetic resonance  images46,47. In this work, the high 
performance of the proposed approach has been obtained without any intensity normalisation.

Kyriazis et al. and Stetzik et al. also used DCNN model to detect  microglia29,30. However, Kyriazis’s method 
could correctly recognise only 70% of cells. The authors used only 300 cells for training the DCNN model. The 
authors expected to improve performance with higher volume of training data. Stetzik et al. implemented the 
user-friendly commercial software Aiforia™, where the main drawback is that the computational time for cell 
recognition is hundred times slower compared to ours. In addition, the Aiforia™ platform is also costly, limiting 
its scalability in an academic setting.

Our research has some limitations that require addressing in future studies. Firstly, all materials were obtained 
from rat opioid models, so the validity and applicability of the proposed method in other organisms and models 
should be confirmed. Additionally, the default deep convolutional neural network architecture was utilised in 
the project, and further optimisation of the hyperparameters and increasing the number of annotated examples 
should further improve the model’s performance. YOLOv3, as a larger network, requires high-performance 
hardware for excellent performance and has a fixed input image size. Compared to region-based convolutional 
neural networks, the algorithm has a poorer ability to recognize object positions and a lower recall  rate48. How-
ever, YOLOv3 performs better in detecting complex  samples49.

In conclusion, our novel approach for microglia detection has demonstrated high performance in detecting 
microglial cells with significant variation in appearance, size, and shape. Our experiments have shown that our 
method outperforms several widely used approaches. The automated detection process provides a quick and 
reliable quantification of microglia, without the need for any user-defined parameters. Moving forward, we plan 
to further train our model to recognise fluorescently and DAB-stained cells and extract morphological features 
of microglia to gain insights into their precise mechanisms and regulatory functions. This tool has the potential 
to significantly advance our understanding of microglia and their role in various neurological conditions.

Data availability
All data used and analysed during this study are included in this published article (Supplementary Information).
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